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Abstract

R will be a ring with identity and module M will be unital left

R-modules. In this paper, we introduce the concept of modules having

the pure intersection property (the PIP). We investigate the properties of

modules with the PIP. We give a characterization of modules with the

PIP, among others and prove that for a flat module M, M has the PIP if

and only if for any pure submodules N and L, LN +  is flat.

1. Introduction

In what follows R will denote a ring with identity and an R-module

will mean unitary left R-module. Cohn in [2] defined a submodule N of an

R-module M is a pure submodule in M the sequence →⊗→ LN0

LM ⊗  is exact for every R-module L. Anderson and Fuller in [1] called

the submodule N a pure submodule if for every right ideal I of R,

.INNIM =∩  Ribenboim in [5] defined N to be pure in M if

rNNrM =∩  for each .Rr ∈  Although the first condition implies the
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second (see [4, p. 158]) and the second condition implies the third. An

example given by Lam in [4, p. 158], showed that these definitions are not

equivalent. In this work, the definition of purity will be that of Anderson

and Fuller. A module M is called pure simple if M and 0 are the only pure

submodules of M. An R-module M is said to have the pure intersection

property (briefly the PIP) if the intersection of any two pure submodules

is again pure. The left annihilator of an element x in an R-module M will

be denoted by ( ).xl  MN ≤  means that N is a submodule of M.

2. Pure Submodules

In this section, we recall some basic definitions of flat and pure

submodules and list some of their important properties that are relevant

to our work.

Let R be a ring with identity and let M be a left unitary R-module. An

R-module M is called a flat module if for every short exact sequence of

R-modules:

00 →→→→ LKN

the sequence

00 →⊗→⊗→⊗→ MLMKMN

is also exact.

The following theorem gives some characterizations of flat modules

[6].

Theorem 2.1. Let M be an R-module. Then the following statements

are equivalent.

(1) M is flat R-module.

(2) For each (finitely generated) right ideal I of R, and for each

monomorphism RIf →:  the map MRMIidf M ⊗→⊗⊗ :  is a

monomorphism.

(3) For every (finitely generated) right ideal I of ,R  .MIIM ⊗≅
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Recall that a submodule N of an R-module M is a pure submodule if

for every right ideal I of ,R  ,INNIM =∩  (see [1]).

Remark 2.2. (1) Let M be an R-module and let N be a direct

summand of M. Then N is a pure submodule of M.

(2) Let M be an R-module and let N be a pure submodule of M. If H is

a pure submodule of N, then H is a pure submodule of M.

(3) Let M be an R-module and let N be a pure submodule of M. If L is

a submodule of M containing N, then N is a pure submodule of L.

In the following propositions we give sufficient conditions under

which every pure submodule of an R-module is a direct summand.

Proposition 2.3. Let M be a prime and injective R-module. Then

every pure submodule of M is a direct summand.

Proof. Let N be a pure submodule of M and I be an ideal of R. Let

NIf →≠ :0  be an R-homomorphism, MNi →:  be the inclusion

map and .: MIfi →  Since M is injective, there exists an Mm ∈  such

that ( ) ,amaf =  for all .Ia ∈  Now, ,aNNaMam =∈ ∩  because N is

pure in M. Thus anam =  for some .Nn ∈  If ,nm ≠  then ( ).nmla −∈

But M is prime, therefore ( ) ( )mlnml =−  which is a contradiction. So N

is injective and N is a direct summand of M.

Proposition 2.4. Let M be a divisible R-module. Then every pure

submodule of M is divisible.

Proof. Let N be a pure submodule of M. Let Rr ∈≠0  and .Nn ∈

Since M is divisible, there exists an Mm ∈  such that NrMrmn ∩∈=

.rN=  Since N is pure in ,M  1rnn =  for some .1 Nn ∈  Therefore N is

divisible.

Corollary 2.5. Let R be a principal ideal domain and let M be a

divisible R-module. Then every pure submodule of M is a direct summand.

