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Abstract

In this paper we initiate the study of the arithmetical properties of a set

of numbers which encode the dynamics of unimodal maps in a universal

way along with that of the corresponding topological zeta function. Here

we are concerned, in particular, with the Feigenbaum bifurcation.

1. Preliminaries

We start by reviewing some basic ideas of (a version of) the kneading

theory for unimodal maps. For related approaches and/or more details see

[4], [5], [7].

Definition 1.1. A smooth map [ ] [ ]1,01,0: →f  is called unimodal if

it has exactly one critical point 10 0 << c  and moreover ( ) ( ) .010 == ff

For unimodal maps the orbit of the critical point 0c  determines in a

sense the complexity of any other orbit. To be more precise, given

[ ]1,0∈x  we call itinerary of x with f the sequence ( ) ...,321 sssxi =  where

0=is  or 1 according to ( ) 0
1 cxf i <−  or ( ) .0

1 cxf i ≥−  An important point
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is that such symbolic representation is in fact ‘faithful’, that is, if

( ) ( ),xsxs ′=  then .xx ′=  Differently said, the partition of [ ]1,0  in the

two semi-intervals [ )00 ,0 cP =  and [ )1,01 cP =  is generating for a

unimodal map f with critical point .0c

It is clear that if ( )xis =  is a sequence obtained as above, then

( )( ) ( ),sxfi σ=  where σ denotes the left-shift: if ...,321 ssss =  then

( ) ....432 ssss =σ  The itinerary of the point ( )01 cfc =  is called kneading

sequence ( )fK  of f. We say moreover that a given sequence s of 0 and 1 is

admissible for f if there is [ ]1,0∈x  such that ( ) .sxi =  A nice way to

decide whether or not a given sequence is admissible amounts to
establish an ordering on the itineraries which corresponds to ordering of
the real line. In this way, the admissible sequences are those which never
become greater than the kneading sequence when shifted. To this end, let

us associate to a sequence ...321 ssss =  the number ( ) [ ]1,0∈τ s  defined as

( )∑∑
=

∞

=
===τ

k

i
ik

k
k
k st

t
ttt

11
321 .2mod,

2
....0 (1.1)

Equivalently, if we set

( ) ,1 1∑ =−=ε
k
i is

k (1.2)

then kt  and kε  are related by

.21,
2

1
kk

k
k tt −=εε−= (1.3)

Lemma 1.1. Given [ ]1,0, ∈yx  we have

(1) if ( )( ) ( )( ),yixi τ<τ  then ;yx <

(2) if ,yx <  then ( )( ) ( )( ).yixi τ≤τ

Remark 1. The equality in (2) cannot be removed. Indeed, the
existence of an attracting periodic orbit typically implies the existence of
an interval of points with the same itinerary. On the other hand, a

theorem due to Guckenheimer (see [5]) says that a unimodal map f has
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an attracting periodic orbit if and only if ( )fK  is periodic. Vice versa, if

( )fK  is not periodic, then implication (2) becomes: if ,yx <  then

( )( ) <τ xi  ( )( ).yiτ  This has important consequences. First of all: if ( )fK  is

not periodic and ( ) ( ),gKfK =  then f and g  are topologically conjugated.

Proof of Lemma 1.1. Let us show the first part. Set ( ) ...,21ssxi =

( ) ...21ssyi ′′=  and let { }ii ssin ′≠≥= :1min  be the discrepancy between

( )xi  and ( ).yi  We proceed by induction in n. If ,1=n  then the result is

clear. Suppose it is true for sequences with discrepancy .1−n  We have

( )( ) ...32ssxfi =  and ( )( ) ....32ssyfi ′′=  Two cases are possible: either

01 =s  or .11 =s  If ,01 =s  then ( )( )( ) ( )( )( )yfixfi τ<τ  because applying f

we do not modify the number of 1’s before the discrepancy. Using the

induction we then have that ( ) ( ).yfxf <  But since f is increasing on

[ )0,0 c  we also have .yx <  If ,11 =s  then ( )( )( ) ( )( )( )yfixfi τ>τ  because

there is a 1 less among the symbols ....2 nss  Therefore, by the induction,

we get ( ) ( )yfxf >  and since f is decreasing on ( ]1,0c  we see that .yx <

The second assertion follows similarly.

