ON SOME HOMOMORPHISMS ASSOCIATED WITH FINITE BINARY RELATIONS

WI-GON PARK

(Received August 10, 2006)

Submitted by K. K. Azad

Abstract

In the previous paper, we introduced a "pre-ring " and "pre-module" and also defined a pre-ring homomorphism and pre-module homomorphism. A power set with a binary operation " U " forms a pre-module over some two elements pre-ring together with an appropriate scalar multiplication. In this paper, considering non-empty finite sets A and B, we present a fundamental one-to-one correspondence between the homomorphisms from the pre-module $P(A)$ to the pre-module $P(B)$ and the relations from A to B. We also present some related consequences.

1. Preliminaries and Conventions

The study of this paper is based on the results of our previous study [1, 2]. We use the terminology and notation introduced in the previous study.

A binary relation (simply a relation) is a set of ordered pairs. A function f is the relation f such that if $(x, y) \in f$ and $(x, z) \in f$, this implies $y=z$. If f is a function, then the unique y such that $(x, y) \in f$ is the value of f at x.
$\overline{2000}$ Mathematics Subject Classification: 03E20, 15A04.
Keywords and phrases: finite relation, pre-module homomorphism, power set, two elements pre-ring.

We adopt the following conventions. Let R be a relation (including functions). Then the notation $x R y$ is equivalent to $(x, y) \in R$. If f is a function, then the notation $(x) f=y$ is used for the value y of f at x. Let R and S be relations. Then the composition of R and S, denoted by $R \circ S$, is the relation such that (x, y) belongs to $R \circ S$ if $x R z, z S y$, and $z \in$ $(\operatorname{ran}(R) \cap \operatorname{dom}(S))$. Let f and g be functions such that $\operatorname{ran}(f) \subseteq \operatorname{dom}(g)$. Then the composition of f and g, denoted by $f \circ g$, is the function with $\operatorname{dom}(f \circ g)=\operatorname{dom}(f)$ such that $(x)(f \circ g)=((x) f) g$ for every $x \in \operatorname{dom}(f)$.

Let A and B be sets. Then we adopt the following conventions. A relation R from A to B is a subset of $A \times B$. The empty relation \varnothing is denoted by the symbol O. If R is a relation from A to B, then the inverse of R, denoted by R^{-1}, is the relation from B to A such that $R^{-1}=$ $\{(y, x) \mid(x, y) \in R\}$. A function f from A to B is the relation f from A to B such that $\operatorname{dom}(f)=A$ and if $(x, y) \in f$ and $(x, z) \in f$, then $y=z$. A relation on A is a relation from A to A. A function on A is a function from A to A.

To reduce the parentheses in expressions with a sequence of symbols, we adopt the usual conventions. In this case the symbols " $\in, \notin,=, \neq, \subseteq$ " are dominant. However, the two symbols " \rightarrow, ↔" are more dominant symbols.
1.1 Some notation for finite relations. We briefly review some notation and related properties of finite relations [2].

Let A and B be non-empty finite sets and let $R \subseteq A \times B$, with $a \in A$ and $b \in B$. The symbols $a R$ and $R b$ are defined as follows:

- $a R$ is the set such that " $y \in a R$ if $(a, y) \in R$ for some $y \in B$ " or " $a R=\varnothing$ if $(a, y) \notin R$ for every $y \in B$ ".
- $R b$ is the set such that " $x \in R b$ if $(x, b) \in R$ for some $x \in A$ " or $" R b=\varnothing$ if $(x, b) \notin R$ for every $x \in A "$.

In relation to the above notation, the following properties hold.
Let A and B be non-empty finite sets and let f be a function from A to
B. Then $a f$ is the singleton $\{(a) f\}$ for every $a \in A$. If $b \in B$ and $b \notin \operatorname{ran}(f)$, then $f b$ is an empty set \varnothing.

Let A and B be non-empty finite sets and let $R \subseteq A \times B$, with $a \in A$ and $b \in B$. Then

1. $y \in a R$ if and only if $a R y$, and $x \in R b$ if and only if $x R b$.
2. $a R=R^{-1} a$ and $R b=b R^{-1}$.

Let A and B be non-empty finite sets and let $R, S \subseteq A \times B$, with $a \in A$ and $b \in B$. Then

1. $R=S$ if and only if " $a R=a S$ for every $a \in A$ " or " $R b=S b$ for every $b \in B$ ".
2. $a(R \cup S)=a R \bigcup a S$ and $(R \cup S) b=R b \bigcup S b$.

Let A, B and C be non-empty finite sets, and let $R \subseteq A \times B$ and $S \subseteq B \times C$. Then $(a, c) \in R \circ S$ if and only if $a R \cap S c \neq \varnothing$ for every $a \in A$ and $c \in C$.

