
w
w

w
.p

ph
m

j.c
om

JP Jour. Algebra, Number Theory & Appl. 6(3) (2006), 445-454

:tionClassifica jectSub sMathematic 2000 14H55.

Keywords and phrases: Weierstrass semigroups.

Communicated by Valmecir Bayer

Received January 20, 2006

 2006 Pushpa Publishing House

REALIZING NUMERICAL SEMIGROUPS AS

WEIERSTRASS SEMIGROUPS: A COMPUTATIONAL

APPROACH

FRANCISCO L. R. PIMENTEL

Universidade Federal do Ceará

Campus do Pici, Bloco 914

CEP 60455-750, Fortaleza, Ceará, Brasil

e-mail: pimentel@mat.ufc.br

GILVAN OLIVEIRA

Departamento de Matemática

CCE, UFES Campus de Goiabeiras

CEP 29075-910, Vitória, ES, Brasil

e-mail: gilvan@cce.ufes.br

Abstract

We propose a method for realizing numerical semigroups as Weierstrass

semigroups. Given a specific numerical semigroup as input, if it is a

Weierstrass semigroup, we obtain as the output the explicit equations

of a canonically embedded nonsingular curve whose Weierstrass

semigroup at a distinct point is this numerical semigroup. To illustrate

the method we realize the numerical semigroup 11,10,8,6  as a

Weierstrass semigroup.

1. Introduction

Let C be a nonsingular, complete, irreducible, algebraic curve of
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genus g defined over an algebraically closed field k of characteristic zero.
For each point P of C we can associate the semigroup ( )PHC  of the pole

orders of the rational functions on C that are regular outside P. The
semigroup ( )PHC  is a numerical semigroup, that is, a subsemigroup of

the natural numbers N  whose complement is finite, and it is called the

Weierstrass semigroup of C at P. A classical question, posed by Hurwitz
[7] in 1893, was whether any numerical semigroup was a Weierstrass
semigroup. In 1980 Buchweitz [1] answered negatively this question by
showing that the numerical semigroup 23,22,20,18,17,16,15,14,13

cannot be a Weierstrass semigroup ( )PHC  of a curve C. The question of

which numerical semigroups are Weierstrass semigroups is difficult and
only partial results are known (see, for example, [5], [9], [10] and [17]).

In this note we propound the use of Stöhr’s method (cf. [16], [13] and
[11]) for constructing the moduli space of pointed curves with a given
Weierstrass semigroup to handle the related problem that consists in
giving a specific numerical semigroup and asking if it is a Weierstrass
semigroup. In general, this kind of problem is solved by ad hoc
techniques. Our method is systematic, the technique used is very flexible
and in principle can be applied to any semigroup, the computational
complexity being the only impediment. To illustrate the method we
realize the numerical semigroup 11,10,8,6  as a Weierstrass semigroup

and exhibit a pointed canonically embedded curve ( )PC,  with ( ) =PHC

.11,10,8,6  To the best of our knowledge it was not known whether

this semigroup was a Weierstrass semigroup, anyway other numerical
semigroup could be considered.

2. The Method

Let C be a nonsingular, complete, irreducible, nonhyperelliptic,
nontrigonal curve of genus g defined over an algebraically closed field k.
Let P be a point of C with Weierstrass semigroup ( )PHC  and let

( ) { }gC lllPHL ...,,, 21=−= N  be the set of Weierstrass gaps at P. Let

Cω  be the dualizing sheaf of C. By the Riemann-Roch theorem there

exists a P-Hermitian basis for ( ),,Hom0
CC ω  or equivalently, there exist
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regular differentials 
glll ωωω ...,,,

21
 on C whose orders at P are ,11 −l

,1...,,12 −− gll  respectively. Since, by hypothesis, C is nonhyperelliptic,

we can identify it with its image under the canonical embedding

( ) .:::: 1
21

−→ωωω ⊂ g
klll C

g
P

Thus C becomes a projective, nondegenerate curve of genus g and degree

22 −g  in ,1−g
kP  and the integers 1...,,1,1 21 −−− glll  are precisely the

intersection multiplicities of C with the hyperplanes at the point =P

( ).0::0:1  Let ( )CI  be the ideal of C. Then we have that ( )CI  is

the set of polynomials f in the indeterminates 
gll WW ...,,

1
 satisfying

( ) .0...,,
1

=ωω
gllf  So ( )CI  is the homogeneous ideal ( ),2 CIni

∞
=⊕  where

( )CIn  is the vector space of n-forms that vanish identically on C. By a

theorem of Noether (cf. [15], Theorem 1.2) the homomorphism

[ ] ( )n
Cnll CWWk

g
⊗ω→ ,Hom...,, 0

1

induced by the liftings ,
ii llW ω→  ,...,,1 gi =  is onto for each n and the

canonical curve 1−⊂ g
kC P  is arithmetically Cohen-Macaulay. Then we

have that

[ ]
( ) ( ) ( )112

...,,
dim 1 −−= gn

CI

WWk

n

nll
k

g

or equivalently, ( ) ( ) ( ),112
1

dim −−−





 −+

= gn
n

gn
CInk  for each .2≥n

In particular, the vector space ( )CI2  of quadratic relations has dimension

( ) ( )
.