An immediate consequence is the following:

Theorem 1.1. Every sequence s such that

( )( )( ) ( ( )) ( )( ) 0, ≥τ≤στ≤στ mfKsfK m

is admissible and is the itinerary of a point in ( )[ ]., 11 ccf

In particular,

( ( )( )) ( )( ) .0, ≥τ≤στ mfKfKm

A sequence K with this property is said maximal. If moreover we consider

a one-parameter family of unimodal maps rf  so that rfr →  is

continuous on some real interval with respect to the 1C  topology, then we

can reformulate a theorem of Metropolis et al. (see [5]) by saying that

every maximal sequence K such that

( ( )) ( ) ( ( ))
ba rr fKKfK τ≤τ≤τ
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is the kneading sequence of rf  for some .ba rrr ≤≤  Notice that for

[ ]( ) [ ]1,01,0 ⊆rf  one needs that ( ) .10 ≤cfr  In particular, if ,brr =  then

( ) 10 =cf
br  and ( ) 01=

brfK  (where lss ...1  indicates the unended

repetition of the word ),...1 lss  to which it corresponds the number

( ( )) .1=τ
brfK  At the other endpoint we have ( ( )) 0=τ

arfK  (when ( )0cf n

converges monotonically to zero). We finally observe that given [ ]1,0∈q

we have

( ) ( )( ) ( ),qTsqs =στ⇒=τ

where [ ] [ ]1,01,0: →T  is the tent map given by

( )
( )





≥−

<
=

.21if12

,21if2

xx

xx
xT

Putting together these observations we obtain the following
representation [9]:

• The subset [ ]1,0⊂Λ  defined as

{ [ ] ( ) }0,:1,0 ≥∀τ≤τ∈τ=Λ mT m

represents a universal encoding for the dynamics of unimodal maps:

those having the same parameter τ have identical topological properties.

In particular, every 0 in the binary expansion of Λ∈τ  corresponds to a

‘forbidden word’ in the associated dynamics: let ( ) ...21ssfK =  and

( )( ) ...,.0 21ttfK =τ  then if 0=jt  the word jss ˆ...1  (with )1ˆ jj ss −=  is a

forbidden word. Let { }1,0=A  be the alphabet and n
n AA N∈

∗ = ∪  be the

set of all possible finite words written in the alphabet A. A word ∗∈ Au

of length nu =  is said f-admissible if there is [ ]1,0∈x  whose

itinerary with f up to the n-th letter coincides with u. The set ∗⊆ AL

defined as

{ }admissible- is, fuAu ∗∈=L
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is the language generated by f. The function

( ) { }nuunp =∈= ,# L (1.4)

is called the complexity function of L  and the limit

( )np
n

h
n

log1lim
∞→

= (1.5)

is the topological entropy. To summarize, the parameter τ furnishes a

universal encoding in the sense that all unimodal maps with the same τ
determine the same language ( )τ= LL  and, in particular, have the same

topological entropy ( ).τ= hh

Remark 2. It is plain that the extremal situation in which ( ) τ=τmT

for some 0>m  is that in which τ is a periodic point for the tent map T.

In this case the kneading sequence K is periodic and so is the

corresponding attractor. This suggests that isolated points as well as

‘holes’ in Λ have to be related to periodic attractors. In particular, there is

a one-to-one correspondence between the holes in Λ and the periodic

windows in the bifurcation diagram of unimodal maps, namely intervals
in parameter space where the topological entropy is constant [9].

1.1. Topological zeta function

A great deal of information on the set of periodic points of a given

map [ ] [ ]1,01,0: →f  can be stored into the topological zeta function of

Artin and Mazur, defined as

( ) ( )∑
∞

=
=ζ

1

.Per#exp,
n

n

n
f

n
zzf (1.6)

For a unimodal map f with parameter τ the numbers ( )fnPer#  are

uniquely determined by the value of τ and we therefore write ( )., zτζ  The

series converges absolutely and uniformly for hez −<  and hez −=  is a

singular point (e.g., a pole) of ( )., zτζ  This function can also be written as

an Euler product noting that
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( ) ( ) ( ) ( )∑ ∑ ∏∑
∞

=

∞

=

∞

=

−
∞

=

−==
1 1 11

,1logPer#
p k p

pNp
kp

n
n

n
z

k
zpNf

n
z

where ( )pN  is the number of distinct periodic orbits of prime period p.

