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Abstract

By using Mawhin continuation theory of coincidence degree theory,
we derive the existence of periodic solutions of stage-structured
nonautonomous cooperative system with delay.

1. Introduction

In a natural world, there exist many individuals of species which
experience two stages in the lifetime, i.e., immature stage and mature
stage, for example, animal and amphibian. Therefore, to make the models
more practical, species are usually considered by dividing the individuals
into two stages. Recently, there exist many papers [1, 4] in the literature
which investigate some stage-structured predator-prey systems, however,
the papers which investigate stage-structured cooperative systems

are scarce. In this paper, we study stage-structured nonautonomous
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cooperative system of two species. Consider the following model:

X1(t) = —ay ()1 () + by () %9 (t) — By (£) 21 (¢) x3(2),
X5 (t) = ag(t)x; () - by(t)xo(t) - Ct)x3(2), (1.1)
X3(t) = x3(t) (- d(t) — e(t)x3(t)) + Bo(t)xy (t = T)xg(t - T).

Here x;(t) and x5(tf) are immature and mature population densities of
prey species respectively, and x3(¢) represents the population density of

predator species. In our this model, the predator species can just prey on
immature individuals of prey species, and this is natural because the
mature individuals have developed some protective instinct. All
coefficients a;(t), b;(¢), B;(t); (@ =1,2), c(t), d(t), e(t) are continuous

functions. 7" > 0 is digest delay time.
2. The Existence of a Positive Periodic Solution

In this section, based on Mawhin’s continuation theorem, we shall
show the existence of at least one positive periodic solution of system

(1.1) to do so, we need to make some preparations.

Let X and Y be real Banach spaces, let L: DomL c Z - Y be a
Fredholm mapping of index zero, and let P: X > X, @:y > y be
continuous projectors such that Im p = KerL, Ker® = Im L, and X =
KerL ® KerP, y =Im L ®Im@. Denote by Lp the restriction of L to
DomL N KerP, Kp :ImL — KerP () DomL the inverse (to Lp), and
T :Im @ — KerL an isomorphism of Im @ onto KerL.

For convenience, we introduce Mawhin’s continuation theorem [2,

p. 40] as follows.

Lemma 1. Let Q < X be an open bounded set and let N : X — y be
a continuous operator which is L-compact on Q (i.e., QN : Q — y and

Kp(I - Q)N : Q — y are compact). Assume the following:

(i) For each A € (0,1), x € 0Q N\ DomL, Lx # ANx.
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(ii) For each x € 2Q () KerL, @Nx = 0.
(i11) deg{J@QN, QN KerL, 0} # 0.

Then Lx = Nx has at least one solution in Q () DomL. In what follows,

we use the following notation:

= 1w . . o
f—;jo fode ' = minl O £ = max) 7)),

tel0,w

where [ is a periodic continuous function with period w > 0.

(H;) All the coefficients in system (1.1) are positive continuous

w-periodic functions.

Now we state our fundamental theorem about the existence of a

positive w-periodic solution of system (1.1).

Theorem. In addition to assumption (H;), we assume the following:

1,1
asb
(Hy) b5 — > —b3'
v o B adh (b
ai + P\ e || T
e c Q]
pM M bM2
> CMaMaft + g\ 222 |1 22|
e'c a

Then system (1.1) has at least one positive w-periodic solution.
Proof. Consider the system
ui (t) = ~ay¢) + by (£)e*2 1) - g, (1) s,
us(t) = ay(t)e s 2V — by (t) - cft)e*2?), (2.1)
uy(t) = —d(t) - eft)e"s") + py(r)e 1T U= usl0),

where all parameters are the same as those in system (1.1). It is easy to

see that if system (2.1) has an w-periodic solution (i (t), us(t), uj()),
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then (", 2, ¢“3)!" is a positive w-periodic solution of system (1.1).

Therefore, for system (1.1) to have at least one positive w-periodic
solution, it is sufficient that (2.1) has at least one w-periodic solution. To

apply lemma to system (2.1), we first define
X =7 = {ult) = (), us(t), ust)" € (R, B, ult +w) = u(t)}

and
3
el = | Ca®), wpfe), ws@) | = > max | (0]
i=1

for any u € X (or z). Then X and Z are Banach spaces with the norm
| -] Let

—ay(t) + by ()20 —y (1))
Nu = as(t)e 1420 _ by (1) — c(r)e2®) :

—d(t) - e(t)eu3(t) n B2(t)eul(t—T)+u3(t—T)—u3(t)

_ o du(t) _ 1w
Lu=u = TR pu—wJ.Ou(t)dt, uelX,

1 w
Q, - —j Z()dt, zeZ.
wJo

w
Then it follows that KerL = R®, ImL = {z eZ: I Z(@t)dt = O} is
0

closed in Z, dim KerL =3 =codimIm L and P, @ are continuous

projectors such that
ImP = KerL, KerQ =1ImL =1Im(I -@Q).