Lemma 2.6. Let M be an R-module and let N be a pure submodule of

M. If L is a submodule of M containing N and NL  is pure in ,NM  then

L is a pure submodule of M.
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Proof. Let I be any right ideal in R and let .LIMx ∩∈  Since NL

is pure in ,NM  ( ) ( ).NLINLNMI =∩  Thus ( ) ( )NLNNIM ∩+

( ) NNIL +=  and hence ( ) .LNIMNIL ∩+=+  Since LIMx ∩∈

( ) ,LNIM ∩+≤  .NILx +∈  Let ,nwx +=  where ILw ∈  and .Nn ∈

Now, consider .ILINNIMwxn ≤=∈−= ∩  Thus ILx ∈  and L is

pure in M.

Lemma 2.7. Let M be an R-module and let N and L be submodules of

M such that LN ∩  and LN +  are pure submodules of M. Then each of

N and L is a pure submodule of M.

Proof. Let M be an R-module and let N and L be submodules of M

such that LN ∩  and LN +  are pure submodules of M. To show that N

is a pure submodule of M. Let I be any right ideal in R. Now, NIM ∩

( ) ( ) .ILINLNILNIM +≤+=+≤ ∩  But ,NNIM ≤∩  then NIM ∩

( ) .NILINNILIN ∩∩ +=+≤  Since LN ∩  is pure in M, LN ∩  is pure

in L and ( ) ( ) .ILLNILNIL ≤= ∩∩∩  On the other hand, ( )LNIL ∩∩

( ) .NILNLIL ∩∩∩ ==  Therefore INNIM ≤∩  and N is a pure

submodule of M.

The set ( ) ( ){ }0≠∈= xlMxMT  is a submodule of M called torsion

submodule of M. If ( ) ,0=MT  then M is called torsion-free.

Proposition 2.8. Let M be a module over a principal ideal domain R

and N be a submodule of M. If NM  is a torsion-free R-module, then N is

pure submodule in M.

Proof. Assume that NM  is a torsion-free R-module where R is a

principal ideal domain. To show that INNIM =∩  for some right ideal

of R. Let .NIMx ∩∈  Then ,Namx ∈=  Ia ∈  and .Mm ∈  Therefore

.0 NMamx ∈==  But NM  is torsion-free, then 0=m  and .Nm ∈

Hence N is pure in M.

It is known that ( )( ) 0=MTMT  and ( )MTM  is torsion-free, for

any R-module M.
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Corollary 2.9. Let M be a module over a principal ideal domain R.

Then ( )MT  is a pure submodule of M.

Proposition 2.10. Let M be a torsion-free module over a principal

ideal domain R and X be a submodule of M. Then there exists a smallest

pure submodule in M containing X.

Proof. Consider the following set

( ) { }.0someforthatsuch RrXrmMmX p ∈≠∈∈=

It is clear that ( )pXX ⊆  and ( )pX  is a submodule of M. To show that

( )pX  is pure in M. Let I be any right ideal of R. Then aRI =  for some

.Ra ∈  Let ( ) .0 pXIMx ∩∈≠  If ( ) ,pXrmx ∈=  for some Ir ∈  and

,Mm ∈  then there exists Rs ∈≠0  such that .Xsrmsx ∈=  Therefore

( )pXm ∈  and ( ) .pXIx ∈  Now, if ( )∑ =
∈∈= n

i ipii IrXmrx
1

,  and

,Mmi ∈  then ( ) .pXIayx ∈=  Hence ( )pX  is pure in M.

Remark 2.11. Let M  be an R-module and let N be a pure submodule

of M. If 1N  is a submodule of M such that ,1 NN ≅  then it is not

necessary that 1N  is a pure submodule of M. For example, consider Z  as

Z -module, let Z=N  and .21 Z=N  It is clear that ZZ 2≅  and Z  is a pure

submodule of .Z  But Z2  is not pure in .Z  In fact ( ) ( )ZZ 22122 ∩∈⋅=

but ( ) ( ).222 Z∉

The following theorem is needed in our subsequent results. It can be

found with its proof in [3] and [6].

