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Abstract

In the previous paper, we introduced a “pre-ring ” and “pre-module” and
also defined a pre-ring homomorphism and pre-module homomorphism.

A power set with a binary operation “ U ” forms a pre-module over some

two elements pre-ring together with an appropriate scalar
multiplication. In this paper, considering non-empty finite sets A and B,
we present a fundamental one-to-one correspondence between the

homomorphisms from the pre-module P(A) to the pre-module P(B)

and the relations from A to B. We also present some related
consequences.

1. Preliminaries and Conventions

The study of this paper is based on the results of our previous study
[1, 2]. We use the terminology and notation introduced in the previous
study.

A Dbinary relation (simply a relation) is a set of ordered pairs. A
function f is the relation f such that if (x, y) € f and (x, z) € f, this
implies y = z. If fis a function, then the unique y such that (x, y) € f is

the value of f at x.
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We adopt the following conventions. Let R be a relation (including
functions). Then the notation xRy is equivalent to (x, y) e R. If fis a

function, then the notation (x)f = y is used for the value y of f at x. Let
R and S be relations. Then the composition of R and S, denoted by R o S,
is the relation such that (x, y) belongs to Ro S if xRz, zSy, and z €
(ran(R) N dom(S)). Let f and g be functions such that ran(f) < dom(g).
Then the composition of f and g, denoted by f o g, is the function with
dom(f o g) = dom(f) such that (x)(f o g) = ((x)f)g for every x € dom(f).

Let A and B be sets. Then we adopt the following conventions. A
relation R from A to B is a subset of A x B. The empty relation & is
denoted by the symbol O. If R is a relation from A to B, then the inverse

of R, denoted by R_l, is the relation from B to A such that R™! =
{(y, x)|(x, ¥) € R}. A function f from A to B is the relation f from A to B
such that dom(f) = A and if (x, y) e f and (x,z) e f, then y =2z A
relation on A is a relation from A to A. A function on A is a function from

Ato A.

To reduce the parentheses in expressions with a sequence of symbols,

’

we adopt the usual conventions. In this case the symbols “g, ¢, =, # <’
are dominant. However, the two symbols “—, <’ are more dominant
symbols.

1.1 Some notation for finite relations. We briefly review some
notation and related properties of finite relations [2].

Let A and B be non-empty finite sets and let R ¢ A x B, with a € A
and b € B. The symbols aR and Rb are defined as follows:

e aR is the set such that “y € aR if (a, y) € R for some y € B” or
“aR = & if (a, y) ¢ R forevery y € B”.

e Rb is the set such that “x € Rb if (x, b) € R for some x € A” or
“Rb = if (x,b) ¢ R forevery x € A”.

In relation to the above notation, the following properties hold.

Let A and B be non-empty finite sets and let f be a function from A to
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B. Then af is the singleton {(a)f} for every a e A. If be B and
b ¢ ran(f), then fb is an empty set &.

Let A and B be non-empty finite sets and let R ¢ A x B, with a € A
and b € B. Then

1. ¥y € aR if and only if aRy, and x € Rb if and only if xRb.

2. aR = R'a and Rb = bR
Let A and B be non-empty finite sets and let R, S ¢ A x B, with
a € A and b € B. Then

1. R =8 if and only if “aR = aS for every a € A” or “Rb = Sb for
every b € B”.

2. a(RUS)=aRUaS and (RUS)b = Rb Sb.

Let A, B and C be non-empty finite sets, and let R < Ax B and
S c BxC. Then (a,c)e RoS if and only if aRNSc = & for every
ae A and ce C.

Let A, B, C and D be sets. Let Rc AxB, Sc BxC, and
T < C x D. The following properties are well known. If R = O or S=0,
then RoS=0. (RoS) ' =8 1eR ! and (RoS)oT = Ro(SoT).

We consider an indexed family of sets with a finite index set for the
later study. Let {A;|i € I} be an indexed family of sets with a finite

index set I. Let I ={l, 2, ..., n}, where n is a positive integer. Then

JfAilieI} = A UAy U UA,. If I =, then | J{4;]i e I} = @.

