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Abstract

In this paper, we consider examples of the Peirce decomposition of

simple balanced generalized Jordan triple systems of second order

associated with Lie algebras. By virtue of choice of a tripotent element

for these triple systems, we can realize the decomposition without using

the root systems of Lie algebras.

0. Introduction

One of the main object of study in this article is to provide examples
of a Peirce decomposition of simple balanced generalized Jordan triple
systems of second order.

It is known that the all simple Lie algebras L have a decomposition of

5-graded Lie algebras as follows:

,21012 LLLLLL ⊕⊕⊕⊕= −−

starting with a triple system, which has a triple product’s structure into
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the subspace component 1L  of L. And if ,1dimdim 22 ==− LL  then it

is said to be a balanced triple system for ,1L  furthermore, a property of

5-grading of Lie algebras is reduced from that property of triple systems

equipped with 2nd order (to see, [6, 7, 8, 9, 10]). This is one of simple

reasons for us to consider about the triple systems.

General speaking for our mathematical field (that is, nonassociative

algebras), it seems that nonassociative algebras are rich in algebraic

structures and mathematical physics. They provide an important common

ground for various branches of mathematics, not only for pure algebra

and differential geometry, but also for representation theory and

algebraic geometry. That is, the concept of nonassociative algebras which

contain Jordan algebras (superalgebras) and Lie algebras (superalgebras)

plays an important role in many mathematical and physical subjects (for

example, [4], [8], [17], [25], [26], [29], [30], etc.). We have determined that

the construction and characterization of these algebras can be expressed

in terms of the notion of triple systems ([22], [9], [10], [27]), in particular,

by using the standard embedding method ([23], [24], [11], [13], [28]).

Describing our recent results in brief, we find the following:

* For the construction of simple Lie algebras, the generalized Jordan

triple system of second order (that is, the ( )1,1− -Freudenthal-Kantor

triple system) is a useful concept ([6], [7], [8], [9], [10], [11], [20]).

* For the construction of simple Lie superalgebras, the ( )1,1 −− -

Freudenthal-Kantor triple system is a useful concept ([13], [16], [2], [3],

[18]).

* For the construction of Jordan superalgebras, the δ-Jordan-Lie

triple system is a useful concept ([27], [14], [15]).

* For the characterization and representation of mathematical

physics, the triple system is useful concept, in particular, Yang-Baxter

equations, generalized Zorn vector matrix, etc., ([26], [28], [17], [19]).

Our purpose is to propose a unified structural theory for triple

systems. In previous work [22], we have studied the Peirce decomposition
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of the generalized Jordan triple system U of second order by employing a

tripotent element e of U, (tripotent element means { } ).eeee =  The Peirce

decomposition of U is described as follows:

,132
2
1010

2
1

2
3

2
311

2
1

2
100 UUUUUUUUU ⊕⊕⊕⊕⊗⊕⊕=

−

where ( ) { } aeeaaL λ==  and ( ) { } aaeeaR µ==  if .λµ∈ Ua

In particular, if the tripotent element is the left unit (left unit

element e means ,xeex =  ),Ux ∈∀  then we have

,13131111
−+−+ ⊕⊕⊕= UUUUU

where ( ) xxQ ±=  if ,11
±∈ Ux  and ( ) xxQ 3±=  if .13

±∈ Ux

On the other hand, for the Peirce decomposition of a Jordan triple

system U, it is well known that

,11
2
1

2
100 UUUU ⊕⊕=  (only 3-component’s decomposition).

In the present article, we shall investigate examples of the Peirce
decomposition of simple balanced generalized Jordan triple systems of
second order. And only consider classical type cases, for exceptional cases,
we shall deal with it in forthcoming paper [12].

We are concerned with triple systems which have finite

dimensionality over a field Φ of characteristic 2≠  or 3, unless otherwise

specified.

1. Definitions and Preamble

In order to render this paper as self-contained as possible, we first
recall the definition of a generalized Jordan triple system of second order
(hereafter, referred to as GJTS of 2nd order), and the construction of Lie
algebras associated with GJTS of 2nd order.