Hence we have

( ) ( ) ( )∏
∞

=

−−=τζ
1

.1,
p

pNpzz (1.7)

The combinatorial features of the set of periodic orbits of a given map f

reflect onto the analytic properties of ( )z,τζ  in the complex plane.

More specifically, from the work of Milnor and Thurston ([12],
Lemma 4.5 and Corollary 10.7) one can extract the following result:

Proposition 1.1. Let ..0 321 …ttt=τ∋Λ  If the sequence …321 ttt  is

eventually periodic or aperiodic, then

( )
( )

,
11

1,

1





 ε+−

=τζ

∑∞

=k
k

kzz
z (1.8)

where the numbers kε  are defined in (1.2)-(1.3). If instead the kneading

sequence is periodic and ,.0 1 ntt …=τ  then

( )
( )

.
11

1,
1

1





 ε+−

=τζ

∑ −

=

n

k
k

kzz
z (1.9)

We now list some examples in which the zeta function can be written
in closed form by means of Lemma 1.1.

•  The number 11.01 ==τ  corresponds to the situation where the

critical point gets mapped to the origin in two steps, and yields

( ) ( ) .2log1,
21

1,1 =
−

=ζ h
z

z

•  The number 101.065 ==τ  corresponds to the situation where

the critical point gets mapped to the fixed point in three steps (band
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merging). In this case we find

( )
( ) ( )

,
211

1,65
2zz

zz
−−

+=ζ    ( ) .2log65 =h

•  The number 110.076 ==τ  corresponds to the opening of the

period three window. The last orbit in the Sarkovskii order settles down
and thus there are periodic orbits of any period. Here we get

( )
( ) ( )

( ) .
2

15log76,
11

1,76
2

−=
−−−

=ζ h
zzz

z

In the examples above the number τ was always rational. In the next

section we show a situation leading to a transcendental irrational τ. A

systematic study of the arithmetical properties of the numbers in Λ,

along wit their relation with the dynamics, is far from being reached. In

particular, the question of what is the most irrational τ (and to which

chaotic state it corresponds) is open. In Section 2 we shall study the
above quantities for the Feigenbaum bifurcation but in order to get a self-
contained exposition we first recall some standard notions (for details see
[7]).

1.2. Kneading theory and renormalization

Let [ ] [ ]1,01,0: →f  be a unimodal map with a unique fixed point b

in the interval ( ),1,0c  so that ( ) .0<′ bf  Let a be the (unique) point in

( )0,0 c  such that ( ) baf =  and set [ ]., baJ =  Consider the linear map L

defined by

( ) ( ).1 bx
ba

xL −
−

= (1.10)

It expands J to [ ]1,0  reversing its orientation. The inverse map is

( ) ( ) .1 bxbaxL +−=− (1.11)

The renormalization operator R  is thus defined as

( ) ( ) ( ).12 xLfLxf −= DDR (1.12)
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Plainly ( ) ( ) ( ) ( ) 010 == ff RR  and 0c  is the only critical point of .fR

Moreover, 2-periodic points for f become fixed points of .fR

Now let ( ) ...321 sssfK =  be the kneading sequence of f. The following

properties are easily verified (see [7]):

1. If fR  is defined and unimodal, then ;0,112 ≥∀=+ ks k

2. ( ) ....ˆˆˆ 642 sssfK =R  In other words, one can define a renormalization

operator on sequences acting as (with slight abuse we keep using the
same symbol):

( ) ...;ˆˆˆ... 642321 ssssss =R (1.13)

3. if both fR  and f2R  are unimodal, then ;024 =+ks

4. if flR  is unimodal for ,nl ≤  then all symbols js  with =j

122 −+ nnk  are determined;

5. since the numbers 122 −+ nn k  exhaust all even numbers as n

varies in N  it follows that if fnR  is unimodal for each ,1≥n  then all

symbols of ( )fK  are determined.

How ( )fK  looks like for an infinitely renormalizable unimodal map,

that is a map f such that ?ff =R

Set

11 =K

102 =K

10113 =K

101110104 =K

11101110111010105 =K

and more generally 1+jK  is obtained from jK  by applying one of the
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following equivalent procedures:

•  duplicating the repeating sequence and reversing the last symbol;

•  doubling all indices, reversing the resulting symbols (all with even
index) and inserting a 1 at each position with odd index;

•  applying the Feigenbaum substitution 101 →  and 110 →  (the

symbol 1 being the prefix) to the repeating sequence.