Proposition 1.1. Let {A;|i € I} and {A;|j e J} be two indexed

families of sets such that if i = j, then A; = Aj, where I and oJ are finite
index sets. Then | J{A |k e IUJ} = J{A; i e TU|J{Aj 1) e J}.
Proof. Clearly, by the hypothesis, {A; |k € IUJ} is an indexed

family of sets with the finite index set I U<J. Note that if i = j, then
A=A =4 U A;. Then by considering the associativity and
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commutativity of U, together with the fact above, we can prove the
equality. 0

Lemma 1.2. Let {A; |i € I} be an indexed family of sets with a finite
index set I. Define N(x)={i|x € A; and i € I}. Then x e U{Ai li e I}
if and only if N(x) = @.

Proof. Let x e U {A;|i € I}. Then there is some k € I such that

x € A,. By the definition of N(x), we have %k e N(x) and hence
N(x) # &. Conversely, let N(x)# &. Then by the definition of N(x),

there is some i € I such that x € A;. This implies that x U{Ai li e I}.

Thus,wehaveer{AHieI}(—)N(x);é@. 0

Proposition 1.3. Let A, B and C be non-empty finite sets. Let R c
AxB and S < BxC, with ae A and c € C. Let {bS|b € aR} be an

indexed family of sets with an index set aR. Let {Rb|b e Sc} be an
indexed family of sets with an index set Sc. Then a(RoS)=

J®S|b € aR} and (R S)c = | J{Rb|b e Sc}.

Proof. To prove a(R < S) = J{bS|b < aR}, let C, = | J{bS|b < aR}.
We show that a(R - S) = C,,.

Let N(x)={b|x € bS and b € aR}. This is equivalent to N(x) =
{b|b € Sx and b € aR}. This means N(x) = aR () Sx. By Lemma 1.2, we
have x € C, <> aRNSx # & <> a(R o S)x <> x € a(R o S). This implies
a(R-8S) = C,.

On the other hand, (RoS)c =c¢(RoS)™! =c(S7' o R!). From the
result above, it follows that ¢(S'1oR™)= U bR |becS) =
|J{Rb|b € Sc}. Thus, we have (R S)c = | J{Rb|b € Sc}. O

1.2 A pre-module of a power set. The following is a brief review for a
pre-ring and pre-module, and related terms [1].
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Let A be a non-empty set. The addition + and the multiplication - are
binary operations on A. The ordered triplet (A, +, ) is a pre-ring if it
satisfies the following conditions.

PR 1. (A, +) is a commutative monoid.

PR2.0-x =x-0 =0 for every x € A, where 0 is unity for +.

PR 3. Multiplication - is associative, and has unity.

PR 4. For each x, vy, z € A:
Lax-(y+z2)=x-y)+(x-2)
2. (y+2)-x=(y-x)+ (2 x).

Let (A, +,-) be a pre-ring (or simply a pre-ring A), and let U be the
set of units of the pre-ring A. Then (U, -) is the unit group of the pre-ring
A.

Let (A, +, ) and (B, +,-) be pre-rings. If f is a monoid homomorphism
from (A, +) to (B, +), and also a monoid homomorphism from (A4, -) to
(B, -), then the function f is a pre-ring homomorphism from the pre-ring
A to pre-ring B. And f is a pre-ring isomorphism if f is a pre-ring
homomorphism and bijective.

A pre-ring is commutative if its multiplication is commutative. Let
(@, +,-) be a commutative pre-ring with additive unity 0 and
multiplicative unity 1. Let (M, +) be a commutative monoid with unity
Op. Let n:@xM — M be a scalar multiplication, with (r, x)u
denoted by rx for every r € @ and x € M. Then (M, +) (or simply M) is
a pre-module over @, if it satisfies the following conditions for every r,
se @ andx, y € M, where r -s is denoted simply by rs.

PM 1. r(x + y) = rx + ry.

PM 2. (r + s)x = rx + sx.

PM 3. (rs)x = r(sx).

PM 4. 1x = x.

PM 5. Ox = 0y,.
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The element 0j; is the zero element of the pre-module M. In relation
to a scalar multiplication, the following holds generally: rOy; = 05, for
every r € Q.

Let M and N be pre-modules over the same commutative pre-ring @.

Then the function f: M — N 1is a pre-module homomorphism (or

simply a homomorphism) from M to N if it satisfies the following
conditions. For each x, y € M and r € Q,

L (x+y)f =)+
2. (rx)f = r(x)f.
If f is a homomorphism from M to N, then (0;;)f = Oy, where 03, and

O are the zero elements of M and N, respectively.
A pre-module isomorphism (or simply an isomorphism) f from M to N
means that f is a homomorphism and bijective. If f is an isomorphism

from M to N, then f 1 isan isomorphism from N to M.
By Ky we mean two elements pre-ring with additive unity 0 and
multiplicative unity 1 having the following operations:
1.0+40=0,0+1=1,1+0=1, 1+1 =1,
2.0-0=0,0:-1=0,1-0=0, 1-1=1.
Let A be a non-empty set. Then (P(A), U) is a commutative monoid

with unity &, where P(A) is the power set of A. The following gives a

pre-module of a power set.