Lemma 2.12. Let M be an R-module and let P be a submodule of M.

(1) If PM  is a flat R-module, then P is a pure submodule of M.

(2) If M is a flat R-module, then PM  is a flat R-module if and only if

P is a pure submodule of M.

(3) If M is a flat R-module and P is a pure submodule of M, then P is a

flat R-module.
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3. Modules with the Pure Intersection Property

In this section we give the definition of modules having the pure

intersection property with some examples and basic properties.

Definition 3.1. An R-module M is said to have the pure intersection

property (briefly the PIP) if the intersection of any two pure submodules

is again pure.

Remark 3.2. (1) Recall that an R-module M is called pure simple if M

and 0 are the only pure submodules of M. It is clear that every pure

simple R-module has the PIP. For example Z  as Z -module is pure

simple. To see this, for every non trivial submodule Zn  of ,Z  ∈⋅= 1nn

( ) ,ZZ nn ∩  but ( ) .Znnn ∉

(2) Consider the Z -module .24 ZZ ⊕=M  Let 04 ⊕= ZN  and =L

( ),1,1Z  the submodule generated by ( ).1,1  It is clear that each of N and

L is a direct summand of M and hence N and L are pure submodules of

M. But {( ) ( )}0,2,0,0=LN ∩  is not pure in M. In fact, consider the

element ( ) ( ) ( )( ) ( ),20,120,2 24 LN ∩∩ZZ ⊕∈=  but ( ) ( )( ) .020,2 =∉ LN ∩

Proposition 3.3. Every torsion-free module M over a principal ideal

domain has the PIP.

Proof. Assume that M is a torsion-free module over a principal ideal

domain R. Let N and L be two pure submodules of M. Let I be any ideal

of R. Then ( )aI =  for some .Ra ∈  Now,

( ) ( ) ( ) .ILINLIMNIMLNIM ∩∩∩∩∩∩ ==

Let ( ).LNIMx ∩∩∈  Thus alanx ==  for some Nn ∈  and .Ll ∈

Therefore ( ) 0=− lna  and .nl =  Hence ( )NNIx ∩∈  and M has the

PIP.

Proposition 3.4. (1) If an R-module M has the PIP, then every pure

submodule of M has the PIP.

(2) If an R-module M has the PIP and N is a pure submodule of M,
then NM  has the PIP.
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Proof. (1) Let M be an R-module with the PIP and N be a pure

submodule of M. Let A and B be two pure submodules of N and I be any

right ideal of R. Now,

( ) ( ) ( )BANIMBAIN ∩∩∩∩∩ =

( )BAIM ∩∩=

( ).BAI ∩=

Thus, N has the PIP.

(2) Let NA  and NB  be pure submodules of NM  and let K be a

right ideal in R. We want to show that

( )( ) ( ) ( )( ) ( ) ( )( ).NBNAKNBNANMK ∩∩∩ =

Each of A and B is pure in M, by Lemma 2.6. Since M has the PIP,

BA ∩  is pure in M. Thus, ( ) ( ).BAKMBAK ∩∩∩ =  It is clear that

( ) ( )( ) ( )( ) ( )( ) .NNBAKNBAKNBNAK +== ∩∩∩  Now,

( ) ( ) ( )( ) ( ) ( ) NBANNKMNBNANMK ∩∩∩∩ +=

( ) ( )( ) NBANKM ∩∩+=

( )( ) NNBAKM += ∩∩

( )( ) NNBAK += ∩

( ) ( )( ).NBNAK ∩=

Therefore NM  has the PIP.

4. Characterization of Modules with the

Pure Intersection Property

In this section we give some characterization of modules with the
pure intersection property.

