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Abstract

In the longitudinal analysis of chronic diseases, investigators are often
interested in studying multiple transitions between various states of
disease progression. Semi-Markov models may be used for modeling this
type of process. We propose a novel semi-Markov model with random
effects. This allows for the dependence of transition times within
subgroups. Another originality consists in the introduction of a
generalized Weibull distribution for the hazard functions, offering a
more global parametric method than those frequently used. Laplace
transform is used to define a marginal likelihood function in order to
estimate the regression parameters. A real dataset for HIV is analyzed
to illustrate the methodology. Correlation subgroups are defined
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according to the subjects, because a same transition can be observed
several times for a given subject. Based on our model, we estimate
individual effects and test the independence of observed transition
times. The results demonstrate that all the observations are
independent whoever the subject and that traditional semi-Markov
models may thus be used in our application.

1. Introduction

Multilevel survival data are becoming increasingly common in

epidemiological and longitudinal studies. Indeed, the progression of a

disease cannot be summarized by one terminal event. For example, in

HIV (Human Immunodeficiency Virus) follow-up, a patient may evolve

through various states of gravity. This type of method has recently been

applied with success by Alioum et al. [3] or Jackson et al. [10]. There are

numerous other clinical examples such as cancerology or asthma by

Combescure et al. [6] or Saint-Pierre et al. [14].

Homogeneous Markov models are often used in this context, but the

hazard rates of transition are assumed to be constant over the time spent

in the state (exponential distribution). The evolution of the process is

thus independent from the waiting times. Semi-Markov models make the

dependence possible, by modeling waiting time distributions. Perez-Ocon

and Ruiz-Castro [12] thus proposed a semi-Markov model based on

Weibull distribution, constituting the theoretical background of the

extension presented in this paper.

Another modeling issue concerns the repeated occurrence of the same

type of event during patient follow-up. In practice, the assumption made

in modeling a time-dependent process, is that the observed transition

times are independent, given the observed covariates. Escolano et al. [7],

Yau and Huzurbazar [15] or Foucher et al. [8] all made this assumption.

It may be the case that the transition times of individuals in some

subgroups of the population are associated since members of these groups

share a common unobserved trait. For example, there may be an

association in times to events such as disease or death between members

of the same family. In this paper, we study the association of repeated

events for a particular individual. Models with random effects provide an
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interesting method for dealing with such a correlated structure. In

survival analysis, those random effects, which act multiplicatively on the

baseline hazard functions, are called frailties. Several authors propose

various frailty models, according to the distribution of frailties and

estimation procedure. Klein [11] proposed an EM algorithm in order to

estimate a Cox model with random effects. Aalen and Husebye [2] used

the Laplace transform to define a marginal likelihood function of a

Weibull model with frailty. This theory was recently extended to

multivariate survival data by Hougaard [9].

In this paper, we propose a novel semi-Markov frailty model for

multi-state and clustered longitudinal analysis. The development of such

a type of model was motivated by the study of the evolution of patients

HIV-infected, using a cohort followed up at Nice University Hospital

(France). The hazard functions with the associated covariates are specific

to each transition. The shape of the hazard function generalizes the

Weibull distribution, by allowing a U or inverse U shape. Frailties are

assumed to be gamma distributed. The same transitions are allowed to be

independent given the individual frailty. All these choices of distribution

are argued in this paper. Parameters and their variances are estimated

by maximizing the likelihood. The following developments are based on

the Laplace transform, as defined by Aalen and Hougaard. To the best of

our knowledge, such a model has never been published. Only Ripatti et

al. [13] defined a three-state frailty model although they used piecewise

constant hazard functions without covariates.

This paper is organized as follows: Section 2 introduces the semi-
Markov frailty model and the estimation procedure. In Section 3, these
methods are applied to a cohort of patients HIV-infected. Section 4
contains the discussion.