Proposition 1.4. Let A be a non-empty set. Define a scalar

multiplication by Ko on P(A) such that Ox = & and 1x = x for every
x € P(A). Then (P(A), U) forms a pre-module over K.

Proof. Let K, =({0,1}, +,:). We show that P(A) satisfies all

conditions PM 1-PM 5 for a pre-module under the given scalar
multiplication. For every x, y € P(A):

PM1. 0xUy)=@=0U@=0xU0y, (xUy)=xUy=1xU1ly.
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PM2. l+l)x=lx=x=xUx=1xUlx, 1+0)x=1x=x=xU
F=1xU0x, 0O+1)x=lx=x=FUx=0xUlx, (0+0)x =0x =T =
JUI = 0x U Ox.
PM3. (1-1)x =1x =1(1x), (1-0)x =0x =1(0x), (0-1)x = 0x = 0(1x),
(0-0)x = 0x = J = 0 = 0(0x).

PM 4. 1x = x.
PM 5. 0x = &.
Thus, (P(A), U) is a pre-module over K. O

For a simplicity of a notation, the pre-module (P(A), U) over K, is
denoted by P(A, U).

2. Pre-module Homomorphisms Related to Finite Relations

Suppose that A and B are non-empty finite sets, and X = P(A, U)
and Y = P(B,U). In this section, we are mainly concerned with a

homomorphism between X and Y, and a relation between A and B. The

symbol a denotes the singleton a = {a} for every a € A.

Proposition 2.1. Let A and B be non-empty finite sets, and let
X = P(A,U) and Y = P(B, U). Let f be a function from X to Y. Then f is

a homomorphism from X to Y if and only if (x)f = U{(d)f|a € x} for
every x € X.

Proof. Let f be a homomorphism from X to Y. Then by the definition

of a homomorphism, clearly, we have (x)f = U{(d)f|a e x} for every

xeX.

Conversely, let f be a function from X to Y such that (x)f =
U{(d)f|a € x} for every x € X.

Let x1, x9 € X. Then by the hypothesis and Proposition 1.1, we have

(51 Uxo)f = JH@Fla e x Uny)
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= U{(d)f\a e xl}UU{(d)ﬂa € x5}

= (x)f U (x2)f.
Hence (x; Uxg)f = (x1)f U (xg)f.
Let x € X and r € Ky. We show that (1x)f = 1(x)f and (0x)f =
0(x)f. By the scalar multiplications on X and Y, we have (1x)f = 1(x)f.

On the other hand, by the hypothesis, (J)f = @. Then by the scalar
multiplications on X and Y, the equality (J)f = implies that

(0x)f = 0(x)f. Hence (rx)f = r(x)f.
The two facts above imply that fis a homomorphism from X to Y.
Thus the proof is completed. 0

Lemma 2.2. Let A and B be non-empty finite sets, and let
X = P(A,U) and Y = P(B, U). Let R be a relation from A to B. If fg isa

function from X to Y such that (x)fgr = U{aR|a € x} for every x € X,

then fr is a homomorphism from Xto Y.

Proof. Clearly, U {aR|a € x} is a subset of B for every x € X. This
implies that fp is a well defined function from X to Y. By the hypothesis,
we have (a)fp = aR for every a € A. Then (x)fp = U{(d)fR la € x} for
every x € X. By Proposition 2.1, the function fr is a homomorphism
from X to Y. O

By the notation H(X,Y), we mean the set of all homomorphisms
from a pre-module X to pre-module Y.

Proposition 2.3. Let A and B be non-empty finite sets, and let
X =P(A,U) and Y = P(B,U). Then there is a bijective function
0: HX,Y) > P(AxB) such that (f)0 = R for every fe H(X,Y),
satisfying the condition (a)f = aR for every a € A, where R € P(A x B).

Proof. Let f be an arbitrary element of H(X, Y). Define R to be a
relation from A to B such that aR = (a)f for every a € A. Then the
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relation R is unique. This fact implies that there exists a function
0: HX,Y) > P(AxB) such that ()6 = R for every fe H(X,Y),
satisfying the condition (a)f = aR for every a € A, where R € P(A x B).