2
32 −− gg

 Let { }.,2 LllllL jiji ∈|+=  Then for each 2Ls ∈  we

consider all the partitions of s as sums of two gaps

( )ssisi ibas ν=+= ...,,0

with sisi ba ≤  and ,sia  .Lbsi ∈  We put 0ss aa =  and ,0ss bb =  where

0sb  is the largest among the sib ’s. Observing that the 
ss ba ωω ’s have

different orders at P, there exists a monomial basis B  of ( )20 ,Hom ⊗ωCC
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containing all the 
ss ba ωω  (see [12], Theorem 2.1). After normalization we

can obtain 
( ) ( )

2
32 −− gg

 equations, one for each 
sisi ba ωω  not in ,B

∑
∈ωω
>′+

′′

′

ωω+ωω=ωω

Bll

sssisi
sll

lllsilbaba c ,

where kc lsil ∈′  and .2Lll ∈′+  All the 
( ) ( )

2
32 −− gg

 forms

∑
∈ωω
>′+

′′

′

−−=

Bll

sssisi
sll

lllsilbabasi WWcWWWWF (1)

vanish identically on C and are linearly independent. Thus, they form a
k-basis for the vector space of the quadratic relations ( ).2 CI  Indeed,

since C is nontrigonal, by a classical theorem of Petry (cf. [15]) it follows
that the forms siF  generate the ideal ( ).CI  It is worth observing that we

know exactly the Weierstrass semigroups on trigonal curves (cf. [2], [3]
and [8]). Moreover, our method can be adapted to the trigonal case by
adding 3−g  cubic forms to the generators of the ideal ( )CI  (see [15]).

Stöhr’s idea consists in reversing the above considerations. Initially,
we define for each form siF  the homogeneous and isobaric form

sssisi babasi WWWWF −=0 (2)

and write 0I  for the ideal defined by the forms 0
siF ’s. Now let 0C  be the

subscheme of 1−g
kP  defined by the homogeneous ideal .0I  Typically 0C

will be a highly singular canonical curve that realizes the Weierstrass

gap sequence in the sense that the intersection multiplicities of 0C  with

the hyperplanes at the point ( )0::0:1=P  are precisely the integers

.1...,,1,1 21 −−− glll  We have just seen that any canonical curve C

having a point with the gap sequence 1...,,1,1 21 −−− glll  and B  as a

basis of ( )20 ,Hom ⊗ωCC  is given by 
( ) ( )

2
32 −− gg

 quadratic forms ,siF

similar to those in (1), thus it can be seen as a deformation of the curve

.0C  We impose conditions on the coefficients lsilc ′  in order to the
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intersections of the quadrics siF  in 1−g
kP  be a canonical curve C having a

nonsingular point ( ),0::0:1=P  where the intersection multiplicities

of C with the osculating spaces of C at P are .1...,,1,1 21 −−− glll  The

conditions we have to impose are given by Stöhr’s deformation theorem.

Theorem 2.1. Suppose that the scheme 0C  defined as above is a

canonically embedded curve and let I be the ideal generated by the
( ) ( )

2
32 −− gg

 quadratic forms ,siF  2Ls ∈  and .B∉ωω
sisi ba  Then the

following statements are equivalent:

 (i) The quadratic forms siF  define a non-degenerated Gorenstein

curve C of arithmetic genus g and degree 22 −g  in ;1−g
kP

(ii) Each homogeneous syzygy of degree n between the forms siF  is

induced by a homogeneous syzygy of degree n between the forms ( ).0
siF

In addition, the curve C in item (i) has a unique component passing

through the nonsingular point ( )0::0:1=P  whose contact orders

with the hyperplanes defined by the equations 0=lW  are the integers

1−l  with { }....,,, 21 glllLl =∈

Proof. See the proof of Theorem 4.1 in [13].

After dividing by the action of the subgroup of ( )gGLk  that preserves

P-Hermitian basis, or more precisely, the 
( )

2
1−gg

-dimensional group of

upper triangular matrices whose diagonal elements are of the form ilz

for each ,...,,1 gi =  for a non-zero constant z (see [16], Section 3 for

details), Theorem 2.1 gives defining equations for the parameter space of
the pointed Gorenstein curves with gap sequence glll ...,,, 21  and

because the nonsingular curves correspond to an open subset in the
moduli variety (cf. [14]), if we choose an “aleatory point” in the moduli it
should correspond to a nonsingular curve for “almost every” choice. Thus
we can obtain the desired nonsingular curve that realizes the given
numerical semigroup (if it does exist).
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Our method for representing a given numerical semigroup H can be
summarized by the following steps:

(1) Study of a special singular canonical curve that realizes the
numerical semigroup H at a distinct nonsingular point in the sense that
the sequence of intersection multiplicities of the curve with the
hyperplanes at this point has the correct values, that is, it is equal to

,11 −l  ,1...,,12 −− gll  where glll ...,,, 21  is the sequence of gaps H−N
of the semigroup. (If a curve is nonsingular, it is well known that this is
equivalent to saying that the Weierstrass semigroup of the curve at this
point is H.)