Let A, B, C and D be sets. Let $R \subseteq A \times B, S \subseteq B \times C$, and $T \subseteq C \times D$. The following properties are well known. If $R=O$ or $S=O$, then $R \circ S=O .(R \circ S)^{-1}=S^{-1} \circ R^{-1}$ and $(R \circ S) \circ T=R \circ(S \circ T)$.

We consider an indexed family of sets with a finite index set for the later study. Let $\left\{A_{i} \mid i \in I\right\}$ be an indexed family of sets with a finite index set I. Let $I=\{1,2, \ldots, n\}$, where n is a positive integer. Then $\bigcup\left\{A_{i} \mid i \in I\right\}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$. If $I=\varnothing$, then $\bigcup\left\{A_{i} \mid i \in I\right\}=\varnothing$.

Proposition 1.1. Let $\left\{A_{i} \mid i \in I\right\}$ and $\left\{A_{j} \mid j \in J\right\}$ be two indexed families of sets such that if $i=j$, then $A_{i}=A_{j}$, where I and J are finite index sets. Then $\bigcup\left\{A_{k} \mid k \in I \cup J\right\}=\bigcup\left\{A_{i} \mid i \in I\right\} \bigcup \bigcup\left\{A_{j} \mid j \in J\right\}$.

Proof. Clearly, by the hypothesis, $\left\{A_{k} \mid k \in I \cup J\right\}$ is an indexed family of sets with the finite index set $I \cup J$. Note that if $i=j$, then $A_{i}=A_{j}=A_{i} \cup A_{j}$. Then by considering the associativity and
commutativity of U, together with the fact above, we can prove the equality.

Lemma 1.2. Let $\left\{A_{i} \mid i \in I\right\}$ be an indexed family of sets with a finite index set I. Define $N(x)=\left\{i \mid x \in A_{i}\right.$ and $\left.i \in I\right\}$. Then $x \in \bigcup\left\{A_{i} \mid i \in I\right\}$ if and only if $N(x) \neq \varnothing$.

Proof. Let $x \in \bigcup\left\{A_{i} \mid i \in I\right\}$. Then there is some $k \in I$ such that $x \in A_{k}$. By the definition of $N(x)$, we have $k \in N(x)$ and hence $N(x) \neq \varnothing$. Conversely, let $N(x) \neq \varnothing$. Then by the definition of $N(x)$, there is some $i \in I$ such that $x \in A_{i}$. This implies that $x \in \bigcup\left\{A_{i} \mid i \in I\right\}$. Thus, we have $x \in \bigcup\left\{A_{i} \mid i \in I\right\} \leftrightarrow N(x) \neq \varnothing$.

Proposition 1.3. Let A, B and C be non-empty finite sets. Let $R \subseteq$ $A \times B$ and $S \subseteq B \times C$, with $a \in A$ and $c \in C$. Let $\{b S \mid b \in a R\}$ be an indexed family of sets with an index set aR. Let $\{R b \mid b \in S c\}$ be an indexed family of sets with an index set Sc. Then $a(R \circ S)=$ $\bigcup\{b S \mid b \in a R\}$ and $(R \circ S) c=\bigcup\{R b \mid b \in S c\}$.

Proof. To prove $a(R \circ S)=\bigcup\{b S \mid b \in a R\}$, let $C_{a}=\bigcup\{b S \mid b \in a R\}$. We show that $a(R \circ S)=C_{a}$.

Let $N(x)=\{b \mid x \in b S$ and $b \in a R\}$. This is equivalent to $N(x)=$ $\{b \mid b \in S x$ and $b \in a R\}$. This means $N(x)=a R \cap S x$. By Lemma 1.2, we have $x \in C_{a} \leftrightarrow a R \cap S x \neq \varnothing \leftrightarrow a(R \circ S) x \leftrightarrow x \in a(R \circ S)$. This implies $a(R \circ S)=C_{a}$.

On the other hand, $(R \circ S) c=c(R \circ S)^{-1}=c\left(S^{-1} \circ R^{-1}\right)$. From the result above, it follows that $c\left(S^{-1} \circ R^{-1}\right)=\bigcup\left\{b R^{-1} \mid b \in c S^{-1}\right\}=$ $\bigcup\{R b \mid b \in S c\}$. Thus, we have $(R \circ S) c=\bigcup\{R b \mid b \in S c\}$.
1.2 A pre-module of a power set. The following is a brief review for a pre-ring and pre-module, and related terms [1].

Let A be a non-empty set. The addition + and the multiplication • are binary operations on A. The ordered triplet $\langle A,+, \cdot\rangle$ is a pre-ring if it satisfies the following conditions.