Now we show that the function 0 is bijective.

To prove that 0 is surjective, let R be an element of P(A x B). Then,
by Lemma 2.2, there is a homomorphism f € H(X, Y) such that (x)f =
U {aR|a € x} for every x € X, which satisfies the condition (a)f = aR
for every a € A. This means that if a relation R € P(A x B) is given,
then there is some homomorphism f € H(X,Y) such that (f)0 = R
satisfying the condition (a)f = aR for every a € A. This implies that 0 is
surjective.

Let fi, fo € H(X,Y), and let (f;)0 = R; and (f3)0 = Ry, where Ry,
R, € P(A x B). To prove the injectivity of 0, we show that if f; # fy,
then R; # Ry. Let fi # fo. Then there is some element x' € X such that

(x)fi # (x")f3. By Proposition 2.1, U {(@)filaex}= U {(@)fs]a e x'}.
By the condition for 0, we have U {aR; |a € x'} # U {aRy |a € x'}. This

means that there is some element a’ € x' such that a'R; # 'Ry and

hence R; # R,. Hence 0 is injective.

Thus the function 0 is bijective. 0

In Proposition 2.3, the function 6 gives one to one correspondence
between the pre-module homomorphisms from X to Y and the relations
from A to B. The bijective function 0 is called the 0-function for H(X, Y).

If ()6 = R, then R is called the relation corresponding to the pre-module
homomorphism f, and f is called the pre-module homomorphism
corresponding to the relation R.

Let A and B be non-empty finite sets, and let X = P(A, U) and
Y = P(B, U). Let f and g be homomorphisms from X to Y. By f * g we
mean the homomorphism from X to Y such that (x)(f * g) = (x)f U (x)g

for every x € X.
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Proposition 2.4. Let A and B be non-empty finite sets, and let
X = P(A,U) and Y = P(B, U). Let f and g be homomorphisms from X to
Y, and let R and S be the relations corresponding to f and g, respectively.
Then RU S is the relation corresponding to the homomorphism f * g.
Proof. Let 0 be the 0-function for H(X, Y). We show that (f * )0
=RUS.

Let h = f* g and (h)0 = T. By the definition of *, we have (a)h =
(@)f U(a)g for every a € A. Note that (f)0 = R and (g)0 = S. Then by
the properties of a 0-function, we have aT = aR U aS for every a € A.
Then aT = a(RUS) for every a € A and hence T = RU S. Thus, we
have (f * g)0 = RU S. 0

Let X and Y be pre-modules. The zero homomorphism H is the
homomorphism such that (x)H, = Oy for every x € X, where O is the

zero element of Y.

Corollary 2.5. Let A and B be non-empty finite sets, and let
X = P(A,U) and Y = P(B, U). Then the empty relation O is the relation

corresponding to the zero homomorphism H from Xto Y.
Proof. Let 6 be the O-function for H(X,Y). We show that
(Hp)6 = O.

Let (Hy)0 = R. Then by the properties of a 8-function, (a)H, = aR
for every a € A. By the properties of H,, we have aR = & for every
a € A and hence R = O. Thus (H)6 = O. 0

Corollary 2.6. Let A and B be non-empty finite sets, and let
X = P(A,U) and Y = P(B, U). Let 0 be the 6-function for H(X,Y). Then

0 is @ monoid isomorphism from (H(X, Y), *) to (P(A x B), U).

Proof. (H(X,Y), *) and (P(Ax B),U) are commutative monoids

with unities H, and O, respectively.

Let f,ge HX,Y), and let (f)06 = R and (g)6 =S. Then, by
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Proposition 2.4, we have (f*g)0=RUS = (f)0U (g)0. By Corollary
2.5, (Hp)6 =0. A 6-function is bijective. Hence 6 is a monoid
isomorphism from (H(X, Y), *) to (P(A x B), U). 0

Corollary 2.7. Let A and B be non-empty finite sets, and let
X =P(A, V) and Y = P(B, U). Let (P(A), <) and (P(B), <) be partially

ordered sets by set inclusion . If f is a homomorphism from X and Y, then

f is an order-preserving function from (P(A), c) to (P(B), <.

