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Abstract

R will be a ring with identity and module M will be unital left
R-modules. In this paper, we introduce the concept of modules having
the pure intersection property (the PIP). We investigate the properties of
modules with the PIP. We give a characterization of modules with the
PIP, among others and prove that for a flat module M, M has the PIP if
and only if for any pure submodules N and L, N + L is flat.

1. Introduction

In what follows R will denote a ring with identity and an R-module
will mean unitary left R-module. Cohn in [2] defined a submodule N of an
R-module M 1s a pure submodule in M the sequence 0 > N ® L —
M ® L is exact for every R-module L. Anderson and Fuller in [1] called
the submodule N a pure submodule if for every right ideal I of R,
IM NN = IN. Ribenboim in [5] defined N to be pure in M if

rM NN =rN for each r € R. Although the first condition implies the
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second (see [4, p. 158]) and the second condition implies the third. An
example given by Lam in [4, p. 158], showed that these definitions are not
equivalent. In this work, the definition of purity will be that of Anderson
and Fuller. A module M is called pure simple if M and 0 are the only pure
submodules of M. An R-module M is said to have the pure intersection
property (briefly the PIP) if the intersection of any two pure submodules
is again pure. The left annihilator of an element x in an R-module M will
be denoted by I(x). N < M means that N is a submodule of M.

2. Pure Submodules

In this section, we recall some basic definitions of flat and pure
submodules and list some of their important properties that are relevant

to our work.

Let R be a ring with identity and let M be a left unitary R-module. An
R-module M is called a flat module if for every short exact sequence of

R-modules:
O>N->K-—>L->O0

the sequence
O>NOM >KOM > LO®M — 0

1s also exact.

The following theorem gives some characterizations of flat modules
[6].

Theorem 2.1. Let M be an R-module. Then the following statements

are equivalent.
(1) M is flat R-module.

(2) For each (finitely generated) right ideal I of R, and for each
monomorphism f:1 > R the map f®idy : I®M > R®M is a

monomorphism.

(3) For every (finitely generated) right ideal I of R, IM = I ® M.
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Recall that a submodule N of an R-module M is a pure submodule if
for every right ideal I of R, IM (N N = IN, (see [1]).

Remark 2.2. (1) Let M be an R-module and let N be a direct
summand of M. Then N is a pure submodule of M.

(2) Let M be an R-module and let N be a pure submodule of M. If H is

a pure submodule of N, then H is a pure submodule of M.

(3) Let M be an R-module and let N be a pure submodule of M. If L is
a submodule of M containing N, then N is a pure submodule of L.

In the following propositions we give sufficient conditions under

which every pure submodule of an R-module is a direct summand.

Proposition 2.3. Let M be a prime and injective R-module. Then

every pure submodule of M is a direct summand.

Proof. Let N be a pure submodule of M and I be an ideal of R. Let
0#f:1—> N be an R-homomorphism, i : N —- M be the inclusion
map and io f : I — M. Since M is injective, there exists an m € M such
that f(a) = am, for all a € I. Now, am € aM (N = aN, because N is
pure in M. Thus am = an for some n € N. If m # n, then a € l(m —n).
But M is prime, therefore I(m — n) = I(m) which is a contradiction. So N
is injective and N is a direct summand of M.

Proposition 2.4. Let M be a divisible R-module. Then every pure
submodule of M is divisible.

Proof. Let N be a pure submodule of M. Let 0 # r € R and n € N.
Since M is divisible, there existsan m € M suchthat n=rm erM N N
=rN. Since N is pure in M, n = rn; for some n; € N. Therefore N is
divisible.

Corollary 2.5. Let R be a principal ideal domain and let M be a
divisible R-module. Then every pure submodule of M is a direct summand.

Lemma 2.6. Let M be an R-module and let N be a pure submodule of
M. If L is a submodule of M containing N and L/N is pure in M/N, then
L is a pure submodule of M.
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Proof. Let I be any right ideal in R and let x € IM () L. Since L/N
is pure in M/N, I(M/N)NL/N = I(L/N). Thus (IM + N)/N N (L/N)
=(IL+ N)/N and hence IL+ N =(IM + N)(\ L. Since x € IM N L
<M+ N)NL, xeIL+N. Let x=w+n, where w € IL and n € N.
Now, consider n =x —w e IM(NN = IN < IL. Thus x € IL and L is
pure in M.