PR 1. $\langle A,+\rangle$ is a commutative monoid.
PR 2. $0 \cdot x=x \cdot 0=0$ for every $x \in A$, where 0 is unity for + .
PR 3. Multiplication • is associative, and has unity.
PR 4. For each $x, y, z \in A$:

1. $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
2. $(y+z) \cdot x=(y \cdot x)+(z \cdot x)$.

Let $\langle A,+, \cdot\rangle$ be a pre-ring (or simply a pre-ring A), and let U be the set of units of the pre-ring A. Then $\langle U, \cdot\rangle$ is the unit group of the pre-ring A.

Let $\langle A,+, \cdot\rangle$ and $\langle B,+, \cdot\rangle$ be pre-rings. If f is a monoid homomorphism from $\langle A,+\rangle$ to $\langle B,+\rangle$, and also a monoid homomorphism from $\langle A, \cdot\rangle$ to $\langle B, \cdot\rangle$, then the function f is a pre-ring homomorphism from the pre-ring A to pre-ring B. And f is a pre-ring isomorphism if f is a pre-ring homomorphism and bijective.

A pre-ring is commutative if its multiplication is commutative. Let $\langle Q,+, \cdot\rangle$ be a commutative pre-ring with additive unity 0 and multiplicative unity 1 . Let $\langle M,+\rangle$ be a commutative monoid with unity 0_{M}. Let $\mu: Q \times M \rightarrow M$ be a scalar multiplication, with $(r, x) \mu$ denoted by $r x$ for every $r \in Q$ and $x \in M$. Then $\langle M,+\rangle$ (or simply M) is a pre-module over Q, if it satisfies the following conditions for every r, $s \in Q$ and $x, y \in M$, where $r \cdot s$ is denoted simply by $r s$.

PM 1. $r(x+y)=r x+r y$.
PM 2. $(r+s) x=r x+s x$.
PM 3. $(r s) x=r(s x)$.
PM 4. $1 x=x$.
PM 5. $0 x=0_{M}$.

The element 0_{M} is the zero element of the pre-module M. In relation to a scalar multiplication, the following holds generally: $r 0_{M}=0_{M}$ for every $r \in Q$.

Let M and N be pre-modules over the same commutative pre-ring Q. Then the function $f: M \rightarrow N$ is a pre-module homomorphism (or simply a homomorphism) from M to N if it satisfies the following conditions. For each $x, y \in M$ and $r \in Q$,

1. $(x+y) f=(x) f+(y) f$.
2. $(r x) f=r(x) f$.

If f is a homomorphism from M to N, then $\left(0_{M}\right) f=0_{N}$, where 0_{M} and 0_{N} are the zero elements of M and N, respectively.

A pre-module isomorphism (or simply an isomorphism) from M to N means that f is a homomorphism and bijective. If f is an isomorphism from M to N, then f^{-1} is an isomorphism from N to M.

By K_{2} we mean two elements pre-ring with additive unity 0 and multiplicative unity 1 having the following operations:

1. $0+0=0,0+1=1,1+0=1,1+1=1$;
2. $0 \cdot 0=0,0 \cdot 1=0,1 \cdot 0=0,1 \cdot 1=1$.

Let A be a non-empty set. Then $\langle P(A), U\rangle$ is a commutative monoid with unity \varnothing, where $P(A)$ is the power set of A. The following gives a pre-module of a power set.

Proposition 1.4. Let A be a non-empty set. Define a scalar multiplication by K_{2} on $P(A)$ such that $0 x=\varnothing$ and $1 x=x$ for every $x \in P(A)$. Then $\langle P(A), \cup\rangle$ forms a pre-module over K_{2}.

Proof. Let $K_{2}=\langle\{0,1\},+, \cdot\rangle$. We show that $P(A)$ satisfies all conditions PM 1-PM 5 for a pre-module under the given scalar multiplication. For every $x, y \in P(A)$:

PM 1. $0(x \cup y)=\varnothing=\varnothing \cup \varnothing=0 x \cup 0 y, 1(x \cup y)=x \cup y=1 x \cup 1 y$.

PM 2. $(1+1) x=1 x=x=x \cup x=1 x \cup 1 x, \quad(1+0) x=1 x=x=x \cup$ $\varnothing=1 x \cup 0 x,(0+1) x=1 x=x=\varnothing \cup x=0 x \cup 1 x,(0+0) x=0 x=\varnothing=$ $\varnothing \cup \varnothing=0 x \cup 0 x$.

PM 3. $(1 \cdot 1) x=1 x=1(1 x), \quad(1 \cdot 0) x=0 x=1(0 x), \quad(0 \cdot 1) x=0 x=0(1 x)$, $(0 \cdot 0) x=0 x=\varnothing=0 \varnothing=0(0 x)$.