By construction jK  has period j2  with an odd number of 1’s. We also

have that

( ) .1,1 ≥=+ jKK jjR (1.14)

Therefore the limit sequence

...10101011101010111011101110101011lim ==
∞→∞ jj

KK (1.15)

is aperiodic and invariant under renormalization (the latter can be
interpreted as a self-similarity property):

( ) .∞∞ = KKR (1.16)

For all ,0≥j  jK  is a prefix of .∞K  Finally, one easily verifies that jK

is the kneading sequence of a unimodal map having a periodic attractor

of period ,2 j  whereas ∞K  is that of an infinitely renormalizable map.

Inspection of the sequences nK  suggests that the asymptotic

frequencies of the symbols 0 and 1 appearing in ∞K  are 1/3 and 2/3

respectively. To check this, we shall use a standard technique in the

theory of substitution (see [13]): let φ be the substitution ( ) 101 =φ  and

( ) 110 =φ  considered above and ( )( )jNi φ  be the number of occurrences of

the symbol 1,0=i  in the word ( ).jφ  The asymptotic frequency of i in

∞K  is then given by

( ( ))
,1,0,

2

1
lim =φ=

∞→
i

N
f

n

n
i

ni (1.17)

where we have used the fact that .2n
nK =  To compute if  we construct



w
w

w
.p

ph
m

j.c
om

STEFANO ISOLA88

the matrix

( )( )[ ] { }.1,0, ∈φ= jii jNM (1.18)

A short reflection yields

[ ( ( ))] ,1,0, =φ= ji
n

i
n jNM (1.19)

and thus, setting ( ),1,0=u  we get

( )
.

2
lim

n
i

n

ni
uM

f
∞→

= (1.20)

From Perron-Frobenius theorem we have that M has a simple positive

eigenvalue of maximal modulus λ to which it corresponds an eigenvector

with strictly positive components. In our case we find






=

12
10

M (1.21)

whose eigenvalues are 2 and −1. The normalized eigenvector

corresponding to the leading eigenvalue is ( ).32,31=v  From (1.20) one

deduces that ,1,0, == ivf ii  which are the claimed frequencies.

Remark 3. One may consider the sequence ∞K  as an element of

{ }N1,0  and observe that the continuous injective map { } →N1,0:T

{ }N1,0  defined as follows: if ...,111=ω  then ...;000=ωT  if =ω

...,10...1  then ...;01...0=ωT  if ...,0=ω  then ,...1=ωT  acts a (right)

translation on .∞K  Therefore T leaves invariant the space

{ } .0≥∞= j
jKTX  The map XXT →:  is called dyadic adding machine.

2. Arithmetics of the Feigenbaum Bifurcation

We now look at the values of the parameter τ corresponding to the

kneading sequences arising in the period doubling scenario discussed in
the preceding section.
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Set ( ).jj Kτ=τ  We find

10.01 =τ

1100.02 =τ

11010010.03 =τ

1011001101001100.04 =τ

10110011010010110100101101001100.05 =τ

and 1+τ j  is obtained from jτ  by applying the rule

,ˆ...ˆˆ....0....0
21212121121 jjjjj tttttttt jj −−+ =τ⇒=τ (2.22)

or, alternatively, by the following substitution: let

.11,10,01,00 ==== dcba

Then

.,,, dbddacadbaca →→→→ (2.23)

It is easy to check that .1, ≥∀Λ∈τ jj  They form an increasing sequence:

"<τ<τ<τ 321

and satisfy

( ) ,~
1 jj τ=τ +R   where  ( ) .....0:....0~

642321 tttttt =R (2.24)

For each ,1≥j  jttj 21....0=τ  is the rational number given by

.
212

2
2

1
2

2

∑
=−

=τ

j

j

j

k
k
k

j
t

(2.25)

We have

,
65537
54062,

257
212,

17
14,

5
4,

3
2

54321 =τ=τ=τ=τ=τ
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.
37095516171844674407
14565097421521686800,

4294967297
3542953172

76 =τ=τ

By (2.22) and (2.25) the following recursive law is in force:

( )
( ) ,

22
22

1

1
1 −+

−+
==τ⇒=τ

+

+
+

jj

jj

j

j
j

j

j
j qq

qp
q
p

q
p

(2.26)

where all fractions are in lowest terms. From the above it follows

( )21 11 −=−+ jj qq  and thus .12
12 +=
−j

jq  Note that the above

recursion can be written in the form

( ) ,122,3,2
12

111 jj ppqp
j

−+===
−

+

( ) .1,122
12

1 ≥−+=
−

+ jqq jj
j

(2.27)

This yields

( ) ( ) ( )∏
−

=
−− −==−−=−

−
2

0

2
11

2 1212
2

j

k
jjjj

kj
pqpq " (2.28)

and recalling that 12
12 +=
−j

jq  we get ( )∏ −
=

−−+=
− 2

0
22 .1212

1 j
kj

kj
p

We thus find the expression

( ) ( )

( )
j

k

j

k j

k

j

k
j

2

1

0
2

2

2

0
2

212

21
1

12

12
1 1 −

−

=
−−

=

−

−
−=

+

−
−=τ

∏∏
− (2.29)

and

.
12

2
2

1 jjj j
τ










+
=τ−τ + (2.30)

The number

( )∏
∞

=

−
∞→∞ −−=τ=τ

0

221
2
11lim

k
jj

k

...11110011010010110100101101001100.0=                (2.31)
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satisfies ( )∞∞ τ=τ K  and is plainly irrational (since ∞K  is aperiodic).

One easily recognizes the Thue-Morse sequence beginning with 0, that is,
the fixed point of the substitution 010 →  and 101 →  with prefix 01. It

enjoys the invariance property

( ) ∞∞ τ=τR~ (2.32)

which can also be expressed in the form

∑ ∑
∞

=

∞

=
∞ ≥∀==τ

1 1

2 .0,
22k k

k
k

k
k l

tt l
(2.33)

Thus, for instance, 1=kt  whenever A2=k  for some .0≥A  More

specifically, we have

Proposition 2.1. For an integer 1≥p  set

( ) ( )∑
≥

=
0

2mod
i

inps   if  { }∑
≥

∈=
0

.1,0,2
i

i
i

i nnp

Let .....0 21tt=τ∞  Then ( )pstk =  whenever A2⋅= pk  for some 0≥A  and

1≥p  odd.

Proof. Due to (2.33) it will suffice to show by induction over r the

following property: { ( )}.2 and odd pstppP k
r

r =⇒≤=  Note that 0P  is

obvious. Consider an odd p′ such that .22 1+≤′< rr p  Then pp r +=′ 2

with rp 21 ≤≤  and p odd. Then ( ) ( ) ( )2mod1+=′ psps  and by the above

.1+⇒ rr PP

                                                     
1By the way, we have shown the following result:

Proposition 2.2. Let { } { }NN 1,01,0: →ξ  be the map defined as ( ) =ξ ks

( ).2mod1∑ =
k
i is  Let u be the fixed point of the Feigenbaum substitution 101 →  and

110 →  with prefix 1 and w be the fixed point of the Thue-Morse substitution 010 →  and

101 →  with prefix 0. Then ( ) ( ) .00 wuu =ξ=ξ

After this paper was finished I became aware of the work of Allouche and Cosnard [1]

where some of the results presented here, in particular, the proposition above, were

previously obtained.
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Furthermore, from (2.23) we see at once that the symbols 0 and 1

both appear in ∞τ  with frequency .21  One may wonder if ∞τ  is a

normal number, in the sense of Borel. That means that in its dyadic

expansion (2.31) the asymptotic frequency of any word of length n is .2 n−

On the other hand, reasoning as for the sequence ∞K  (and using the

substitutions (2.23)) it is not difficult to verify that the frequency of the

pairs 00, 01, 10 and 11 are 
6
1,

6
1,

3
1  and .

3
1  Therefore ∞τ  is not a

normal number. In addition ∞τ  is transcendental, as is shown by Mahler

in [11] (see also [2], [6], [8]).

We end this digression with some partial insight into the structure of

the continued fraction expansion of .∞τ

Recall that any number [ ]1,0∈τ  can be expanded as

[ ],,,,

1
1

1
321

3
2

1

…

"

aaa

a
a

a
≡

++
+

=τ (2.34)

where ia ’s are integers. Successive truncations of this expansion yield a

sequence of rational numbers

[ ]n
n

n aaaa
s
r

...,,,, 321= (2.35)

which are called convergents of τ (see [10]).

