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Abstract 

In this paper, we will consider a random coefficients regression in 

simultaneous equations model (SEM). Some facts about SEM in 

econometrics theory and practice are introduced. Estimation problems 

concerning double k-class in SEM which have random coefficients are 

considered. Bias and mean squared error (MSE) of double k-class 

estimators are derived for random coefficients in a single equation SEM. 

For given ,1k  we suggested four alternative values of .2k  Three of them 

are better, in the sense of MSE, than the other values of .2k  

1. Introduction 

The econometricians distinguish three approaches to estimating the 
simultaneous linear equation model: the naive approach, the limited-
information approach, and the full information approach. 

The naive approach consists of estimating a single equation using the 
technique of the ordinary least squares method (OLS). This approach 
ignores the information as to which of the predetermined variables in 
question are endogenous and which are exogenous, and the estimators 
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are biased and inconsistent because of the inclusion of the endogenous 
variables into the set of the predetermined variables. 

The limited-information approach considers one equation at a time, 

estimating the structural form as does OLS. It uses the information as   

to which variables, both endogenous and exogenous, are included in the 

other equations of the model but excluded from the equation being 

estimated. In this group there are, for example, the following methods: 

the indirect least squares method (ILS), the two-stage least squares 

method (2-SLS) and double k-class estimators as the generalization of the 

2-SLS and k-class estimators. 

The full-information approach estimates the entire model of the 

simultaneous linear equations simultaneously using all information 

available on each of the equations of the system. This approach includes 

two methods: the three-stage least squares method (3-SLS) and full-

information maximum likelihood method (FIML). 

The classical simultaneous equation model of econometrics is a 

system of M structural equations which may be compiled to give the 

following equation: 

112121111212111 ε=β++β+β+γ++γ+γ KKMM XXXYYY  

222221212222121 ε=β++β+β+γ++γ+γ KKMM XXXYYY  

 

,22112211 MKMKMMMMMMM XXXYYY ε=β++β+β+γ++γ+γ  (1) 

where MYYY ...,,, 21  are 1×T  endogenous variables, KXXX ...,,, 21  

are 1×T  exogenous (predetermined) variables and Mεεε ...,,, 21  denote 

1×T  stochastic disturbance terms or random variables. The γ ’s are 

coefficients of endogenous variables, and the β’s are coefficients of 

predetermined variables. The model under consideration is complete, i.e., 
the number of equations equals to the number of endogenous variables. 
Each equation of the model (1) represents one aspect of the structure of 

the model and it is called a structural equation and the model is called 

the structural form. 
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In general, we can distinguish three types of equation. First, there 
are behavioral equations. They describe the behavior of economic 
subjects, for instance, the marginal productivity conditions. Second, we 
have technical or institutional equations, for example, production 
function or other technology-induced relationships. Such equations are 
stochastically. Third, there are identities or definitional equations, 
strictly non stochastic equations. A typical example would be, say, the 
usual national income identity. This kind of equations can be eliminated 
from the system and we shall always assume that the system (1) contains 
no identities or that, if does, they have been substituted out. 

The structural form (1) in a matrix notation is the most convenient 
and the most easily manipulated form of expressing the structural 
equations. In matrix notation, the system (1) is written as: 

,EXBY =+Γ  (2) 

where Y is a MT ×  matrix of observations on M endogenous variables,  

X is a KT ×  matrix of observations on K predetermined variables, and  

E is a MT ×  matrix consisting of M additive stochastic disturbance 

terms. Rows of a disturbance matrix are assumed to be stochastically 
independent normal distribution with zero mean and an unknown but 

finite covariance matrix .TI⊗∑  The matrices Γ and B are the matrices of 

2M  and MK structural coefficients, respectively. 

The matrix Γ is assumed to be square and nonsingular. Post 

multiplying the matrix equation (2) by the inverse of Γ and solving for Y 

yields: 

.UXY +∏=  (3) 

This is the matrix notation of the reduced form for the structural model 

(1). Where 1−Γ−=∏ B  is a matrix of reduced form coefficients, and 
1−Γ= EU  is the matrix of reduced form stochastic disturbance terms. 