2. Model Formulation

2.1. Modeling semi-Markov process without frailty

Let { }rE ...,,2,1=  be a finite state space. Consider the random

processes ( ) ( ){ },0:,, ≥= nXTXT nn  in which nTTT <<<= 100
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are the consecutive times of entrance into the states ,...,,, 10 EXXX n ∈

with ,1 pp XX ≠+  0≥∀p  and pX  not persistent. n represents the

number of jumps. The sequences { }0, ≥= nXX n  form an embedded

homogeneous Markov chain. The probabilities of jumping from i to j,

associated with this chain, can be written as ( ).1 iXjXPP nnij =|== +

If state i is not persistent, then 0≥ijP  for ji ≠  and 0=ijP  for .ji =

Otherwise, if state i is persistent, then 0=ijP  for ji ≠  and 1=ijP  for

.ji =  In the following developments, we will suppose that state i is

transient. As we can see, the Markov chain does not deal with the

duration of states. The waiting times are explicitly defined. These

processes ( )XT ,  are called semi-Markovian, if the distribution of waiting

times ( )nn TT −+1  satisfies ( )nnnnn TXXTXjXxTTP ,...,,,,, 10011 |=≤− ++

( )., 11 nnnn XjXxTTP |=≤−= ++  The density probability function of the

waiting time in state i before passing into state j, is given as:

( ) ( )
.

,
lim 11

0 h
iXjXhxTTxP

xf nnnn

h
ij

==|+<−<
= ++

→ +
(1)

The density distribution and corresponding value of parameters can vary

between each type of transition. As usual in survival analysis, we deduce

from ( )xfij  the corresponding distribution function, survival function and

hazard function, that is to say ( ),xFij  ( )xSij  and ( ),xijλ  respectively:

( ) ( )
h

iXjXxTThxTTxP
x nnnnnn

h
ij

==≥−|+<−<
=λ +++

→ +

,,
lim 111

0

( )
( ) .
xS
xf

ij

ij= (2)

The marginal density probability function is deduced from (2)

( ) ( )∑
≠

=
ij

ijiji xfPxf .. (3)

By definition, the hazard function of the semi-Markovian process

corresponds to the probability of jumping towards state j, given that the
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process occupies state i for a duration x:

( ) [ ]
h

iXxTTjXhxTTxP
x nnnnnn

hij
=≥−|=+<−≤

=α +++
→

,,
lim 111

0

( )
( )xS

xfP

i

ijij

.
=    with ,ji ≠  Eji ∈,  and ( ) ( )∑

≠

α−=α
ij

ijii xx . (4)

In order to take covariates in the model into account, we use the
assumption of risk proportionality. The additional hypothesis is that

covariates act on the waiting time distributions. Suppose ijn  transitions

ji →  for a patient, .Eji ∈≠∀  These transitions occur at the following

waiting times ....,,, 21 ijijnijij xxx  At these times, covariates are respectively

,...,,, 21 ijijnijij zzz  in which ( )ijk
ijpijpijpijp zzzz ...,,, 21=  is the vector of ijk

covariates specific to the pth transition .ji →  The hazard function is

thus defined by ( ) ( ) ( )ijp
T
ijijpijijpijpij zxzx βλ=λ exp, ,0  to obtain a strictly

positive function, in which ( )ijk
ijijijij βββ=β ...,,, 21  is the vector of ijk

regression parameters associated with ,ijpz  and ( )ij,0λ  is the baseline

hazard function.

We shall assume that right censoring can occur only at stopping

times. Let y be the censoring time in a state k, and yz  be the covariates

at this time y. Defining d as the indicator of censoring 1( =d  if a

transition is observed, and 0=d  otherwise), it is well known (Perez-

Ocon and Ruiz-Castro [12]) that the individual contribution to the
likelihood is given by:

{ ( ) ( ) ( [ ( )∏ Λ−λλ=
ij

ijijijijnijnijijijij
n
ij zxzxzxP

ijij
ij

1111 ,exp,,L

( )])} ( ( ))
d

kj
ykjkjijnijnij zyPzx

ijij

−

≠ 











Λ−×Λ++ ∑
1

,exp, (5)

in which ( ) ( )∫ λ=Λ
x

ijij duux
0

 is the cumulative hazard function.
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2.2. Incorporation of frailties

We define ,ijω  as the unobservable random effects on a subject, which

are assumed to have independent distributions, specific to the transition

,ji →  with a mean of 1 (in order to get unique identification of

parameters). Given this mixing variable, the transition intensity is

therefore ( ).xijijλω  The frailty term is assumed to describe the

dependence of the transition hazard function on an individual. To
simplify the notations, we did not take into account the subject index.
From (5), the individual and conditional likelihood can be written as:

{ ( ) ( ) ( )}






ω−λλω= ∏

ij
ijijijnijnijijijij

n
ij

n
ij vzxzxPE

ijij
ijij exp,, 11L

( ) ,exp

1





















ω−×

−

≠
∑

d

kj
kjkjkj uP (6)

where ( ) ( ),,, 11 ijij ijnijnijijijijij zxzxv Λ++Λ=  the total cumulative hazard

function and ( )., ykjkj zyu Λ=  A suitable reformulation can be given by

introducing the Laplace transform of ,ijω  defined by ( ) [ ( )].exp ijaEaL ω−=

Since the rth derivative ( )( )aL r  equals ( ) [ ( )]ij
r
ij

r aE ω−ω− exp1  and the

independence of frailties between different transitions, we can rewrite
(6). Taking the logarithm, the general formulation of the individual
contribution to the likelihood is given by:

( ) ( ( )) (( ) ( )( ))∑ ∑












−+λ+=
=ij

n

p
ij

nn
ijpijpijijij

ij
ijij vLzxPn

1

1ln,lnlnln L

( ) ( ) .ln1 












−+ ∑

≠kj
kjkj uLPd (7)

2.3. Model parameterization

The distribution of the mixing variable should be chosen in such a
way that it has an explicit Laplace transform. Hougaard [9] describes
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distributions used in frailty models for multivariate survival data:
stable, gamma, power variance function, etc. However, only the gamma

distribution offers a simple rth derivative of the transform of Laplace, for

r large. For the other distributions, the derivatives use some recursive

polynomials, already associated with problems of estimation in a simple
multivariate models of survival. Moreover, the gamma frailty distribution
has proven to be advantageous in many context based on statistical and
practical ground, for example, Aalen [1] or Clayton [5].

For each transition, we assume that the ijω ’s are independent and

identically Gamma distributed, with density

( ) (
( )

( )) ( ( ) ) .0,exp
11

11
≥δ∀δδΓδω−ω=ω

−− δ1−−−δ
ijijijijijijij

ijijg (8)

The mean value of ijω  is 1 and the variance is .ijδ  The high value of ijδ

reflects greater heterogeneity between subjects for the transition .ji →

The Laplace transform, ( )aL  is therefore ( ) .1
1−δ−δ+ ijaij  It may be of

interest to test the null hypothesis ,0=δij  corresponding to the

independence between all the observations. It lies on the boundary of the

natural parameter space .0≥δij  Aalen and Husebye [2] demonstrated

how the family of distributions may be extended to values of ijδ  somewhat

below zero, making the null hypothesis an interior point. We can thus use

the Likelihood Ratio Statistic (LRS) for testing this hypothesis.

Let the hazard function of waiting times follow a generalized Weibull

distribution:

 ( ) .0,0,0,11
11

1

,0 >θ>ν>σ∀







σσ

ν





















σ

+
θ

=λ
−ν−

θν

ijijij
ijij

ij

ijij
ij

ijijij xxx (9)

This class of distribution has very nice properties (Bagdonavicius and

Nikulin [4]). In dependence of parameter values, the hazard function can

be constant, monotone (increasing or decreasing), and U or inverse U

shape. These distributions have the advantage of being nested, the

Likelihood Ratio Statistic (LRS) can thus be used to simplify this
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distribution. For example, if we fix ijθ  at 1, then we find the Weibull

formulation. Therefore, this method generalizes the semi-Markov model

proposed by Perez-Ocon and Ruiz-Castro [12]. For all these reasons, the

generalized Weibull distribution appears to be suitable for modeling the

baseline hazard functions of waiting times.

From the equation (7) and following the parameterizations implied by
(8) and (9), the final individual contribution to the marginal loglikelihood
of this semi-Markov frailty model can be calculated. It is derived in the
Appendix.