Lemma 2.7. Let M be an R-module and let N and L be submodules of
M such that N (VL and N + L are pure submodules of M. Then each of
N and L is a pure submodule of M.

Proof. Let M be an R-module and let N and L be submodules of M
such that N L and N + L are pure submodules of M. To show that N
is a pure submodule of M. Let I be any right ideal in R. Now, IM ( N
<IMN(N+L)=IN+L)<IN+1IL. But IMNN < N, then IM N N
<(IN +IL)NN = IN + ILN N. Since N N L is pure in M, N ( L is pure
inLand ILN(NNL)=I(NNL)< IL. On the other hand, IL N (N N L)
=(ILNL)NN =ILNN. Therefore IM N <IN and N is a pure
submodule of M.

The set T(M) = {x € M/l(x) # 0} is a submodule of M called torsion
submodule of M. If T(M) = 0, then M is called torsion-free.

Proposition 2.8. Let M be a module over a principal ideal domain R
and N be a submodule of M. If M/N is a torsion-free R-module, then N is

pure submodule in M.

Proof. Assume that M/N is a torsion-free R-module where R is a
principal ideal domain. To show that IM (N N = IN for some right ideal
of R.Let x e IM (N N. Then x =am € N, a € I and m € M. Therefore

0 =X =am e M/N. But M/N is torsion-free, then 7 = 0 and m € N.

Hence N is pure in M.

It is known that T(M/T(M)) =0 and M/T(M) is torsion-free, for
any R-module M.



MODULES HAVING THE PURE INTERSECTION PROPERTY 469

Corollary 2.9. Let M be a module over a principal ideal domain R.
Then T(M) is a pure submodule of M.

Proposition 2.10. Let M be a torsion-free module over a principal
ideal domain R and X be a submodule of M. Then there exists a smallest

pure submodule in M containing X.
Proof. Consider the following set

(X), ={m € M such that rm € X for some 0 = r € R}.

It is clear that X < (X), and (X), is a submodule of M. To show that
(X)p is pure in M. Let I be any right ideal of R. Then I = aR for some
acR Let 0#xeIMN(X), If x=rme(X),, for some r el and
m € M, then there exists 0 # s € R such that sx = srm € X. Therefore
m e (X), and x e I(X),. Now, if x= Z?zl rm; € (X),, ; € I and
m; € M, then x = ay € I(X),. Hence (X), is pure in M.

Remark 2.11. Let M be an R-module and let N be a pure submodule
of M. If N; is a submodule of M such that N; = N, then it is not

necessary that Nj is a pure submodule of M. For example, consider Z as
Z -module, let N =7Z and N; = 2Z. It is clear that Z = 2Z and Z is a pure
submodule of Z. But 2Z is not pure in Z. In fact 2 = 2-1 € (2)Z N (2Z)
but 2 ¢ (2)(2Z).

The following theorem is needed in our subsequent results. It can be
found with its proof in [3] and [6].

Lemma 2.12. Let M be an R-module and let P be a submodule of M.

(1) If M/P is a flat R-module, then P is a pure submodule of M.

(2) If M is a flat R-module, then M/P is a flat R-module if and only if
P is a pure submodule of M.

3) If M is a flat R-module and P is a pure submodule of M, then Pis a
flat R-module.
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3. Modules with the Pure Intersection Property

In this section we give the definition of modules having the pure

intersection property with some examples and basic properties.

Definition 3.1. An R-module M is said to have the pure intersection
property (briefly the PIP) if the intersection of any two pure submodules

is again pure.

Remark 3.2. (1) Recall that an R-module M is called pure simple if M
and 0 are the only pure submodules of M. It is clear that every pure
simple R-module has the PIP. For example Z as Z -module is pure

simple. To see this, for every non trivial submodule nZ of Z, n=n-1 ¢

(n)Z N nZ, but n ¢ (n)nZ.