PM 4. $1 x=x$.
PM 5. $0 x=\varnothing$.
Thus, $\langle P(A), \cup\rangle$ is a pre-module over K_{2}.
For a simplicity of a notation, the pre-module $\langle P(A), U\rangle$ over K_{2} is denoted by $P(A, \cup)$.

2. Pre-module Homomorphisms Related to Finite Relations

Suppose that A and B are non-empty finite sets, and $X=P(A, \cup)$ and $Y=P(B, U)$. In this section, we are mainly concerned with a homomorphism between X and Y, and a relation between A and B. The symbol \hat{a} denotes the singleton $\hat{a}=\{a\}$ for every $a \in A$.

Proposition 2.1. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Let f be a function from X to Y. Then f is a homomorphism from X to Y if and only if $(x) f=\bigcup\{(\hat{a}) f \mid a \in x\}$ for every $x \in X$.

Proof. Let f be a homomorphism from X to Y. Then by the definition of a homomorphism, clearly, we have $(x) f=\bigcup\{(\hat{a}) f \mid a \in x\}$ for every $x \in X$.

Conversely, let f be a function from X to Y such that $(x) f=$ $\bigcup\{(\hat{a}) f \mid a \in x\}$ for every $x \in X$.

Let $x_{1}, x_{2} \in X$. Then by the hypothesis and Proposition 1.1, we have

$$
\left(x_{1} \cup x_{2}\right) f=\bigcup\left\{(\hat{a}) f \mid a \in x_{1} \cup x_{2}\right\}
$$

$$
\begin{aligned}
& =\bigcup\left\{(\hat{a}) f \mid a \in x_{1}\right\} \cup \bigcup\left\{(\hat{a}) f \mid a \in x_{2}\right\} \\
& =\left(x_{1}\right) f \cup\left(x_{2}\right) f .
\end{aligned}
$$

Hence $\left(x_{1} \cup x_{2}\right) f=\left(x_{1}\right) f \cup\left(x_{2}\right) f$.
Let $x \in X$ and $r \in K_{2}$. We show that $(1 x) f=1(x) f$ and $(0 x) f=$ $0(x) f$. By the scalar multiplications on X and Y, we have $(1 x) f=1(x) f$. On the other hand, by the hypothesis, $(\varnothing) f=\varnothing$. Then by the scalar multiplications on X and Y, the equality $(\varnothing) f=\varnothing$ implies that $(0 x) f=0(x) f$. Hence $(r x) f=r(x) f$.

The two facts above imply that f is a homomorphism from X to Y.
Thus the proof is completed.
Lemma 2.2. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Let R be a relation from A to B. If f_{R} is a function from X to Y such that $(x) f_{R}=\bigcup\{a R \mid a \in x\}$ for every $x \in X$, then f_{R} is a homomorphism from X to Y.

Proof. Clearly, $\bigcup\{a R \mid a \in x\}$ is a subset of B for every $x \in X$. This implies that f_{R} is a well defined function from X to Y. By the hypothesis, we have $(\hat{a}) f_{R}=a R$ for every $a \in A$. Then $(x) f_{R}=\bigcup\left\{(\hat{a}) f_{R} \mid a \in x\right\}$ for every $x \in X$. By Proposition 2.1, the function f_{R} is a homomorphism from X to Y.

By the notation $H(X, Y)$, we mean the set of all homomorphisms from a pre-module X to pre-module Y.

Proposition 2.3. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Then there is a bijective function $\theta: H(X, Y) \rightarrow P(A \times B)$ such that $(f) \theta=R$ for every $f \in H(X, Y)$, satisfying the condition $(\hat{a}) f=a R$ for every $a \in A$, where $R \in P(A \times B)$.

Proof. Let f be an arbitrary element of $H(X, Y)$. Define R to be a relation from A to B such that $a R=(\hat{\alpha}) f$ for every $a \in A$. Then the
relation R is unique. This fact implies that there exists a function $\theta: H(X, Y) \rightarrow P(A \times B)$ such that $(f) \theta=R$ for every $f \in H(X, Y)$, satisfying the condition $(\hat{a}) f=a R$ for every $a \in A$, where $R \in P(A \times B)$.

Now we show that the function θ is bijective.
To prove that θ is surjective, let R be an element of $P(A \times B)$. Then, by Lemma 2.2, there is a homomorphism $f \in H(X, Y)$ such that $(x) f=$ $\bigcup\{a R \mid a \in x\}$ for every $x \in X$, which satisfies the condition $(\hat{a}) f=a R$ for every $a \in A$. This means that if a relation $R \in P(A \times B)$ is given, then there is some homomorphism $f \in H(X, Y)$ such that $(f) \theta=R$ satisfying the condition $(\hat{a}) f=a R$ for every $a \in A$. This implies that θ is surjective.