Proof. Let x;, xg € P(A) and x; < x9. Then there is some x, €
P(A) such that xg = x; Uxy. Since f is a homomorphism, (x9)f =
(xq Uxg)f = (x1)f U(xg)f. This implies that (x;)f < (x9)f. Hence f is
an order-preserving function from (P(A), <) to (P(B), <). 0

Suppose that X, Y and Z are pre-modules. If f and g are
homomorphisms from X to Y and Y to Z, respectively, then fog is a

homomorphism from X to Z.

Proposition 2.8. Let A, B and C be non-empty finite sets, and let
X=PAU), Y=PB,U) and Z=PC,U). Let f and g be

homomorphisms from X to Y and Y to Z, respectively. Let R and S be the
relations corresponding to f and g, respectively. Then R o S is the relation

corresponding to the homomorphism f o g from X to Z.

Proof. Let 0;, 0, and 0 be the 0-functions for H(X,Y), H(Y, Z)
and H(X, Z), respectively. We show that (f o g)0 = Ro S.

By the hypothesis, (f)0; = R and (g)0y = S. Then by the properties
of a 0-function, (4)f = aR for every a € A and (b)g = bS for every
b € B. On the other hand, let h=fog and (h)0 =T. Then by the
properties of a 6-function, (a)h = aT for every a € A.

From Proposition 2.1, it follows that (a)h = (a)(f o g) = ((a)f)g =
(aR)g = U{(é)g|b € aR} = U{bS|b € aR} for every a € A. Then, by

Proposition 1.3, we have (a)h = a(R - S) for every a € A. This implies
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that aT = a(R o S) for every a € A and hence T = R o S. Thus we have
(fog)d=RoS. O

Let A be a non-empty finite set and let X = P(A, U). Then iy

denotes the identity relation on A and ix is the identity function on X.

Corollary 2.9. Let A be a non-empty finite set and let X = P(A, U).
Then identity relation iy, on A is the relation corresponding to the

isomorphism ix on X.

Proof. Let 0 be the 0-function for H(X, X). The identity function iy

is an isomorphisms on X. We show that (ix)0 = iy.

Let (ix)0 = R, where R e P(A x A). Then by the properties of a
0-function, (a)ix = aR for every a € A. This implies that {a} = aR for

every a € A and hence R = iy. Thus we have (ix)0 = i4. 0

Lemma 2.10. Let A, B and C be non-empty finite sets, and let
X =P(A,U), Y=PB,U) and Z = P(C, U). Let 6;, 09 and 6 be the
O-functions for H(X,Y), H(Y,Z) and H(X, Z), respectively. Let
feHX,Y)and (f)6; = R, and let g € H(Y, Z) and (g)0y = S, where
ReP(AxB) and S e P(BxC). Then (fo-g)0=(f)0;°(g)0y and

(Ro8)0" = (R)07" = (S)65".

Proof. By Proposition 2.8, (fog)0 = RoS. Then (f°g)0=(f)0;
0 (g)0y because by the hypothesis, (f)0; = R and (g)0y = S. On the
other hand, since a 6-function is bijective, f = (R)07%, g = (S)03' and
fog=(RoS8)07L. Thisimplies that (R S)07 = (R)6;! o (S)05 . 0

Lemma 2.11. Let A and B be non-empty finite sets, and let
X =PA,U) and Y = P(B,U). Let JoK =i4 and K oJ =ip, where
J e P(AxB) and K € P(Bx A). Let j and k be the homomorphisms

corresponding to J and K, respectively. Then j is an isomorphism from X

toYand k = j L.



... FINITE BINARY RELATIONS 133

Proof. Let 6; and 09 be the 0-functions for H(X, Y) and H(Y, X),
respectively. Let 0, be the 0-function for H(X, X).

From the condition o K =i, and 6,, it follows that (J o K)0,'
= (i4)03}. Then, by Corollary 2.9 and Lemma 2.10, we have (J)67! o
(K)63' = ix. This implies that jok =iy because by the hypothesis,
j = ()67 and k = (K)63'. Similarly, by the condition K o J = ig, we
have ko j = iy. Then from the properties of a function [3], it follows that

Jj 1s a bijective function from X to Yand %k = j_l.

Thus j is an isomorphism from Xto Yand %k = j_l. 0

Lemma 2.12. Let A and B be non-empty finite sets, and let
X = P(A,U) and Y = P(B, U). Let t be an isomorphism from X to Y and
let T be the relation corresponding to t. Then T is a bijective function from
AtoBand T7! is the relation corresponding to the isomorphism L.