Now, the problem we are interested in is the following: are the

continued fraction expansions of the numbers jτ  predictable (i.e., have a

definite pattern) as their binary expansions do? The expansions of the

first eight jτ ’s are

[ ]2,11 =τ

[ ]4,12 =τ

[ ]2,1,4,13 =τ
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[ ]6,2,2,1,4,14 =τ

[ ]2,1,9,2,1,2,6,2,2,1,4,15 =τ

[ ]5,1,1,1,2,10,1,21,1,1,2,2,1,9,2,1,2,6,2,2,1,4,16 =τ

[ ,1,1,1,2,10,1,21,1,1,2,2,1,9,2,1,2,6,2,2,1,4,17 =τ

]89,1,1,1,5,2,3,11,7,1,1,24,1,29,2,1,4

[ ,1,4,1,1,1,2,10,1,21,1,1,2,2,1,9,2,1,2,6,2,2,1,4,18 =τ

,1,6,2,33,1,1,6,1,1,1,88,1,1,1,5,2,3,11,7,1,1,24,1,29,2

].2,1,2549,3,2,1,1,10,1,2,1,2,11,3,1,10,1,2,212,5,1,24

A direct inspection suggests that there is a subsequence jn  of the

integers so that if [ ],...,,1 jnj aa=τ  then

[ ]

[ ]



 −

=τ
+

+

+

+
+ ,even isif...,,,...,,

,odd isif...,,,1...,,

1

1

11

11
1

jnnn

jnnn
j

nbbaa

nbbaa

jjj

jjj
(2.36)

for some ....,,
11 ++ jj nn bb  The sequence jn  for 121 ≤≤ j  is

2, 2, 4, 6, 12, 23, 39, 71, 121, 253, 528, 1129.

Unfortunately we are not able to say much more. In particular it is not

clear what kind of relation could be established between the jτ ’s and the

convergents of .∞τ  Note that Shallit obtained in [14] a rather complete

description of the patterns arising for irrational numbers of the type

∑ ≥
−

0
2 ,

k

k
u  u is an integer. On the other hand, a high-temperature-like

expansion of the product appearing in (2.31) yields the expression

( )





















−−−=τ ∑ ∑
∞

=

≥

≠≠≠

−
∞

∑ =

1

0

,

2

21

12
!
11

2
11

A "

A

A

A

A

i

i
ik

k

kkk

(2.37)

of which the numbers studied by Shallit are just the first order ( )1=A
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term with .2=u  We conclude with a brief description of the topological

zeta functions arising in this situation.

Zeta functions. For the values jτ=τ  considered above, we get the

polynomial zeta function

( ) ( ) ( )∏
=

−−=τζ
j

n
j

n
zzz

0

2 ,11,1 (2.38)

whose zeroes are all on the unit circle .1=z  Moreover we have

( ) ( )zzj ,, ∞τζ→τζ  when ,∞→j  where

( ) ( ) ( )∏
∞

=
∞ −−=τζ

0

2 .11,1
n

n
zzz (2.39)

From Sarkovskii theorem (see [3]) it follows that ( ) 0=τ jh  for all .0≥j

Also ( ) 0=τ∞h  (but for any Λ∈τ  with ∞τ>τ  we have ( ) ).0>τh  Put

( ) ( )∏
∞

=
−=Ξ

0

2 .1
n

n
zz (2.40)

This function satisfies the functional equation

( ) ( ) ( )21 zzz Ξ−=Ξ (2.41)

from which we see that if ( ) ,0=Ξ z  then .1=z  In particular, given

1≥m  and 12...,,1,0 −= lk  all factors of the product defining ( )zΞ

corresponding to mn ≥  vanish at .22 likez π=  Therefore the zeroes of

( )zΞ  are dense on the unit circle. We then have that the radius of

convergence of ( )z,∞τζ  is equal to 1 and that the unit circle is a (opaque)

natural boundary for this function.

Finally, expanding the product (2.40) we get

( ) 987654321 zzzzzzzzzz +−−++−+−−=Ξ

...16151413121110 +−+−−+−+ zzzzzzz
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from which we see that if ...,.0 321 ttt=τ∞  then the coefficient of kz  with

1≥k  in the above expansion is but the number kk t21 −=ε  defined in

(1.3), in agreement with Proposition 1.1. In turn, we notice that the

number ∞τ  can be written as

.
2
1

2
11 


Ξ−=τ∞ (2.42)
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