Let $f_{1}, f_{2} \in H(X, Y)$, and let $\left(f_{1}\right) \theta=R_{1}$ and $\left(f_{2}\right) \theta=R_{2}$, where R_{1}, $R_{2} \in P(A \times B)$. To prove the injectivity of θ, we show that if $f_{1} \neq f_{2}$, then $R_{1} \neq R_{2}$. Let $f_{1} \neq f_{2}$. Then there is some element $x^{\prime} \in X$ such that $\left(x^{\prime}\right) f_{1} \neq\left(x^{\prime}\right) f_{2}$. By Proposition 2.1, $\bigcup\left\{(\hat{a}) f_{1} \mid a \in x^{\prime}\right\} \neq \bigcup\left\{(\hat{a}) f_{2} \mid a \in x^{\prime}\right\}$. By the condition for θ, we have $\bigcup\left\{a R_{1} \mid a \in x^{\prime}\right\} \neq \bigcup\left\{a R_{2} \mid a \in x^{\prime}\right\}$. This means that there is some element $a^{\prime} \in x^{\prime}$ such that $a^{\prime} R_{1} \neq a^{\prime} R_{2}$ and hence $R_{1} \neq R_{2}$. Hence θ is injective.

Thus the function θ is bijective.
In Proposition 2.3, the function θ gives one to one correspondence between the pre-module homomorphisms from X to Y and the relations from A to B. The bijective function θ is called the θ-function for $H(X, Y)$. If $(f) \theta=R$, then R is called the relation corresponding to the pre-module homomorphism f, and f is called the pre-module homomorphism corresponding to the relation R.

Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Let f and g be homomorphisms from X to Y. By $f * g$ we mean the homomorphism from X to Y such that $(x)(f * g)=(x) f \cup(x) g$ for every $x \in X$.

Proposition 2.4. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Let f and g be homomorphisms from X to Y, and let R and S be the relations corresponding to f and g, respectively. Then $R \cup S$ is the relation corresponding to the homomorphism $f * g$.

Proof. Let θ be the θ-function for $H(X, Y)$. We show that $(f * g) \theta$ $=R \cup S$.

Let $h=f * g$ and $(h) \theta=T$. By the definition of $*$, we have $(\hat{a}) h=$ $(\hat{a}) f \cup(\hat{a}) g$ for every $a \in A$. Note that $(f) \theta=R$ and $(g) \theta=S$. Then by the properties of a θ-function, we have $a T=a R \cup a S$ for every $a \in A$. Then $a T=a(R \cup S)$ for every $a \in A$ and hence $T=R \cup S$. Thus, we have $(f * g) \theta=R \cup S$.

Let X and Y be pre-modules. The zero homomorphism H_{0} is the homomorphism such that $(x) H_{0}=0_{N}$ for every $x \in X$, where 0_{N} is the zero element of Y.

Corollary 2.5. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Then the empty relation O is the relation corresponding to the zero homomorphism H_{0} from X to Y.

Proof. Let θ be the θ-function for $H(X, Y)$. We show that $\left(H_{0}\right) \theta=O$.

Let $\left(H_{0}\right) \theta=R$. Then by the properties of a θ-function, $(\hat{a}) H_{0}=a R$ for every $a \in A$. By the properties of H_{0}, we have $a R=\varnothing$ for every $a \in A$ and hence $R=O$. Thus $\left(H_{0}\right) \theta=O$.

Corollary 2.6. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Let θ be the θ-function for $H(X, Y)$. Then θ is a monoid isomorphism from $\langle H(X, Y), *\rangle$ to $\langle P(A \times B), \cup\rangle$.

Proof. $\langle H(X, Y), *\rangle$ and $\langle P(A \times B), U\rangle$ are commutative monoids with unities H_{0} and O, respectively.

Let $f, g \in H(X, Y)$, and let $(f) \theta=R$ and $(g) \theta=S$. Then, by

Proposition 2.4, we have $(f * g) \theta=R \bigcup S=(f) \theta \bigcup(g) \theta$. By Corollary 2.5, $\left(H_{0}\right) \theta=O$. A θ-function is bijective. Hence θ is a monoid isomorphism from $\langle H(X, Y), *\rangle$ to $\langle P(A \times B), \cup\rangle$.

Corollary 2.7. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Let $\langle P(A), \subseteq\rangle$ and $\langle P(B), \subseteq\rangle$ be partially ordered sets by set inclusion \subseteq. If f is a homomorphism from X and Y, then f is an order-preserving function from $\langle P(A), \subseteq\rangle$ to $\langle P(B), \subseteq\rangle$.