The simultaneous linear equation model (1), we wish to express      
the structural coefficients as explicit functions of the reduced-form 
coefficients, but it is sometimes difficult or even impossible. 
Determination of whether there is a one-to-one correspondence between 
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the structural coefficients and the reduced-form coefficients is called the 

identification problem. The identification is prior to choosing the 

examination method and the estimation. If the identifiability conditions 
are satisfied, the econometrician may then proceed to estimate the 
parameters in the model under consideration. 

The order condition for identifiability: In order to be identified, an 

equation must exclude at least 1−M  of the variables appearing in the 

model. If exactly 1−M  variables are excluded from an equation, it is 

called “justidentified” equation and if more than 1−M  variables are 

excluded from an equation, it is called “overidentified” equation. But if 

less than 1−M  variables are excluded from an equation, it is called 

“underidentified” equation and it is never possible to compute the 

structural parameters. 

A more rigorous rule is called the rank condition for identifiability: 

An equation is identified if and only if there is at least one non-zero 

determinant of order 1−M  in the array of coefficients which those 

variables excluded from the equation in question appears in the other 

equations. 

A simultaneous linear equation model is identified if all the equations 

are identified. The order condition for identifiability is necessary but not 

sufficient, but the rank condition for identifiability is both necessary and 

sufficient. If the rank condition for identifiability is satisfied, the order 

condition for identifiability has also been satisfied, but not vice versa. 

An econometrician makes the choice among the different 

econometrical methods and techniques on the basis of the nature of the 

matrix of coefficients of the endogenous variables Γ and the covariance 

matrix ∑. 

First, we examine the matrix Γ. If it is diagonal, we check the   

matrix ∑. If the matrix ∑ is diagonal, too, we have to check whether 

( ) IE 2Cov σ=  or not. If it does, we apply the ordinary least squares 

method (OLS); if not, we use the generalized least squares method (GLS). 

If the matrix ∑ is not diagonal, an econometrician uses seemingly 

unrelated equation estimation methods. If the matrix Γ is triangular and 
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the matrix ∑ is diagonal, we shall use the ordinary least squares method 

to the recursive model. If the matrix ∑ is not diagonal and some equations 

are “overidentified” while none is not identified, we shall apply the three-

stage least squares method (3-SLS). If these conditions are not satisfied, 
we apply the indirect least squares method (ILS) or the two-stage      
least squares method (2-SLS), depending on whether an equation is 

“justidentified” or “overidentified”. The 2-SLS estimator is both reasonable 

and appropriate as an estimation method. 

Dwivedi and Srivastava [4] studied the exact finite sample properties 

of Nagar’s [10] double k-class estimators. They also analyzed a result 

originally derived by Srivastava et al. [11] that it is always possible to 

choose k such that double k-class estimators have smaller mean squared 

error (MSE) than that of k-class estimators. Chaturvedi and Shalabh [3] 

considered a family of feasible generalized double k-class estimators in a 

linear regression model. Chao and Phillips [2], Geweke [7], Kleibergen 

and van Dijk [9], Zellner [16] and Gao and Lahiri [6] developed the 

Bayesian approaches in SEM. Hsiao and Pesaran [8] provided a review  

of linear panel data with slop heterogeneity. Anderson [1] provided a 

reduced rank regression analysis for maximum likelihood estimators of a 

matrix of regression coefficients of specified rank and of corresponding 

linear restrictions on such matrices. 

2. Random Coefficient in Simultaneous Equations Model 

In this section, we will study the problem of SEM when we have a 

random coefficients regression in the simultaneous equations system. 

Suppose that 

,eBB +=  (4) 

where e is a MK ×  matrix of random variables and independently 

distributed with mean zero and covariance ∆. To obtain random 

coefficients reduced form, we combine equations (2) and (4) together, and 

get 

,VXY +∏= ∗  (5) 
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where 

,1−∗ Γ−=∏ B  

,1−Γ−= XeUV  

( ) ,0=VE  

and 

( ) ( ) ( ).Cov 1111 XXIV ′⊗∆ΓΓ′+Γ⊗∑Γ′= −−−−  (6) 

The GLS estimator of ∗∏  is 

( [ ( ) ( )] ) [ ( ) 11111111ˆ −−−−−−−−∗ Γ⊗∑Γ′′′⊗∆ΓΓ′+Γ⊗∑Γ′′=∏ IXXXXIX  

( )] .111 YXX −−− ′⊗∆ΓΓ′+  (7) 