A vector space V over a field Φ, endowed with a trilinear operation

,VVVV →××  ( ) { },,, xyzzyx  is said to be a GJTS of 2nd order if
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the following two conditions are satisfied:

(J1) { }{ } { }{ } { }{ } { }{ } ( )GJTSabzxyzbayxyzabxxyzab ,+−=

(K1) ( )( ) ( ) ( ) ( ) ( ) ,0,,,,,, =−− yxLbaKbaKxyLyxbaKK  (2nd order)

where ( ) { }abccbaL =,  and ( ) { } { }., bcaacbcbaK −=

Furthermore, if the GJTS of 2nd order satisfies

( ){ } ,1,dim =Φ spanbaK

then it is said to be balanced.

On the other hand, we can generalize the concept of GJTS of 2nd

order as follows (see [6], [7], [10], [13] and the references therein).

For 1±=ε  and ,1±=δ  if the triple product satisfies

( )( ) ( )( ) ( )( ) ( )( ),abzxyzbayxyzabxxyzab +ε+=

( )( ) ( ) ( ) ( ) ( ) ,0,,,,,, =ε+− dcLbaKbaKcdLdcbaKK

where ( ) ( )xyzzyxL =,  and ( ) ( ) ( ),, bcaacbcbaK δ−=  then it is said to

be an ( )δε, -Freudenthal-Kantor triple system (hereafter abbreviated as

( )δε, -F.-K.t.s.).

The triple products are generally denoted by { },xyz  ( ),xyz  [ ],xyz  and

,xyz  as is our convention.

Remark. We note that the concept of GJTS of 2nd order coincides

with that of ( )1,1− -F.-K.t.s. Thus we can construct the simple Lie algebras

or superalgebras by means of the standard embedding method ([20], [6, 7,

8, 9, 10], [2], [13], [16], [18]).

Proposition 1.1 ([8], [13]). Let ( )δε,U  be an ( )δε, -F.-K.t.s. If J is an

endomorphism of ( )δε,U  such that JxJyJzxyzJ =  and ,2 IdJ εδ−=

then ( ) [ ]( )xyzU ,, δε  is a Lie triple system (the case of )1=δ  or an anti-Lie

triple system (the case of )1−=δ  with respect to the product

[ ] .: yJzxxJzyyJxzxJyzxyz −δ+δ−=
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Corollary. Let ( )δε,U  be an ( )δε, -F.-K.t.s. Then the vector space

( ) ( ) ( )δε⊕δε=δε ,,, UUT  becomes a Lie triple system (the case of )1=δ

or an anti-Lie triple system (the case of )1−=δ  with respect to the triple

product defined by

( ) ( ) ( )

( ) ( ) ( )( )
.

,,,

,,,





















δ−εε−

δδ−
=











































f

e

cbLadLdbK

caKbcLdaL

f

e

d

c

b

a

Thus we can obtain the standard embedding Lie algebra (the case of
)1=δ  or Lie superalgebra (the case of ),1−=δ  ( ) ( ( ) ( ))δεδε=δε ,,,, TTDL

( ),, δε⊕ T  associated with ( ),, δεT  where ( ) ( )( )δεδε ,,, TTD  is the set of

inner derivations of ( )., δεT  That is, these vector spaces ( ) ( )( )δεδε ,,, TTD

and ( )δε,T  mean

( ) ( )( )
( ) ( )

( ) ( ) spanabLfeK

dcKbaL
TTD
























ε
=δεδε

,,

,,
:,,,

and

( ) ( ) .,,:,
span

Uyx
y

x
T













δε∈|









=δε

Remark. We note that ( ) 21012:, −−−− ⊕⊕⊕⊕=δε LLLLLL  is the

5-graded Lie algebra or Lie superalgebra, such that ( ),,1 δε=− UL

( ) ( )( ) 202,,, −− ⊕⊕=δεδε LLLTTD  with [ ] ., jiji LLL +⊆

By straightforward calculations for the correspondence of the ( )1,1

balanced F.-K.t.s. with the ( )1,1−  balanced F.-K.t.s., we obtain the

following.

Proposition 1.2. Let ( )xyzU ,  be a ( )1,1  F-K.t.s. If there is an

endomorphism J of U such that JxJyJzxyzJ =  and ,2 IdJ −=  then

{ }( )xyzU ,  is a GJTS of 2nd order with respect to the product defined by

{ } .: xJyzxyz =

In [9], we obtained all simple ( )1,1 -balanced F.-K.t.s. over the complex

number field. Thus, these results (by the special case of above Proposition
1.2) give us a list of the simple balanced GJTSs of 2nd order.
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In the next section, we will discuss the explicit forms of this list and

investigate examples of the Peirce decomposition by providing a tripotent

element of the simple balanced GJTSs of 2nd order.