Theorem 4.1. Let M be an R-module. Then M has the PIP if and only

if ( ) ILINLNI ∩∩ =  for every right ideal I in R and for every pure

submodules N and L of M.
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Proof. Suppose that M has the PIP and each of N and L is a pure

submodule of M. Then LN ∩  is pure. Let I be any right ideal in R. Then

( ) ( ).LNIMLNI ∩∩∩ =  Now,

( ) ( )LIMNIMILIN ∩∩∩∩ =

( )( )LNIM ∩∩=

( ).LNI ∩=

Conversely, let N and L be pure submodules of M and I be a right

ideal in R. Therefore

( ) ( ) ( ) ( ).LNIILINLIMNIMLNIM ∩∩∩∩∩∩∩ ===

Thus LN ∩  is pure in M and hence M has the PIP.

As application of Theorem 4.1, we give the following corollary.

Corollary 4.2. Every prime module M over a principal ideal domain

has the PIP.

Proof. Let I be an ideal in R and let N and H be pure submodules of

M. Since R is a principal ideal domain, ( )aI =  for some .Ra ∈  We show

that ( ) .aHaNHNa ∩∩ =  Let ,0 aHaNx ∩∈≠  hence ,ahanx ==

,Nn ∈  ,Hh ∈  so ( ) .0=− hna  Assume that .hn ≠  Since ( )hnla −∈

and M is prime, ( )nla ∈  and ,0=x  which is a contradiction. Thus hn =

and ( ).HNax ∩∈  So, by Theorem 4.1, M has the PIP.

The following theorem gives another characterization for modules

with the PIP.

Theorem 4.3. Let M be an R-module. Then M has the PIP if and only

if for every pure submodules N and L of M and for every R-homomorphism

MLNf →∩:  such that 0=fImN ∩  and fImN +  is pure in M,

Ker f is pure in M.

Proof. Assume that M has the PIP. Let N and L be pure submodules

of M and MLNf →∩:  be an R-homomorphism such that 0=fImN ∩

and fImN +  is pure in M. Let ( ){ }.; LNxxfxT ∩∈+=  Then, it is clear
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that T is pure in M. Let I be a right ideal in R and ∑ =
∈= n

i ii TIMmry
1

,∩

,Iri ∈  ,Mmi ∈  ....,,1 ni =  Hence, ( ),xfxy +=  for some .LNx ∩∈

Since, ( )∑ =
+≤+∈+== n

i ii fImNfImLNxfxmry
1

∩  and fImN +

is pure in M, ( ) ( )∑ =
+=+∈= n

i ii fImNIfImNIMmry
1

.∩  Therefore,

( )∑ =
∈∈+= m

i iiiii fImyNxyxsy
1

,,,  ,Isi ∈  ....,,1 mi =  Thus

( )∑ ∑
= =

+=+=
m

i

m

i
iiii xfxysxsy

1 1

.

Hence, ( )∑ ∑= =
=∈−=− m

i
m
i iiii fImNxfysxsx

1 1
.0∩  Therefore, =x

( )∑ =
∈m

i ii LNINxs
1

.∩∩  But LN ∩  is pure in M, hence it is pure in N

and ( ) ( ).LNILNIN ∩∩∩ =  Thus ( ).LNIx ∩∈  Let ∑ =
= k

i iiwhx
1

,

....,,1,, kiIhLNw ii =∈∈ ∩  Then ( ) ( )∑ =
= k

i ii wfhxf
1

.

Now,

( ) ( )∑ ∑= =
+=+=

k

i

k

i iiii wfhwhxfxy
1 1

( )( )∑ =
∈+=

k

i iii ITwfwh
1

.

Thus ITTIM =∩  and T is pure in M. Next, we show that =fKer

( ) .TLN ∩∩  Let .fKerx ∈  Then LNx ∩∈  and ( ) ,0=xf  hence .Tx ∈

Now, let ( ) .TLNx ∩∩∈  Then ( ),yfyx +=  .LNy ∩∈  Thus =− yx

( ) .0=∈ fImNyf ∩  Therefore ( ) ( ) 0== yfxf  and .fKerx ∈  Since M

has the PIP, ( ) fKerTLN =∩∩  is pure in M.