(2) Deform the special curve in (1), by using Stöhr’s deformation
theorem (see Theorem 2.1), in order to obtain the parameter space of
isomorphism classes of pointed canonical curves with the prescribed
Weierstrass gap sequence ....,,, 21 glll

(3) Obtain the examples by choosing arbitrary curves among those
constructed in (2) and proving that they are nonsingular by the Jacobian
criterion.

3. An Example: The Semigroup 11,10,8,6

To illustrate the method we take the numerical semigroup
.11,10,8,6  We used the software SINGULAR [6] for the algebraic

computations.

Step 1. For this semigroup we have that { }15,13,9,7,5,4,3,2,1=L

is the set of gaps. We obtain the ideal 0I  by observing that

222,20,18,17,16,14,12,11,10,9,8,7,6,5,4 L∈

can be written as a sum of two gaps in more than one way. (The
( ) ( )

21
2

32
=

−− gg
 quadratic equations 0

siF ’s that generate 0I  are the

isobaric binomials in the forms siF  given in Step 3.) Let [ ,,, 321 WWWkR =

] 0
15139754 ,,,,, IWWWWWW  be the homogeneous ideal of the scheme

.0C  The Hilbert polynomial of 0C  is ,816 −n  so 0C  is a curve of genus 9
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and degree 16 in .8
kP  To conclude that it is a canonically embedded curve

it is sufficient to prove that the ring R is Gorenstein. Since ,15W  131 WW −

is an R-sequence, it follows that R is Gorenstein if and only if the Artinian

ring ( )15131 , WWW
RA

−
=  is a Gorenstein ring. Now, observe that A can

be written as the sum of vector spaces ⊕= 0AA ,321 AAA ⊕⊕  where

1dim 3 =Ak  and 2
2

13 WkWA =  is the annihilator of the maximal ideal of

A, so A is a Gorenstein ring (cf. [4], Proposition 21.5).

Step 2. Observing that

,,,,,,,,, 9172715251413121
2
1 ωωωωωωωωωωωωωωωωω

,,,,,,,, 153152151132131949392 ωωωωωωωωωωωωωωωω

2
151513

2
13159157155154 ,,,,,, ωωωωωωωωωωωω

have different orders at P we conclude that they form a basis B  for

( ).,Hom 20 ⊗ωCC  Thus we can obtain the forms siF  that generate the ideal

( )CI  as in (1) and then apply Theorem 2.1.

Step 3. We search for a pointed curve ( )PC,  with ( ) =PHC

11,10,8,6  among those obtained by Step 2. Since the nonsingular

curves correspond to an open set in that variety, we take an arbitrary

curve and analyze it. By Theorem 2.1 we know that the curve C defined

by the following set of 21 equations:

,1571391,22 WWWWF −=

,2
1515131551371,20 WWWWWWWF −−−=

,2
15157155154153

2
92,18 WWWWWWWWWWF −−−−−=

,1531351,18 WWWWF −=

,1521341,17 WWWWF −=
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,2 2
151513155153152151972,16 WWWWWWWWWWWWWF −−−−−−=

,1511331,16 WWWWF −=

,2 1513153151
2

13132131
2

72,14 WWWWWWWWWWWWF −−−−−−=

157153
2

13132131951,14 2 WWWWWWWWWWWF +−−−−=

,1513159 WWWW −+

,93751,12 WWWWF −=

,92741,11 WWWWF −=

,15515391
2
52,10 WWWWWWWF ++−=

,91731,10 WWWWF −=

,15415272541,9 WWWWWWWWF ++−=

1551531519371
2
42,8 WWWWWWWWWWWF −−+−−=

,2
15159157 WWWWW −−−

,15315171531,8 WWWWWWWWF ++−=

,52431,7 WWWWF −=

,51
2
32,6 WWWF −=

1531519151421,6 2 WWWWWWWWWWF −−−−=

,2 2
151513157155 WWWWWWW −−−−

,41321,5 WWWWF −=

153151
2

1313131
2
21,4 22 WWWWWWWWWWF −−−−−=

,2 2
151513155 WWWWW −−−
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is canonically embedded in 8
kP  and has the correct sequence of

intersection multiplicities

0, 1, 2, 3, 4, 6, 8, 12, 14

with the hyperplanes at the point ( ).0:0:0:0:0:0:0:0:1=P  If

the curve is nonsingular, it is well known that this is equivalent to saying

that the Weierstrass semigroup of the curve at the point P is

.11,10,8,6  We can verify by means of the Jacobian criterion that in

fact this curve is nonsingular.
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