Proof. Let $x_{1}, x_{2} \in P(A)$ and $x_{1} \subseteq x_{2}$. Then there is some $x_{d} \in$ $P(A)$ such that $x_{2}=x_{1} \cup x_{d}$. Since f is a homomorphism, $\left(x_{2}\right) f=$ $\left(x_{1} \cup x_{d}\right) f=\left(x_{1}\right) f \cup\left(x_{d}\right) f$. This implies that $\left(x_{1}\right) f \subseteq\left(x_{2}\right) f$. Hence f is an order-preserving function from $\langle P(A), \subseteq\rangle$ to $\langle P(B), \subseteq\rangle$.

Suppose that X, Y and Z are pre-modules. If f and g are homomorphisms from X to Y and Y to Z, respectively, then $f \circ g$ is a homomorphism from X to Z.

Proposition 2.8. Let A, B and C be non-empty finite sets, and let $X=P(A, \cup), \quad Y=P(B, \cup) \quad$ and $\quad Z=P(C, \cup)$. Let f and g be homomorphisms from X to Y and Y to Z, respectively. Let R and S be the relations corresponding to f and g, respectively. Then $R \circ S$ is the relation corresponding to the homomorphism $f \circ g$ from X to Z.

Proof. Let θ_{1}, θ_{2} and θ be the θ-functions for $H(X, Y), H(Y, Z)$ and $H(X, Z)$, respectively. We show that $(f \circ g) \theta=R \circ S$.

By the hypothesis, $(f) \theta_{1}=R$ and $(g) \theta_{2}=S$. Then by the properties of a θ-function, $(\hat{a}) f=a R$ for every $a \in A$ and $(\hat{b}) g=b S$ for every $b \in B$. On the other hand, let $h=f \circ g$ and $(h) \theta=T$. Then by the properties of a θ-function, $(\hat{a}) h=a T$ for every $a \in A$.

From Proposition 2.1, it follows that $(\hat{a}) h=(\hat{a})(f \circ g)=((\hat{a}) f) g=$ $(a R) g=\bigcup\{(\hat{b}) g \mid b \in a R\}=\bigcup\{b S \mid b \in a R\}$ for every $a \in A$. Then, by Proposition 1.3, we have $(\hat{a}) h=a(R \circ S)$ for every $a \in A$. This implies
that $a T=a(R \circ S)$ for every $a \in A$ and hence $T=R \circ S$. Thus we have $(f \circ g) \theta=R \circ S$.

Let A be a non-empty finite set and let $X=P(A, U)$. Then i_{A} denotes the identity relation on A and i_{X} is the identity function on X.

Corollary 2.9. Let A be a non-empty finite set and let $X=P(A, \cup)$. Then identity relation i_{A} on A is the relation corresponding to the isomorphism i_{X} on X.

Proof. Let θ be the θ-function for $H(X, X)$. The identity function i_{X} is an isomorphisms on X. We show that $\left(i_{X}\right) \theta=i_{A}$.

Let $\left(i_{X}\right) \theta=R$, where $R \in P(A \times A)$. Then by the properties of a θ-function, $(\hat{\alpha}) i_{X}=\alpha R$ for every $a \in A$. This implies that $\{a\}=\alpha R$ for every $a \in A$ and hence $R=i_{A}$. Thus we have $\left(i_{X}\right) \theta=i_{A}$.

Lemma 2.10. Let A, B and C be non-empty finite sets, and let $X=P(A, \cup), Y=P(B, \cup)$ and $Z=P(C, \cup)$. Let θ_{1}, θ_{2} and θ be the θ-functions for $H(X, Y), H(Y, Z)$ and $H(X, Z)$, respectively. Let $f \in H(X, Y)$ and $(f) \theta_{1}=R$, and let $g \in H(Y, Z)$ and $(g) \theta_{2}=S$, where $R \in P(A \times B)$ and $S \in P(B \times C)$. Then $(f \circ g) \theta=(f) \theta_{1} \circ(g) \theta_{2}$ and $(R \circ S) \theta^{-1}=(R) \theta_{1}^{-1} \circ(S) \theta_{2}^{-1}$.

Proof. By Proposition 2.8, $(f \circ g) \theta=R \circ S$. Then $(f \circ g) \theta=(f) \theta_{1}$ $\circ(g) \theta_{2}$ because by the hypothesis, $(f) \theta_{1}=R$ and $(g) \theta_{2}=S$. On the other hand, since a θ-function is bijective, $f=(R) \theta_{1}^{-1}, g=(S) \theta_{2}^{-1}$ and $f \circ g=(R \circ S) \theta^{-1}$. This implies that $(R \circ S) \theta^{-1}=(R) \theta_{1}^{-1} \circ(S) \theta_{2}^{-1}$.