2. Main Results (Classical Types)

On the basis of the results presented in Section 1 and [9], in order to

make this section as comprehensive as possible, we first summarize the

classical types of simple balanced GJTSs of 2nd order as follows:

nA -type. Let ( )nM A  be a set of the matrix

( ) .;,1,
0

0







 ∈|






 CnMatyx

y

x

For ( ),nM A  we can define a triple product by

{ } ( ) ( ) ( ),zxPJyxPJyzzPJyxxyz −+=

where

( )

( )
,

,0

0,

0

0

0

0

21

21

2

1

2

1











=




















=

xyB

yxB

y

y

x

x
yx

( ) TxyyxB =,  Ty(  is the transpose matrix of y), and furthermore












−
→











0

0

0

0
:

y

x

y

x
P  and .

0

0

0

0
: 











−
→











x

y

y

x
J

That is, if we set

( ) ( ) ( ) 221111111 ,,, yxzBzyxBxyzBa −+=

and

( ) ( ) ( ) ,,,, 121222222 yzxBzxyBxzyBb −+=

then by straightforward calculations,

{ } .
0

0










=

b

a
xyz
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nC -type. We identify the vector space ( ){ }C;2,1 nMatxx ∈|  with

( ) ( ) .;2,1
0

0













∈|









= CnMatx

x

x
nMc

For ( ),nMc  we can define a triple product by

{ } { },
2
1 JyzxxzJyzxJyxyz |+|+|=

where J is an endomorphism of ( )nMc  such that IdJ −=2  and yx |  is

an anti-symmetric bilinear form satisfying the relation xJyyJx |=|

.Jyx |−=

Remark. For the nC -type of simple balanced GJTS of 2nd order,

there exist an endomorphism and a bilinear form such that

( ) ( )nnnnnn xxxxxxxxJ ...,,,...,,...,,,...,,: 121211 −−→ ++

and

,211211 nnnnnn yxyxyxyxyx −−−++=| ++

for ( )nnn xxxxx 211 ...,,,...,, +=  and ( )....,,,...,, 211 nnn yyyyy +=

nn DB , -types. We identify the space ( ){ }C:,2 pMatxx ∈|  with

( ) ( ) .;,2
0

0
,













∈|









= CpMatx

x

x
pM DB

For ( ),, pM DB  we can define a triple product by

{ } ( ) ( ) ( ),zxPJyxPJyzzPJyxxyz −+=

where

( )( )

( )
,

,0

0,

0

0

0

0

0

0














σ

σ
=




















=

xyB

yxB

y

y

x

x
yx

T

( ) TxyyxB =,  (2 by 2 matrix), ,
01
10

0 





 −

=σ  and .0σ=J
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That is,

{ } .
0

0














+−−

+−−
=

yzxzxyxzy

yzxzxyxzy
xyz

TTT

TTT

Remark. The standard embedding Lie algebras, which are obtained
from the types of the triple systems ,1−nA  ( ),32 −= npBn  nC  and

( )42 −= npDn  correspond to the types of the classical simple Lie algebras,

respectively, ([9], [10]).

In the nA -type balanced GJTS of 2nd order:

if we set ,
0

0

1

1 






=
e

e
e  where 1e  is a ( ) n×1:0...,,0,1  matrix, then by

straightforward calculations, we obtain { } eeee =  and { } ,xeex =  .Ux ∈∀

On the other hand, we have

( ) { } xxeexR ==  and 





=

0
0

2

1

x

x
x

( ) ( ) ( )

( ) ( ) ( )





=−+

=−+
=

2111121211

1121111111

,,,

,,,

xeexBexeBxeeB

xexeBeexBxeeB

( ) ( )1121 ,, exBxeB ==

=  if ( )naax ...,,11 =  and ( ),...,,12 nbbx =  then .11 ba =

Similarly, we have

( ) { } xxeexR 3==  and =






=
0

0

2

1

x

x
x

if ( )naax ...,,11 =  and ( ),...,,12 nbbx =  then ,11 ba −=  0== ii ba

( ).2 i≤

Furthermore, we have

( ) { } ,...,,22 nn babaxexexQ −=−====

( ) ( ),2,011 ibabaxxQ ii ≤====−=

( ) ( ),20,3 11 ibabaxxQ ii ≤==−===

( ) .03 ==−= xxxQ
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Hence, we obtain a Peirce decomposition with respect to the above

tripotent e as follows:

( )

( ) 









=










=

0...,,

...,,0

0

0

1

1

2

1

n

n

bb

aa

x

x
x

























 −

−
−

−
+







 −−+

=
0

2
...,,

2
,

2

2
...,,

2
,

2
0

2211

2211

nn

nn

bababa

bababa

























 ++







 ++

+
0

2
...,,

2
,0

2
...,,

2
,00

22

22

nn

nn

baba

baba

























 −
−







 −

+
00...,,0,

2

0...,,0,
2

0

11

11

ba

ba

.131111 UUUU =⊕⊕∈ +−+

In the nB - and nD -types of balanced GJTS U of 2nd order:

if we set ,1−=i  and e is an p
i

i
×






 2...,,

00
00

 matrix, then by

straightforward calculations, we obtain

{ } eeee =  and { } ., Uxxeex ∈∀=

On the other hand, we have

( ) { } xxeexR ==











=















+−−

+−−
=

0

0

0

0

x

x

eexexexee

eexexexee

TTT

TTT

,TTTT exxeeexexe ====  by .
10

01











−

−
=Tee
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Similarly, we have

( ) { } .3 TTTT exxeeexexexxeexR −==−====

Furthermore, we obtain

( ) { } { } x
xeex

xeex
exexexexQ

T

T

=














+−

−−
====

02

20

.TTT exxeeexx −==−==

( ) { } .0==−== TxexexexQ

( ) .223 TTT exxexeexxxQ ==−===

( ) .3 TTT exxeeexxxxQ −====−=

Hence, we obtain a Peirce decomposition with respect to the tripotent

defined by using the above e,

.
22 1113 UUUeexxeexxx

TT
=⊕∈−++= +−

In the nC -type balanced GJTS U of 2nd order:

if we set e as an ( ) ni 2100,00, ×  matrix, then we obtain

{ } eeee =  and .IdeJe =|

By straightforward calculations, we have

{ } ( ),
2
1 xJexeexJeeex +|+|=

{ } ( ),
2
1 JeexexJexxee |+|+=

{ } .eeJxexe |=

On the other hand, by the relation ,JyxyJx |−=|  we have

{ } .exJeeJexeeJxexe |=|−=|=



w
w

w
.p

ph
m

j.c
om

EXAMPLES OF PEIRCE DECOMPOSITION OF GENERALIZED … 547

Hence, we obtain

{ } ( )00,1xxxeex ===  for ( ),...,,, 221 nxxxx =

{ } ( )nnn xxxxxxeex 222 ...,,,0,...,,,0
2
1

+===  for ( ),...,, 21 nxxx =

{ } ( )00,,000 1+=== nxxeex  for ( ),...,, 21 nxxx =

{ } { } { } ,03,0
2
1,0

2
3 =====−==== xxxeexxeexxxeex

{ } ( ),...,,,0,...,,,0
2
1

222 nnn xxxxxxxee +===

{ } ( ).0...,,0,,0...,,0, 11 +=== nxxxxxee

Therefore, we obtain a Peirce decomposition with respect to the

tripotent element e as follows:

,0111
2
1

2
1 UUUU ⊕⊕=

where

( ){ } ,...,,,0,...,,,0 222
2
1

2
1 spannnn xxxxU +=

( ){ }spanxU 0...,,0,111 =

and

( ){ } .00,,00 101 spannxU +=

These imply the relation:

( ) ( )( ) ( )( ) ,02 =−− IdxLIdxLxL  for ( ) { }.eexxL =

From these results, we note that there are several Peirce

decompositions by virtue of choice of tripotent elements.

Remark. For the balanced GJTSs of 2nd order of exceptional types

,2G  ,4F  ,6E  7E  and 8E  associated with exceptional simple Lie algebras,

we will consider their Peirce decompositions in forthcoming paper [12].
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Remark. For the balanced GJTSs of 2nd order, a study has been

considered from a geometrical approach (see [1]), that is, he conducted

the correspondence of quaternionic structures on symmetric spaces with

balanced Freudenthal-Kantor triple systems. Thus it seems that our

decompositions are useful in the detail’s characterization.

Remark. It seems that this field in nonassociative algebras is very

important subject in mathematical physics and differential geometry

as well as a characterization and construction of Lie algebras, Lie

superalgebras and Yang-Baxter equations. Also, it seems that these

triple systems will become useful tools and concept to characterize about

infinite dimensional Lie algebras and superalgebras.
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