[ ( ) ( ) ( ) ( )]∑







σν−ν+θ−=

ij
ijijijijijij Pn lnlnlnlnln L

∑
=

ν





























σ

+×







−

θ
+

ij ijn

p ij

ijp

ij

x

1

1ln11

( ) ( ) ( ( ) )





δ−++β+−ν+ ijijp

T
ijijpij pzx 11lnln1

( )
( )

( )























β
















−























σ
+δ++δ− ∑

=

θνij ijijn

p
ijp

T
ij

ij

ijp
ijijij z

x
n

1

1

exp111ln1

( ) ( ) .exp111ln1

11
































β
















−





















σ

+δ+−+ ∑
≠

δ−θν

kj
y

T
kj

kj

y
kjkj

kjkjkj

z
x

Pd

(10)

3. Analysis of HIV Data

The development of such a type of model was motivated by the study
of the evolution of patients infected with HIV, using a cohort followed up
at Nice University Hospital (France). Indeed, a patient can repeat several
times the same transition. We mean that the times of a same transition
for a particular individual are independent random variables with
identical distributions.
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Clinicians considered two markers for qualifying the gravity of the
disease: viral load (VL) and concentration of CD4 lymphocytes (CD4).
They defined the multi-state process as characterized in Figure 1. The
possible transitions were selected according to their frequencies in the
sample. The purpose was to analyze the progression of HIV disease using
this four-state semi-Markov model, according to the eight following
factors: gender (women = 1; men = 0), age (1 = over 40 years old; 0 =
otherwise), hepatitis B coinfection (1 = yes; 0 = no), hepatitis C coinfection
(1 = yes; 0 = no) and the means of contamination which could be either
heterosexual (1 = yes; 0 = no), homosexual (1 = yes; 0 = no), by drug
addiction (1 = yes; 0 = no), or some other accidental way (1 = yes; 0 = no).

Figure 1. Four-state semi-Markov model.

We also limited our analysis to observations collected since 1996 and
to individuals over 18 years old. The database is thus constituted of 163
HIV-infected patients, followed up in the Hospital of Nice, France (NADIS
database). This represents 1478 observations, which are summarized in
Table 1. In agreement with the clinicians, the process is assuming
sufficiently stable and the visits are rather regular (see Figure 2), in
order to consider that most of the transitions are identified, without
dealing with interval-censored times. It is also justified by the Table 1.
Indeed, the transitions are observed only between consecutive states of
gravity.
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Table 1. Frequency of the transitions observed

Transition Number Percentage Median1 Mean1

→1  censoring 6 0.41% 0.79 0.78

21 → 129 8.73% 0.26 0.38

41 → 84 5.68% 0.26 0.38

12 → 84 5.68% 0.26 0.51

→2  censoring 69 4.67% 0.67 0.96

32 → 346 23.41% 0.37 0.53

23 → 374 25.30% 0.34 0.51

→3  censoring 23 1.56% 0.44 0.61

43 → 112 7.58% 0.27 0.48

14 → 117 7.92% 0.44 0.65

34 → 126 8.52% 0.25 0.42

→4  censoring 8 0.54% 0.26 0.33

1Waiting times in years

We first select covariates with a univariate strategy ( ).20,0≤p  By

defining a factor as a covariate for a specific transition, 10 factors are
selected for the multivariate model. Finally, by a descending procedure

( ),05,0≤p  5 factors seem significant. They are given in Table 2.

Hepatitis B seems to be important. It is a significant predictor for the
transitions ,41 →  12 →  and .32 →  For example, patients infected by

hepatitis B, are 1.93 times likelier to leave State 2, given that State 1
follows. Likewise, patients not infected by homosexual relation, seems to
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Figure 2. Distribution of time between two consecutive visits.

accelerate the transition .12 →  Lastly, hepatitis C seems to be a risk

factor of the transition .23 →  In order to interpret the effects of factor

as relative risk, we are restricted to conditioning on the following state
(Equation 2).

Table 2. Regression parameters ijβ  for the final multivariate model

Covariate Transition Estimate Stand. Deviation Relative Risk1 p-value

Hepatitis B 41 → –0.67 0.30 0.51 0.0243

Hepatitis B 12 → 0.66 0.35 1.93 0.0581

Homosexuality 12 → –1.35 0.65 0.26 0.0384

Hepatitis B 32 → –0.52 0.18 0.59 0.0044

Hepatitis C 23 → 0.31 0.13 1.36 0.0129

1Relative Risk is deduced from risk proportionality assumption:

( )β= expRR



w
w

w
.p

ph
m

j.c
om

YOHANN FOUCHER et al.196

Figure 3 presents certain hazard functions of the semi-Markov
process (Equation 4). Whereas the ratio between the hazard functions of
the waiting times ( )ijλ  is constant, this diagram shows us that the

interpretation of the ratio between the hazard functions of the semi-
Markov process ( )ijα  is not so simple. It depends on waiting times.