For the converse, let N and L be pure submodules of M. Define the

R-homomorphism MLNf →∩:  by ( ) .,0 LNxxf ∩∈∀=  It is clear

that 0=fImN ∩  and fImN +  is pure in M. Then LNfKer ∩=  is

pure in M. Hence, M has the PIP.
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By the same argument, we can prove the following theorem.

Theorem 4.4. Let M be an R-module. Then M has the PIP if and only

if every pure submodules N and L of M and for every R-homomorphism

,: HLNf →∩  where H is a submodule of M such that 0=HN ∩  and

HN +  is pure in M, Ker f is pure in M.

The following corollary follows immediately from Theorem 4.4.

Corollary 4.5. Let M be an R-module with the PIP. Let N and L be

pure submodules of M such that 0=LN ∩  and LN +  is pure in M. Then

for every R-homomorphism ,: LNf →  Ker f is pure in M.

The following corollary is the main tool for our subsequent results.

Corollary 4.6. Let M be an R-module with the PIP. Then for every

decomposition LNM ⊕=  and for every R-homomorphism ,: LNf →

Ker f is pure in M.

Proof. Since ,0=LN ∩  MLN =+  is pure in M and ,MNN ∩=

by Theorem 4.4, Ker f is pure in M.

Remark 4.7. Let N be a pure submodule of an R-module M. Then

there exists a pure submodule N  in M such that N  is maximal with

respect to the property NN +  is pure in M and .0=NN ∩

Proof. Consider the following set:

{ LLF ;=  is pure in M such that 0=LN ∩  and LN +  is pure in }.M

It is clear that F∈0  and hence .∅≠F  Let { } Λ∈ααH  be a chain in F.

Then, it is clear that ∪ Λ∈α αH  is a submodule of M and since

,0=α NH ∩  for all ,Λ∈α  .0=







Λ∈α α NH ∩∪  By Exercise 19.11 (1)

in [1], ∪ Λ∈α αH  is pure in M. To show that ∪ Λ∈α α+ HN  is pure in

M. Let .
1

















+∈

Λ∈α α=∑ ∪∩ HNIMmr
n
i ii  Thus ∑ =

+∈n
i ii Nmr

1

.







Λ∈α α∪ H  Therefore ∑ = α+∈n
i ii HNmr

1
,

0
 for some Λ∈α0  and
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hence ( )∑ = α+∈n
i ii HNImr

1
.

0
 Thus .

1∑ = Λ∈α α 





 +∈n

i ii HNImr ∪  By

Zorn’s lemma, F has a maximal element say .N

We call a pure submodule satisfying the condition in Remark 4.7, a

pure complement of N and we denote it by .N

Theorem 4.8. Let M be an R-module such that for every pure

submodules N and L in M either LLN ⊕≤  or .NNL ⊕≤  M has the

PIP if and only if for every R-homomorphism ( ) ,: NLLNf →⊕∩  Ker f

is pure in M.

Proof. Suppose that M has the PIP and N and L are pure submodules

of M. Let ( ) NLLNf →⊕∩:  be an R-homomorphism. Then, by

Theorem 4.4, Ker f is pure in M.

For the converse, let N and L be pure submodules of M such that

.LLN ⊕≤  Let NNN →⊕π :1  and LLL →⊕π :2  be the natural

projections. Let ( ).12 NNLh ⊕|ππ= ∩  Then we show that ( )⊕= NLhKer ∩

( ).NL∩  Let .hKerx ∈  Then ( )NNLx ⊕∈ ∩  and ,nnx +=  Nn ∈

and .Nn ∈  Now, ( ) ( ) ( ).0 212 nnnxh π=+ππ==  So Ln ∈  and

.Ln ∈  Thus ( ) ( ).NLNLx ∩∩ ⊕∈  Now, let ( ) ( ).NLNLx ∩∩ ⊕∈

Then ,nnx +=  NLn ∩∈  and .NLn ∩∈  Thus ( ) ( )nnxh +ππ= 12

( ) .02 =π= n  Therefore, ( ) ( )NLNLhKer ∩∩ ⊕=  is pure. Since LN ∩

is pure in ,hKer  LN ∩  is pure in M and M has the PIP.