(2) Consider the Z -module M =Z,®Zy. Let N =7, ®0 and L =
Z(1, 1), the submodule generated by (1, 1). It is clear that each of N and
L is a direct summand of M and hence N and L are pure submodules of
M. But NN L = {0, 0), (2, 0)} is not pure in M. In fact, consider the
element (2,0)=2(1,0)e(2)(Z, ®Z3)N(NNL), but (2,0)e(2)(NNL)=0.

Proposition 3.3. Every torsion-free module M over a principal ideal
domain has the PIP.

Proof. Assume that M is a torsion-free module over a principal ideal
domain R. Let N and L be two pure submodules of M. Let I be any ideal
of R. Then I = (a) for some a € R. Now,

IMN(NNL)=(IMNN)N(IMNL)=INNIL.

Let x e IMN(NNL). Thus x = an = al for some ne N and [ € L.
Therefore a(n —1) =0 and [ = n. Hence x € I(N (1 N) and M has the
PIP.

Proposition 3.4. (1) If an R-module M has the PIP, then every pure
submodule of M has the PIP.

(2) If an R-module M has the PIP and N is a pure submodule of M,
then M/N has the PIP.
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Proof. (1) Let M be an R-module with the PIP and N be a pure
submodule of M. Let A and B be two pure submodules of N and I be any
right ideal of R. Now,

INN(ANB)=(IMNN)N(ANB)
= IMN(ANB)
= I(AN B).
Thus, N has the PIP.

(2) Let A/N and B/N be pure submodules of M/N and let K be a
right ideal in R. We want to show that

(K(M/N)N((A/N)N (B/N)) = K((A/N) N (B/N)).

Each of A and B is pure in M, by Lemma 2.6. Since M has the PIP,
AN B is pure in M. Thus, K(AN B)= KM N (AN B). It is clear that

K((A/N)N (B/N)) = K((A N B)/N) = (K(A N B) + N)/N. Now,
K(M/N)N((A/N)N(B/N)) = (KM + N)/N N (AN B)/N
= (KM + N)N (AN B)/N
= (KM N (AN B)+ N)/N
= (K(ANB)+ N)/N
= K((A/N)N (B/N)).

Therefore M/N has the PIP.

4. Characterization of Modules with the
Pure Intersection Property

In this section we give some characterization of modules with the
pure intersection property.

Theorem 4.1. Let M be an R-module. Then M has the PIP if and only
if INNL)=INNIL for every right ideal I in R and for every pure
submodules N and L of M.
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Proof. Suppose that M has the PIP and each of N and L is a pure
submodule of M. Then N (] L is pure. Let I be any right ideal in R. Then

IINNL)=IMN(NNL). Now,
INNIL=(IMNN)N(IMNL)
= (M N(NNL)
= I(NNL).
Conversely, let N and L be pure submodules of M and I be a right
ideal in R. Therefore
IMN(NNL)=(IMNN)N(IMNL)=INNIL=1I1(NNL).

Thus N N L is pure in M and hence M has the PIP.

As application of Theorem 4.1, we give the following corollary.

Corollary 4.2. Every prime module M over a principal ideal domain
has the PIP.

Proof. Let I be an ideal in R and let N and H be pure submodules of
M. Since R is a principal ideal domain, I = (a) for some a € R. We show
that a(N N H)=aNNaH. Let 0 # x € aN N aH, hence x = an = ah,
neN, heH, so a(n—h)=0. Assume that n # h. Since a € l(n — h)
and M is prime, a € l(n) and x = 0, which is a contradiction. Thus n = h

and x € a(N (| H). So, by Theorem 4.1, M has the PIP.

The following theorem gives another characterization for modules
with the PIP.

Theorem 4.3. Let M be an R-module. Then M has the PIP if and only
if for every pure submodules N and L of M and for every R-homomorphism
f:NNL —> M such that NNImf =0 and N +Im{f is pure in M,

Ker fis pure in M.