Since ∑ and ∆ are unknown, two step OLS procedure can be applied. In 

the first step, we estimate ∑ and ∆ by 

( ) ( )∏−′∏−
−

=′
−

=∑ ˆˆ1ˆˆ1ˆ XYXY
KT

VV
KT

 (8) 

and 

( ) ( )∑
=

′∏−∏∏−∏
−

=∆
M

i
iiM

1

,ˆˆˆˆ
1

1ˆ  (9) 

where ( ) YXXXi ′′=∏ −1ˆ  and ∑
=
∏=∏

M

i
iM 1

.ˆ1ˆ  In the second step, we 

estimate ∗∏̂  by substituting ∑̂  and ∆̂  into equation (7), we get the 

feasible generalized estimators as 

( [ ( ) ( )] ) [ ( ) 11111111 ˆˆˆˆ −−−−−−−−∗ Γ⊗∑Γ′′′⊗Γ∆Γ′+Γ⊗∑Γ′′=∏ IXXXXIX  

( )] .ˆ 111 YXX −−− ′⊗Γ∆Γ′+  (10) 

We can estimate the structural form parameters Γ and B  from the 

reduced form estimate .ˆ ∗∏  Note that, the classical two-stage least 
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squared estimator of SEM can be obtained from (10) by assuming that 
the covariance matrix of the random coefficient is zero. 

The feasible generalized double k-class estimators of (10), when 

,2=M  which are characterized by two non-stochastic scalars 1k  and 

.2k  Terming it as feasible random coefficients double k-class estimators 

defined by 

( ) [ ( )








Γ⊗∑Γ′′∏−








+−
−=∏ −−∗∗ 111 ˆˆ

2
1ˆ IXY

KT
k

kk  

 ( )] ( ) [ ( )



Γ⊗∑Γ′′




∏−′⊗Γ∆Γ′+ −−∗−−− 11111 ˆˆˆ IYXYXX  

( )] ( ) [ ( ) 11
2

111 ˆˆˆ −−∗−−− Γ⊗∑Γ′′∏−−′⊗Γ∆Γ′+ IXYkYXX  

   ( )] ( ) .ˆˆˆ 111





∏



∏−′⊗Γ∆Γ′+ ∗∗−−− XYXX  (11) 

The feasible generalized double k-class estimators which presented by 

Ullah and Ullah [13], Wan and Chaturvedi [14], and Chaturvedi and 

Shalabh [3] can be obtained as special case from (11) when we have 

.0ˆ =∆  

3. Random Coefficient in Single Equation Model 

The structural form of a single equation model can be written in the 
following way: 

,112 ε+β+γ= XYy  (12) 

where y is the 1×T  vector of the first endogenous variables and 2Y  is 

the ( )1−× MT  matrix of included endogenous variables appearing in 

the first equation, and 1X  is the 1×T  matrix of exogenous variables 

included in the structural equation (12), .1 K≤  Suppose that the 

coefficients of exogenous variables are random, that is, 

,1α+β=β  
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where ( ) ,01 =αE  and ( ) ,Cov 11 ∆=α  then 

11112 ε+α+β+γ= XXYy  

,112
∗ε+β+γ= XY  (13) 

where ( ) ,01 =ε∗E  and ( ) .Cov 11111111 Ω=σ+∆′=ε∗ IXX  

Let us consider the ( )1−M  endogenous variables 2Y  can be written 

in the reduced form as follows: 

,222112 VXXY +∏+∏=  (14) 

where 2X  is a 2×T  observation matrix of exogenous variables excluded 

form (13), and ∗ε1  and 2V  are a 1×T  vector and ( )1−× MT  matrix      

of random disturbances to the system. We assume that ( )21, V∗ε  

( ),,0~ TIN ⊗Ω  where MM ×  covariance matrix Ω is positive definite 

symmetric and is partitioned as 

.
2221

2111













ΩΩ

Ω′Ω
=Ω  

The structural model (13) and (14) can be written in its reduced form as 
following: 