Now, we give an example of modules that do not have the PIP.

Example 4.9. Let R be an integral domain and let Q be the quotient

field of R considered as R-module. Then for any N≠0  proper submodule

of ,Q  NQQ ⊕  does not satisfy the PIP. In fact, let NQQf →:  be the

natural epimorphism. Then .NfKer =  It is known that Q is pure

simple. Thus, N is not pure in Q. Hence, by Corollary 4.6, NQQ ⊕  does

not have the PIP.
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Proposition 4.10. Let M be an R-module such that if for any two pure

submodules N and L of ,M  LN +  is flat R-module. Then M has the PIP.

Proof. Let N and L be pure submodules of M. By the second
isomorphism theorem, ( ) ( ) .LLNLNN +≅∩  Since LN +  is flat

R-module and L is pure in M, by Remark 2.2(3), L is pure in LN +  and,
by Lemma 2.12(2), ( ) LLN +  is flat R-module. Thus ( )LNN ∩  is flat

and hence LN ∩  is pure in N (Lemma 2.12(1)). But N is pure in M, so

by Remark 2.2(2), LN ∩  is pure in M and M has the PIP.

The converse of Proposition 4.10 is not true in general as the
following example shows. Consider the Z -module .6Z=M  Since M is

semisimple, M has the PIP. Let 4,2,0=N  and .3,0=L  Then N

and L are pure in M, but 6Z==+ MLN  is not flat.

Theorem 4.11. Let M be a flat R-module. Then M has the PIP if

and only if for any two pure submodules N and L of ,M  LN +  is flat

R-module.

Proof. Assume that M has the PIP. Let I be a right ideal in R and N,
L are pure submodules of M. Consider the following short exact sequence

,00 →+→⊕→→ LNLNLN
gf

∩

where ( ) ( )xxxf −= ,  for each LNx ∩∈  and ( ) lnlng +=,  for each Nn ∈

and .Ll ∈

Now, we construct the following diagram:

( ) ( ) ( ) 011
 →+⊗ →⊕⊗ →⊗ ⊗⊗

LNILNILNI
gf∩

                     α                                 β                                 γ

00  →+ →⊕ → → ILINILINILIN gf
∩

where ( ) ( )xxxf −= ,  for each ,ILINx ∩∈  ( ) lnlng +=,  for each INn ∈

and ,ILl ∈  ( ) rxxr =⊗α  for each Ir ∈  and ,LNx ∩∈  ( )( )lnr ,⊗β

( )rlrn,=  for each NnIr ∈∈ ,  and Ll ∈  and ( )( ) rlrnlnr +=+⊗γ

for each NnIr ∈∈ ,  and .Ll ∈
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It can be easily checked that the diagram is commutative. Since N
and L are pure in M and M is flat R-module, by Lemma 2.12(3), N and L
are flat R-modules and hence LN ⊕  is flat R-module. By Theorem 2.1(3),

( ) ( ) .ILINLNILNI ⊕=⊕≅⊕⊗

Thus β is an isomorphism. Therefore α is an epimorphism if and only if γ
is a monomorphism, (see [7]). It is easily to see that ( )( ) =⊗α LNI ∩

( ).LNI ∩  Hence, α is onto if and only if M has the PIP by Theorem 4.1.

Moreover, γ is a monomorphism if and only if ( ) ( )( )LNILNI +⊗γ≅+⊗

( ).LNI +=  Thus γ is monomorphism if and only if LN +  is a flat

R-module, by Theorem 2.1(3). Thus M has the PIP if and only if LN +  is
a flat R-module for any pure submodules N and L of M.

The converse follows from Proposition 4.10.
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