Proof. Assume that M has the PIP. Let N and L be pure submodules
of Mand f: NNL—> M be an R-homomorphism such that NN Imf =0
and N+ Imf is purein M. Let T = {x + f(x); x € N (| L}. Then, it is clear
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that T'is pure in M. Let I be a right ideal in R and y = Z?:l rm; e IMNT,
rel, mjeM, i=1,.. n Hence, y=ux+f(x), for some x € N L.
Since, y=2?=1rimi =x+f(x)e NNL+Imf<N+Inf and N+ Imf
is pure in M, y = Z?zlrimi e IMN(N +Imf)=I(N + Imf). Therefore,

y = Zzlsi(xi +y),x;ieN,y;elImf, s; eI, i =1, .., m. Thus

m m
y = Zsixi + Zsiyi =x+ f(x).
1=1 =1

Hence, x - z:il s;x; = Z:il s;y; — f(x) e NN Im f = 0. Therefore, x =
Z:.il s;x; € INN(NNL). But N L is pure in M, hence it is pure in N
and INN(NNL)=I(NNL). Thus x e INNL). Let x = Zf':l h;w;,
w; e NNL hj e I,i=1, ., k Then f(x) = Y0 hif(w;).

Now,
y=x+f(x)= Zil hyw; + Zil hif(w;)

- Z; hi(w; + fw;)) € IT.

Thus IM T = IT and T is pure in M. Next, we show that Kerf =
(NNL)NT. Let x € Ker f. Then x € N L and f(x) = 0, hence x € T.
Now, let x e (NN L)NT. Then x = y+ f(y), ye NN L. Thus x -y =
f(y) e NNImf =0. Therefore f(x)=f(y)=0 and x e Kerf. Since M
has the PIP, (NN L)NT = Ker f is pure in M.

For the converse, let N and L be pure submodules of M. Define the
R-homomorphism f: NNL —> M by f(x)=0,vx e N L. It is clear
that NN Imf =0 and N + Im [ is pure in M. Then Kerf = N L is
pure in M. Hence, M has the PIP.
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By the same argument, we can prove the following theorem.

Theorem 4.4. Let M be an R-module. Then M has the PIP if and only
if every pure submodules N and L of M and for every R-homomorphism
f: NNL — H, where H is a submodule of M such that N1 H =0 and

N + H is pure in M, Ker fis pure in M.
The following corollary follows immediately from Theorem 4.4.

Corollary 4.5. Let M be an R-module with the PIP. Let N and L be
pure submodules of M such that N (V1L = 0 and N + L is pure in M. Then

for every R-homomorphism f : N — L, Ker fis pure in M.
The following corollary is the main tool for our subsequent results.

Corollary 4.6. Let M be an R-module with the PIP. Then for every
decomposition M = N ® L and for every R-homomorphism f : N — L,

Ker fis pure in M.

Proof. Since NNL =0, N+L =M ispurein Mand N = N M,
by Theorem 4.4, Ker fis pure in M.

Remark 4.7. Let N be a pure submodule of an R-module M. Then
there exists a pure submodule N in M such that N is maximal with

respect to the property N + N is pure in M and N N N =0.

Proof. Consider the following set:

F ={L; L is pure in M such that NN L =0 and N + L is pure in M}.

It is clear that 0 € F and hence F # &. Let {H,} _, be a chain in F.

Then, it is clear that U H, is a submodule of M and since
oA

H, NN =0, for all a € A, (UQEA H, jﬂ N = 0. By Exercise 19.11 (1)

in [1], UaeA H, is pure in M. To show that N + UaeA H, is pure in

M. Let " rm; eIM) [N + [U%A H, D Thus D" rm; e N+

(UQEA H, ) Therefore Z?:l rnm; € N+ H, , for some op e A and
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n
hence Z:.l:l rm; € I(N + Hy, ). Thus zi:1 rm; e I(N + UaeA H, ) By
Zorn’s lemma, F has a maximal element say N.
We call a pure submodule satisfying the condition in Remark 4.7, a

pure complement of N and we denote it by N.

Theorem 4.8. Let M be an R-module such that for every pure
submodules N and L in M either N < L®L or L < N ® N. M has the
PIP if and only if for every R-homomorphism f: NN (L ® L) —» N, Ker f
is pure in M.