Therefore, L is a Fredholm mapping of index zero. Furthermore, the
generalized inverse (to L) Kp : Im L — KerP () DomL is given by

Kp(z) = J; Z(t)ds — % I:) J.; z(s)dsdt.
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Thus
(1w ]
EJ‘O Fl(s)ds
1 w
QNu = EIO Fy(s)ds
1 w
_EJ.O FS(S)dSJ
and
[t 1 r W 1 w b
IOFl(s)ds—E.o | Fl(s)dsdt+(§ %MO Fy(s)ds
Kp(I - Q)Nu = | [ Fy(s)ds - L [“ [ Fy(s)dsde + (L - L) [* Fy(s)d
(I -Q u—'[02s S_E-O- 2ss+§ EJ‘O 5(s)ds |,
t 1 Pl ot 1 w
_J.OFS(S)ds—E.O l, (s)dsdt+(§ 5)]0 FS(S)dS_
where
Fy(s) = —ay(s) + bl(s>e“2(s>-”1<s) ~ y(s)es®
Fy(s) = ag(s)e1®)72() _p,(s) - c(s)e2®)
and

F3(s) = —d(s) - e(s)eu3(s) + BQ(S)eu1(S—T)+u3(S—T)—u3(8).

Obviously, @N and Kp(I — Q)N are continuous. It is not difficult to show
that Kp(I - Q)N(Q) is compact for any open bounded Q — X by using
the Arzela-Ascoli theorem. Moreover, QN(Q) is clearly bounded. Thus, N

is L-compact on Q with any open bounded set Q = X.

Now we reach the point where we search for an appropriate open
bounded subset Q for the application of the theorem. Corresponding to
the operator equation Lx = ANx, A € (0, 1), we have

4 0) = =y (0) + by 2010y () |
Wy(t) = Mag(t)er @120 _p, (1) c(t)el@(t)j, 2.2)
uy(t) = k\_—d(t) —e(t)e®s®) 4 52(t)elq(t—T)+u3(t—T)—u3(t)J
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Assume that u = u(t) € X is a solution of system (2.2) for a certain

A e (0, 1). Because of (uy(t), us(t), us(t))’ € X, there are &;, n; < [0, w]
such that

ui(ii)=tg[1(;c}§v]ui(t), ui(ni)=té?&%]ui(t), i=123.

It is clear that
ui(&) =0, wuj(n;)=0, i=123.

From this and system (2.2), we obtain

—an (&) + by (& )e 2 E) g ()5 = 0 (2.3)

g (E9)e 15 12E2) by (£5) - c(gg)e™ ™) = 0 (2.4)

~d(g) - o(a) ) + py(gg)et @ MG sl 0 (25)
and

~ay () + by (g )e 2 M) (M) _ g, (1 )a) = (2.6)

ay(nz)et 1212 2) —by(ny) — e(ng)e ") = 0 2.7

~d(ng) ~ eng)e"s M) + y(ng)es Mo~ TIslnelus) — 0. (2.8)

From (2.3), we get

ba(&1)e ™) — ay (g)e &) = y (g )e ) > 0,
that is,

a{eul(il) < bg(il)euz(‘t’l) < béweuz(iz)_

Hence

M
) < b2_leu2(<i2)‘ (2.9)
a
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From (2.3) and (2.8), we have

C(‘iz)ezuZ(éz) = a2(§2)eul(§2) - b2(§2)eu2(&2)

M, M
< a2(§2)eu1(i1) < %2 1;2 ot2(82)

a
Hence
M, M
pa(ts) < 92 b A 2.10)
= l l 2- .
c
From (2.8) and (2.9), we have
M M (M2
e < 02 us(er) o 92 bQ_] af d. (2.11)
a{ ¢! a{

From (2.4), we get

ele43(53) < o(g4)e?43(88) = B, (gy)et G Tl us(Es-T) _ (e )e¥s(8s)
< pM (&) rus(Es),

which together with (2.9) implies

e el ¢! af

2
ew3(E3) < iem(él) < gﬁ{&} af ds. (2.12)
Multiplying (2.5)-2.7) by €% (i = 1, 2, 3) gives
—ay (ng)e" 1)+ by (g )e'2M) — By (ny)e"s™M) = 0 2.13)

az(n)e M) — by(n)e2) — c(ng)e®22) = 0 2.19)

—d(n3)e“3(“3) _ e(n3)62u3(n3) n BZ(nS)eu1(n3—T)+u3(n3—T) 0. (2.15)
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Equation (2.13) implies that

Me2uamz) | pMous(nz) o glon(nz) o gloua(m)

From (2.12) and (2.13), we have

béeMZ(nZ) < bz(nl)eu2(n1) = al(nl)eul(nl)"'ﬁl(nl)eu?) (n)+g (m)

aMeta(m) o gM pus(EsJin(m)

2
{ o [sz o (4] ”<>
e c ay
() o b} . et2(n2). (2.16)
[az M(bM]”
R e
e c Qg

Substituting (2.16) into (2.15) gives

A

IA

Iyl
Me2ua(nz) | pM pus(n) o agb et2(m2)