However, we can identify the effect of the variable without conditioning
on the following state. Hepatitis B seems to influence the transition

,21 →  even if this covariate does not have a direct effect on this last

transition.

The maximum likelihood estimates of the other parameters, with the
corresponding standard errors, are given in Table 3. It is interesting
to note that the random effect terms, ,ijδ  are close to zero, confirming

the lack of significant variation between individuals. A logarithmic
transformation was even necessary to remove the skewness for this
parameter. Using the LRS to test the null hypothesis according to which

ijδ  equal 0, ,ji ≠∀  we conclude that the incorporation of frailties is not

informative ( ,89.12 =χ  8=ddl  and ).9841.0=p

Table 3. Parameters of waiting time distribution
           for the final multivariate model

ijν ijσ ijθ ijδ

Transition Estim SD Estim SD Estim SD Estim exp(Estim)

21 → 0.12 0.02 3.04 0.54 4.93 1.13 –8.18 0.0003

41 → 0.13 0.02 3.29 0.76 4.52 1.38 –7.13 0.0008

12 → 0.13 0.02 5.08 1.26 10.82 3.75 –1.11 0.3296

32 → 0.18 0.03 2.64 0.34 4.24 0.94 –2.63 0.0721

23 → 0.15 0.02 2.62 0.34 4.64 0.85 –9.14 0.0001

43 → 0.11 0.02 2.30 0.44 4.50 1.17 –7.22 0.0007

14 → 0.13 0.02 3.58 1.07 7.44 2.66 –8.29 0.0003

34 → 0.11 0.02 2.81 0.59 5.15 1.39 –7.94 0.0004
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Finally, still in Table 3, we note that the estimates of ijθ  and their

standard deviation justify our choice of modeling strategy based on
generalized Weibull distribution. For example, a 95% confidence interval
for the parameter 12θ  is [2.72; 7.14], which does not include value 1. This

distribution is more informative than the Weibull one. This also justified
by the Figure 3, where the hazard functions are not monotone.

Figure 3. Hazard function of the semi-Markov process,

12α  and  ,14α  according to Hepatitis B.
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4. Discussion

In this paper, we introduced a general semi-Markov model with

random effects and generalized Weibull distribution of waiting times.

Random effects were assumed to be Gamma distributed. Estimations

were obtained by maximizing the marginal likelihood, which was made

possible by using Laplace transform. The advantage was to base all our

modeling strategy on the LRS and on the traditional maximum likelihood

estimation theory.

As illustrated by the example on HIV, the model provides a useful

method for analyzing clustered multi-state processes. As we supposed, a

subject may be assumed to be a cluster, because a transition ji →  can

occur for any given subject. Unobserved covariates could then constitute

variability between subjects. Even if the frailties do not significantly

increase the likelihood in our application, that could be the case for other

analysis. Moreover, our strategy has at least the advantage of testing the

independence of the transition times. This assumption is too strong to be

formulated a priori.

The general formulation of the model and the corresponding

likelihood (10) may be used for modeling different structures of cluster.

For example, to take into account center, geographical or family effects in

a multi-state process, random effects should constitute an adequate

modeling solution.

The model is also original concerning the choices of parameterization.

Factor effect is specific to each transition and baseline hazard functions

are chosen to be generalized Weibull distributed. The application shows

the parsimony obtained for the analysis of the dynamics of the HIV.

All these results are in agreement with the medical literature, except

for the effects of hepatitis. It would be relevant to propose a distinct model

for CV and CD4, in order to have a more precise analysis of this covariate.

However, the model has a few limits. First, the probability that an

interval is selected is proportional to the length of this interval (length-

biased sampling). As it is discussed in Section 3, a patient HIV-infected is
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rather stable and carries out frequent biological measurements. For the

majority of the visits, the results of biological measurements show that

the patient remains in the same state. Therefore, this problem should be

limited on our application. Secondly, model checking techniques need to

be developed to investigate the fit of the model. This is a very important

issue for these types of highly parametric models.

Appendix: Likelihood of the Semi-Markov Model

The rth derivated from the Laplace transform for Gamma distribution
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However, we have
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In order to conclude the parameterization, the hazard function of waiting
times is explicitly introduced. This formulation is given by (9). By
integrating this function, the cumulative hazard, ( ),,0 xijΛ  is equal to
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