Lemma 2.11. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Let $J \circ K=i_{A}$ and $K \circ J=i_{B}$, where $J \in P(A \times B)$ and $K \in P(B \times A)$. Let j and k be the homomorphisms corresponding to J and K, respectively. Then j is an isomorphism from X to Y and $k=j^{-1}$.

Proof. Let θ_{1} and θ_{2} be the θ-functions for $H(X, Y)$ and $H(Y, X)$, respectively. Let θ_{x} be the θ-function for $H(X, X)$.

From the condition $J \circ K=i_{A}$ and θ_{x}, it follows that $(J \circ K) \theta_{x}^{-1}$ $=\left(i_{A}\right) \theta_{x}^{-1}$. Then, by Corollary 2.9 and Lemma 2.10, we have $(J) \theta_{1}^{-1}$ 。 $(K) \theta_{2}^{-1}=i_{X}$. This implies that $j \circ k=i_{X}$ because by the hypothesis, $j=(J) \theta_{1}^{-1}$ and $k=(K) \theta_{2}^{-1}$. Similarly, by the condition $K \circ J=i_{B}$, we have $k \circ j=i_{Y}$. Then from the properties of a function [3], it follows that j is a bijective function from X to Y and $k=j^{-1}$.

Thus j is an isomorphism from X to Y and $k=j^{-1}$.
Lemma 2.12. Let A and B be non-empty finite sets, and let $X=P(A, \cup)$ and $Y=P(B, \cup)$. Let t be an isomorphism from X to Y and let T be the relation corresponding to t. Then T is a bijective function from A to B and T^{-1} is the relation corresponding to the isomorphism t^{-1}.

Proof. Let θ_{1} and θ_{2} be the θ-functions for $H(X, Y)$ and $H(Y, X)$, respectively. Let θ_{x} and θ_{y} be the θ-functions for $H(X, X)$ and $H(Y, Y)$, respectively.

First we show that the relation T is a function from A to B.
By the hypothesis, $(t) \theta_{1}=T$. Then by the properties of a θ-function, $(\hat{a}) t=a T$ for every $a \in A$. Clearly, $(\varnothing) t=\varnothing$. Then we have $(\hat{a}) t \neq \varnothing$ for every $a \in A$ because t is bijective. This implies that $a T \neq \varnothing$ for every $a \in A$.

To prove that T is a function from A to B, we show that $a T$ is a singleton for every $a \in A$.

Assume that $a^{\prime} T$ is not a singleton for some $a^{\prime} \in A$. Then there is some $y \in Y$ such that $y \subseteq a^{\prime} T$ and $|y|=1$. On the other hand, t^{-1} is an isomorphism from Y to X. Then by Corollary 2.7, we have $(y) t^{-1} \subseteq$ $\left(a^{\prime} T\right) t^{-1}$. This implies that $(y) t^{-1} \subseteq\left\{a^{\prime}\right\}$ because $\left(\left\{a^{\prime}\right\}\right) t=a^{\prime} T$. Then $(y) t^{-1}=\varnothing$ or $(y) t^{-1}=\left\{a^{\prime}\right\}$.

If $(y) t^{-1}=\varnothing$, then $y=\varnothing$. This is a contradiction because by the assumption $|y|=1$. If $(y) t^{-1}=\left\{a^{\prime}\right\}$, then $y=\left(\left\{a^{\prime}\right\}\right) t=a^{\prime} T$. This is also a contradiction because, by the assumption, $a^{\prime} T$ is not a singleton and $|y|=1$. Thus, we can say that $a T$ is a singleton for every $a \in A$ and hence T is a function from A to B.

Next we show that the function T is bijective. Let K be the relation corresponding to the isomorphism t^{-1} from Y to X. Then by the result above, we can say that K is a function from B to A.

By the properties of a function, $t \circ t^{-1}=i_{X}$ and $t^{-1} \circ t=i_{Y}$. By considering a θ-function, $\left(t \circ t^{-1}\right) \theta_{x}=\left(i_{X}\right) \theta_{x}$ and $\left(t^{-1} \circ t\right) \theta_{y}=\left(i_{Y}\right) \theta_{y}$. By Corollary 2.9 and Lemma 2.10, we have $(t) \theta_{1} \circ\left(t^{-1}\right) \theta_{2}=i_{A}$ and $\left(t^{-1}\right) \theta_{2} \circ(t) \theta_{1}=i_{B}$. Since $(t) \theta_{1}=T$ and $\left(t^{-1}\right) \theta_{2}=K$, we have $T \circ K$ $=i_{A}$ and $K \circ T=i_{B}$. Then by the properties of a function [3], T is a bijective function from A to B and $T^{-1}=K$.