2
M| B o (o
ot (4]

Hence

1yl d
ete(2) o LM agbs 5 o o po > 0. (2.17)
¢ [32 a3’ (b3
+ Bl Ve Ji
e! c aq

From (2.14) and (2.16), we obtain

l
eta(n) by ot2(nz)

2
m | B ad (6!
s 7
et ¢ \q
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!
> 2 B
M M (.M
M M a b
ot o o (o
e ¢ o
1 aébé M def
L oMUY b s 0. (218)
M 2
c MM (M
M oM|B2  az [by
a” +B | = I
e ¢ Lo

From (2.14), we have

Lettm)+us(s) < g (1) (3 =T)+us013-T) _ g.)e43(M3) 4 g(n4)e243(M3)

< qMous(nz) | ,M ,2u3(ng)

Thus

l M
et3(3) o B_]Zweul(nl) _a

e eM
!
> by 5
v v B o) (6
a + B =
e C a1
Bé ol e
MM 2 0
B P P T A R
a” +B | =
e ¢ q
def
= ps > 0. (2.19)

From (2.9)-(2.11) and (2.17)-(2.19), we get

def
|ui(¢)] < max{|Ind; |, |Inp; |} = R
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def
|ug(t)| < max{|Indy |, [Inpg |} = Ry

def
|us(t)| < max{|Inds |, |In p3 |} = Rs.

Clearly, R; (i =1, 2, 3) are independent of A. Denote M = R; + Ry + Rj

+R,; here, R, is sufficiently large such that each solution (a*, B*, y*)T
meets the following system:

—ay +beP — B’ =0
a9 P —by —ceP =0 (2.20)

—d -2 +B3 =0

satisfies |(a”, B, v)F | =] |+|B"|+|y"| < M, provided that system
(2.2) has a solution or a number of solutions. Now we take Q =
(uy (t), ug(t), us(@)’ € X - [ (@, us, us)’ | < M}. This satisfies condition
(i) of Lemma 1 when (1, us, u3)’ € 0Q N KerL = 0Q N R®, (uy, uy, us)"

is a constant vector in R® with |uy |+ | ug |+|us | = M. If system (2.20)

has a solution or a number of solutions, then

U —61 + b]_euz_ul — Eleu?’
QN Ug | = a_2€u17u2 - b2 - Eeuz = 0.
us —d —ee" + Bge™t

This proves that condition (i1) of Lemma 1 is satisfied. Finally, we will
prove that condition (iii) of Lemma 1 is satisfied. To this end, we define
¢ : DomL x[0,1] - X by

— (71 + b2€u2 ! — Bleu3

0w, ug, us, ) = a2eu1_u2 —ce"? |+ p by |,

—ee'"8 + pye' -d
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where pe[0,1] is a parameter. When (i, uy, us)’ € QN KerL =
QN R®, (u, ug, uz)! is a constant vector in R® with |up |+ ug |+

|ug| =M. We will show that when (4, ug, us)! € 8Q N KerL,

&g, ug, us, pn) # 0, if the conclusion is not true, then constant vector

(uy, ug, ug)? with |ug | +|ug |+ |ug | = M satisfies ¢(uq, ug, ug, n) = 0.

From

~ @ + boe2 T 4 p(—Bre) = 0

GQQul_uZ - Eeu2 + },l(— b_21) =0

—Eleu?’ + Ezeul + H.(— (,7) =0
and following the argument of (2.9)-(2.11), we obtain
|u; | < max{|Ind; |, |Inp; |}, i=1,2 3.

Thus

3 3
Z| u; | < Zmaxﬂ Ind; |, |Inp; |} < M,
=1 =1

which contradicts the fact that |uy|+|ug|+|ug|= M. Therefore,

according to topological degree theory, we have
deg(JQN(uy, ug, u3)", QN KerL, (0, 0, 0)")
= deg(f(ur, up, ug, 1), QN KerL, (0, 0, 0)7)
= deg((uy, us, us, 0), QN KerL, (0, 0, 0))
up—us

= deg((— @ + boe"27", Goe —ce"2,
1 2 2

—2e" + Bpe™ ), QN KerL, (0, 0, 0)7).
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Because of condition (i), the system of algebraic equations

—ez+Pox =0

has a unique solution (x*, y*, z*)T which satisfies x* > 0, y* > 0, and
z" > 0, and thus,

deg((— @ + bge"2™"1  Goe'1742 —ge¥2,

—2e™ + Bye)l, QN KerL, (0, 0, 0)7)

—byy* b

. 20

(x7) x
— JE— % %

sign| a—f, a2—i2—5, 0 :sign{—%bzz*y }:—1
y -() (x7)
E2, 0, EZ*
consequently,

deg(JQN (uy, uy, us)’, QN KerL, (0, 0, 0)7) = 0.

This shows that condition (iii) of Lemma 1 is satisfied. By now Q verifies
all the requirements of Lemma 1 and then system (2.2) has at least one
w-periodic solution. This completes the proof.
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