( ) ( ) ( ),21
22

11
212 VXXYy ξ+















∏γ∏

∏π
=  (15) 

where 

,11 γ∏+β=π  

,211 γ+ε=ξ ∗ V  

( ) ( ),,0~, 21 TINV ⊗Ωξ ∗  

,PP ∗Ω′=Ω  









γ−

=
−1

0

MI

I
P  
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and 

.
2221

2111













ΩΩ

Ω′Ω
=Ω

∗∗

∗∗
∗  

Note that, the equation (13) is fully identified if and only if ( ) =∏2Rank  

( ) .1 2≤−M  For simplified, we suppose that 021 =′XX  in two equations 

model, so the double k-class estimator for the structural coefficients in 

model (13) and (14) is given by 

( )
,

ˆˆˆ

ˆ

ˆ

1

222
1

1121

1222122















′

′−















′′

′′−′
=













β

γ
−

yX

yVkY

XXYX

XYVVkYY
 (16) 

where 

,ˆ
22 YQV X=  

( ) XXXXIQX ′′−= −1  

( ) ( ) .2
1

2221
1

111 XXXXXXXXI ′′−′′−= −−  

From equation (16), the following estimators have been obtained when 

.01 =∆  

 (i) Ordinary least squares (OLS), when ,021 == kk  

 (ii) Two-stage least squares (2-SLS), when ,121 == kk  

 (iii) Zellner’s [15] Bayesian minimum expected loss estimator (MELO), 

( ) .
1

121 −−−
−==

MKT
Kkk  

 (iv) Zellner’s Bayesian method of moments relative to balanced loss 

function (BMOM), see Tsurumi [12], when 

KT
Kk
−

−= 11  

( )
KT
K

k
−
ω−

−=
1

12  with .75.0=ω  
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(v) Fuller [5] modified the classical limited information maximum 

likelihood (LIML) estimator, when 

KT
kk

−
α−λ== ∗21  for ,4,1=α  

where 

( ) ( )

( ) ( )γ−′γ−

γ−′γ−
=λ

γ∗
22

22 1min
YyQYy

YyQYy

X

X  

and it is computed using the LIML estimate. 

We can express the random coefficients of double k-class estimator for the 

structural coefficient γ with characterizing scalars 1k  and 2k  as follows: 

( ) ( ) ,ˆˆ 2
1

2221 yQYAYYkk XRKCRDKC ′′−+γ=γ −  (17) 

where RKCγ̂  is the random k-class estimator of γ with characterizing 

scalar 1k  and 

( ) [ ( ) ] ( ) .1 2
1

22211
1

1111 XXXXkXXXXIkA ′′+′′−−= −−  

We can also derived the exact expression for bias and MSE of the random 

coefficients of double k-class estimator of γ. When ,11 ≥−T  the bias is 

( ) ( )[ ]11;0;1ˆ 0
22

2221 −ζ







Ω

Ωγ′+Ω′
−γ=γ−γ FE RDKC  

( ) ( ) ,1;1;10
22

2221
21 








Ω

Ωγ′+Ω′
−+ Fkk  (18) 

where 

( ) ,21−= Tn  

( ) ,2KTm −=  

( ) 222222 2Ω∏′∏′=ζ XX  



w
w

w
.p

ph
m

j.c
om

RANDOM COEFFICIENT REGRESSION IN SIMULTANEOUS … 107

and for non-negative integers a, b, c, d, 

 ( ) ( ) ( ) ( )
( ) ( )∑∑

∞

=

∞

=

ζ− ζ⋅
Γ⋅+++Γ

++Γ⋅−−+Γ+⋅=
0 1

1 ,
!

1
1;;

r j

j
r

d jmcrjn
brmajn

kdrecbaF  (19) 

when ,32n  the MSE of the random coefficients of double k-class 

estimator of γ is given by 

( )2ˆ γ−γRDKCE  

( ) ( )2;2;11

2

22

22212
21

2

22

2221 Fkk 







Ω

Ωγ′+Ω′
−+








Ω

Ωγ′+Ω′
−γ=  

[( ) ( ) ( ) ( ) ( )]2;0;11;0;01;1;01
2 111

2
2

22

211 FFnmFk δ+−+−
Ω

Ω
+ ⋅  

( ) ( ) ( )



 −δ+








Ω

Ωγ′+Ω′
−γδ+ 1;0;122;0;11;0;0

2
1

011

2

22

2221 FFF  

( ) ( ) ( )[ ],1;1;12;1;12 0121
22

2221

22

2221 FFkk −δ−







Ω

Ωγ′+Ω′
−γ

Ω
Ωγ′+Ω′

+  (20) 

where 

( ) ( )
.2

22

2
2221

222111211 Ω
Ωγ′+Ω′

−γΩγ′+Ωγ′+Ω=Ω ⋅  

From equations (18) and (20), we can see that the bias and MSE of 

RDKCγ̂  depend not only on 22Ω  but also on 11Ω  and 12Ω  which have a 

covariance matrix of the random coefficients. This bias and MSE are 
similarly defined as given by Dwivedi and Srivastava [4] when there is 
not a random coefficient in the model. 