Thus the proof is completed.
Proposition 2.13. Let A and B be non-empty finite sets. Let R be a relation from A to B and let S be a relation from B to A. Then " $R \circ S=i_{A}$ and $S \circ R=i_{B}$ " if and only if " R is a bijective function from A to B and $S=R^{-1}$ ".

Proof. Let p be the statement " $R \circ S=i_{A}$ and $S \circ R=i_{B}$ ". Let q be the statement " R is a bijective function from A to B and $S=R^{-1}$ ". Then, by considering Lemmas 2.11 and 2.12 , we have $p \rightarrow q$. On the other hand, by the properties of a function, $q \rightarrow p$. Thus we have $p \leftrightarrow q$.

In the following description, the notation $H(X, X)$ is abbreviated to $H(X)$.

Proposition 2.14. Let A be a non-empty finite set and let $X=P(A, \cup)$. Let R_{A} be the set of all relations on A and let S_{A} be the set of all bijections on A. Let θ be the θ-function for $H(X)$. Then

1. θ is a pre-ring isomorphism from $\langle H(X), *, \circ\rangle$ to $\left\langle R_{A}, \cup, \circ\right\rangle$.
2. The symmetric group $\left\langle S_{A}, \circ\right\rangle$ is the unit group of the pre-ring $\left\langle R_{A}, \cup, \circ\right\rangle$.

Proof. (1) The ordered triplet $\langle H(X), *, \circ\rangle$ is a pre-ring with additive unity H_{0} and multiplicative unity i_{X} and $\left\langle R_{A}, \cup, \circ\right\rangle$ is also a pre-ring with additive unity O and multiplicative unity i_{A} [1], where H_{0} is the zero homomorphism on X and O is empty relation.

Let $f, g \in\langle H(X), *, \circ\rangle$. Then, by Proposition 2.4 and Corollary 2.5, we have $(f * g) \theta=(f) \theta \cup(g) \theta$ and $\left(H_{0}\right) \theta=O$. By Corollary 2.9 and Lemma 2.10, we have $(f \circ g) \theta=(f) \theta \circ(g) \theta$ and $\left(i_{X}\right) \theta=i_{A}$. And θ is a bijective function from $H(X)$ to R_{A}.

Thus θ is a pre-ring isomorphism from $\langle H(X), *, \circ\rangle$ to $\left\langle R_{A}, \cup, \circ\right\rangle$.
(2) Let $\langle U, \circ\rangle$ be the unit group of the pre-ring $\left\langle R_{A}, \cup, \circ\right\rangle$. To prove $\langle U, \circ\rangle=\left\langle S_{A}, \circ\right\rangle$, we show that $U=S_{A}$.

Let $R \in U$ and let \widetilde{R} be the multiplicative inverse of R. Then by the definition of U, we have $R \circ \widetilde{R}=\widetilde{R} \circ R=i_{A}$. By Proposition 2.13, the relation R is a bijection on A and hence $U \subseteq S_{A}$.

Conversely, let $f \in S_{A}$. Then $f^{-1} \in S_{A}$ because f is a bijective function on A. By the properties of a function, $f \circ f^{-1}=f^{-1} \circ f=i_{A}$. By the definition of $U, f \in U$ and hence $S_{A} \subseteq U$.

Thus we have $U=S_{A}$.
Remarks. Suppose that A and B are non-empty finite sets with $|A|=m$ and $|B|=n$, where m and n are positive integers. Let $X=$ $P(A, \cup)$ and $Y=P(B, \cup)$, and let $\hat{A}=\{\{a\} \mid a \in A\}$ and $\hat{B}=\{\{b\} \mid b \in B\}$ be ordered sets.

The sets \hat{A} and \hat{B} may be considered as ordered "bases" for the premodules X and Y, respectively. Then a homomorphism f from X to Y can
be represented by some $m \times n(0,1)$-matrix over K_{2}. This suggests that the relation R from A to B corresponding to the homomorphism f can be identified with the same $m \times n(0,1)$-matrix over K_{2}.

On the other hand, in view of the converse, it can be said that any finite relation or $(0,1)$-matrix induces a homomorphism between two appropriate pre-modules, such as $P(A, \cup)$ and $P(B, \cup)$.

References

[1] W.-G. Park, A note on the definitions of a ring with unity and a unitary module, Far East J. Math. Sci. (FJMS) 23(1) (2006), 1-16.
[2] W.-G. Park, A note on binary relations between non-empty finite sets, Preprint.
[3] C. C. Pinter, Set Theory, Addison-Wesley, Reading, Mass., 1971.

Department of Information and Communication Engineering
Tongmyong University
Busan 608-711, South Korea
e-mail:wgpark@tu.ac.kr