Proof. Suppose that M has the PIP and N and L are pure submodules
of M. Let f: NN(L®L)—> N be an R-homomorphism. Then, by
Theorem 4.4, Ker fis pure in M.

For the converse, let N and L be pure submodules of M such that
N<L®L. Let Tl N@®N —» N and Ty : L®L — L be the natural
projections. Let h=my o |1y Then we show that Kerh = (LNN)®

(LNN). Let x € Kerh. Then x e LN(N@®N) and x =n+n, ne N
and 7 e N. Now, 0=~h(x)=rngon(n+n)=mny(n). So nelL and
nelL Thus x e (LNN)®(LNN). Now, let x e (LN N)® (LN N).
Then x =n+7n, ne LNN and 7 € LN N. Thus h(x) = g o 1y (n + 1)

= n9(n) = 0. Therefore, Kerh = (LN N)@® (L N N) is pure. Since N N L
is pure in Kerh, N () L is pure in M and M has the PIP.

Now, we give an example of modules that do not have the PIP.

Example 4.9. Let R be an integral domain and let @ be the quotient
field of R considered as R-module. Then for any 0 # N proper submodule
of @, Q@ ® Q/N does not satisfy the PIP. In fact, let f : @ - Q/N be the

natural epimorphism. Then Kerf = N. It is known that @ is pure
simple. Thus, N is not pure in @. Hence, by Corollary 4.6, @ @ @/N does
not have the PIP.
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Proposition 4.10. Let M be an R-module such that if for any two pure
submodules N and L of M, N + L is flat R-module. Then M has the PIP.

Proof. Let N and L be pure submodules of M. By the second
isomorphism theorem, N/(NNL)= (N + L)/L. Since N +L is flat

R-module and L is pure in M, by Remark 2.2(3), L is pure in N + L and,
by Lemma 2.12(2), (N + L)/L is flat R-module. Thus N/(N N L) is flat

and hence N (| L is pure in N (Lemma 2.12(1)). But N is pure in M, so
by Remark 2.2(2), N ( L is pure in M and M has the PIP.

The converse of Proposition 4.10 is not true in general as the
following example shows. Consider the Z -module M = Zg. Since M is

semisimple, M has the PIP. Let N = (0, 2, 4) and L = (0, 3). Then N
and L are pure in M, but N + L = M = Zg is not flat.
Theorem 4.11. Let M be a flat R-module. Then M has the PIP if

and only if for any two pure submodules N and L of M, N + L is flat
R-module.

Proof. Assume that M has the PIP. Let I be a right ideal in R and N,
L are pure submodules of M. Consider the following short exact sequence

0 NNLLNOLEN+L >0,

where f(x) = (x, —x) for each x e NN\ L and g(n,l)=n+1 for each n € N
and [/ € L.

Now, we construct the following diagram:

1eNNL) 2L 1eNeL) 25, 1®(N+L)—0

S

0—>INﬂIL4f>IN®ILT>IN+IL—>O

where f(x) = (x, —x) for each x € INNIL, g(n,1)=n+1 for each n e IN
and [ e IL, a(r ® x) =rx for each r e I and x e NN L, B(r® (n,l))
=(rn, rl) for each reI,ne N and [ e L and y(r® (n+1)=rn+rl
foreachre I, ne N and [ € L.
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It can be easily checked that the diagram is commutative. Since N
and L are pure in M and M is flat R-module, by Lemma 2.12(3), N and L
are flat R-modules and hence N @ L is flat R-module. By Theorem 2.1(3),

I®(N®L)= IN®L)=IN @ IL.
Thus B is an isomorphism. Therefore a is an epimorphism if and only if y
is a monomorphism, (see [7]). It is easily to see that a(l ® (NN L)) =
I(N N L). Hence, a is onto if and only if M has the PIP by Theorem 4.1.
Moreover, y is a monomorphism if and only if I ® (N + L)z y(I ® (N + L))

= I(N + L). Thus y is monomorphism if and only if N + L is a flat

R-module, by Theorem 2.1(3). Thus M has the PIP if and only if N + L is
a flat R-module for any pure submodules N and L of M.

The converse follows from Proposition 4.10.
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