Dwivedi and Srivastava [4] derived two interesting results for the 

value of 1k  and .2k  First, for a given ,1k  the double k-class estimator is 

unbiased if the value of 2k  is set as 

( )
( )

.
1,1,1

11,0,1

0

0

22

2221

2221

22
1 







 −⋅ζ








Ω

Ωγ+Ω′
−γ

Ωγ+Ω′
Ω

+=
F
F

kKU  
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Second, the MSE of the double k-class estimator is less than that of 

k-class estimator with the value of 2k  is between 1k  and ,∗k  where ∗k  

defined as 

1kK =∗  

( ) ( ) ( ) ( )[ ]

( ) ( )
.

1,1,0
2

2,2,1

11,12,1,121,1,01

1
22

211
1

2

22

2221

01
22

2221

22

2221
1

22

211
1



































Ω
Ω

+







Ω

Ωγ+Ω′

−⋅ζ







Ω

Ωγ+Ω′
−γ

Ω
Ωγ+Ω′

+
Ω
Ω

−
+

⋅

⋅

FF

FFFk
 

For a given ,1k  we suggest four different values of 2k  that can be used in 

random coefficients of double k-class estimators. 

1. ,
2

1 u
U

kk
K

+
=∗  

2. ,
2

1
∗+

=
kk

K M  

3. ,1
∗×= kkKG  

4. 










≠






 +

=

=

∗

∗

.0if
11

2
0if

1

1

1

k

kk

kk

KH  

We look from the above expression for the optimal value of 2k  that 

minimizing the MSE of random coefficients of double k-class estimator of 

γ. In order to shed some light about the best value of 2k  from the 

alternative values of ,UK  ,∗U
K  ,MK  GK  and ,HK  we set ,10=T  

,1=γ  ,5=K  ,21 =  ,10=ζ  ,0.111 =Ω  4.021 =Ω  and .0.122 =Ω  All 

values of 2K  and the resulting of bias and MSE of the random 

coefficients of double k-class estimator of γ under our specification are 

reported in the following table. 
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Table 1. An alternative values of 2K  with 

the Bias and MSE for the estimator γ 

Values 1K  

of 2K  –1.0 –0.5 0.0 0.5 1.0 

UK  207.74 185.487 162.487 137.354 115.965 

 0 0 0 0 0 

 (214.523) (211.75) (209.468) (208.842) (269.29) 

∗K  16.481 12.158 8.039 4.26 1.431 

 0.364 0.37 0.378 0.386 0.398 

 (1.532) (1.07) (0.658) (0.339) (0.185) 

∗U
K  103.371 92.587 81.244 68.927 58.482 

 0.199 0.199 0.199 0.198 0.2 

 (53.265) (52.728) (52.343) (52.414) (67.87) 

MK  7.74 5.829 4.019 2.38 1.216 

 0.381 0.384 0.387 0.391 0.399 

 (0.478) (0.378) (0.288) (0.217) (0.179) 

GK  4.06 2.466 0 1.46 1.196 

 0.388 0.391 0.397 0.394 0.399 

 (0.201) (0.211) (0.175) (0.185) (0.179) 

HK  –2.129 –1.043 8.039 0.895 1.177 

 0.4 0.399 0.378 0.396 0.399 

 (0.201) (0.185) (0.658) (0.176) (0.179) 
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From the above table, each cell has the estimated value of ,2K  the 

estimated bias, and the estimated value of MSE is in brackets. 

Comparing the estimated MSE with characterizing scalars 1K  and 

alternative values of ,2K  we found that our suggested values for ,MK  

GK  and HK  are better, in the sense of MSE, than UK  and ∗K  which 

proposed by Dwivedi and Srivastava [4]. We also found that the value of 

∗U
K  has MSE between UK  and .∗K  The optimal value of 1K  and 2K  

when we have a random coefficient needs some further research. 
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