Proof. Let 6; and 05 be the 0-functions for H(X,Y) and H(Y, X),
respectively. Let 6, and 6, be the 6-functions for H(X, X) and
H(Y,Y), respectively.

First we show that the relation T is a function from A to B.

By the hypothesis, (£)0; = 7. Then by the properties of a 8-function,
(@)t = aT for every a € A. Clearly, (J)t = @. Then we have (a)t # @

for every a € A because t is bijective. This implies that a7 # & for
every a € A.

To prove that T is a function from A to B, we show that aT is a
singleton for every a € A.

Assume that a'T 1is not a singleton for some a’ € A. Then there is
some y € Y such that y < @'T and | y| =1. On the other hand, t71 s
an isomorphism from Y to X. Then by Corollary 2.7, we have (y)t™' <
(@'T)t™. This implies that (y)t™' < {a’} because ({a'})t = @'T. Then

Wt =@ or () = {a'}.
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If (y)t_1 =, then y = . This is a contradiction because by the

assumption | y| = 1. If (y)t™! = {a’}, then y = ({a'})t = 'T. This is also
a contradiction because, by the assumption, a'T" is not a singleton and

|y| = 1. Thus, we can say that aT is a singleton for every ¢ € A and

hence T'is a function from A to B.

Next we show that the function T is bijective. Let K be the relation

corresponding to the isomorphism t™' from Y to X. Then by the result
above, we can say that K is a function from B to A.

By the properties of a function, tot™ = ix and tlot = iy. By
considering a 6-function, (to¢71)0, = (ix)0, and (¢t °1)0, = (iy)0,.
By Corollary 2.9 and Lemma 2.10, we have (£)0; o (t71)05 =i and
(t™1)0y o (£)0; = ig. Since (1)0; =T and (:71)0y = K, we have T o K
=i4 and K oT =ig. Then by the properties of a function [3], T is a
bijective function from A to Band 77! = K.

Thus the proof is completed. 0

Proposition 2.13. Let A and B be non-empty finite sets. Let R be a
relation from A to B and let S be a relation from Bto A. Then “Ro S =iy4

and So R =ig” if and only if “R is a bijective function from A to B and
S — R*l ”.
Proof. Let p be the statement “RoS =iy and So R = ig”. Let q be

the statement “R is a bijective function from A to B and S = R71”. Then,
by considering Lemmas 2.11 and 2.12, we have p — ¢g. On the other
hand, by the properties of a function, ¢ — p. Thus we have p < q. O

In the following description, the notation H(X, X) is abbreviated to

Proposition 2.14. Let A be a non-empty finite set and let
X = P(A, U). Let Ry be the set of all relations on A and let S, be the set

of all bijections on A. Let 0 be the 0-function for H(X). Then
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1. 0 is a pre-ring isomorphism from (H(X), *, o) to (R4, U, o).

2. The symmetric group (Sy, o) is the unit group of the pre-ring
(Ra, U, o).

Proof. (1) The ordered triplet (H(X), *, o) is a pre-ring with additive
unity H, and multiplicative unity ix and (R4, U, o) is also a pre-ring
with additive unity O and multiplicative unity i4 [1], where H is the
zero homomorphism on X and O is empty relation.

Let f, g € (H(X), %, o). Then, by Proposition 2.4 and Corollary 2.5,
we have (f*g)0=(f)0U(g)0 and (Hy)6 = O. By Corollary 2.9 and
Lemma 2.10, we have (f o g)0 = (f)00(g)0 and (ix)0 =i4. And 0 is a
bijective function from H(X) to Ry.

Thus 6 is a pre-ring isomorphism from (H(X), *, o) to (R4, U, o).
(2) Let (U, o) be the unit group of the pre-ring (R4, U, o). To prove

(U, ©) = (Sy, ©), we show that U = S4.

Let R € U and let R be the multiplicative inverse of R. Then by the
definition of U, we have R o R=RoR = i4. By Proposition 2.13, the

relation R is a bijection on A and hence U < Sy4.

Conversely, let f e S4. Then ffl € S, because f is a bijective
function on A. By the properties of a function, f o f_l = f_l of =iyx. By
the definition of U, f € U and hence Sy, c U.

Thus we have U = Sy4. 0

Remarks. Suppose that A and B are non-empty finite sets with

| A|=m and | B| = n, where m and n are positive integers. Let X =
P(A,U) and Y = P(B, U), and let A ={{a}jac A} and B = {{b}|b ¢ B}

be ordered sets.

The sets A and B may be considered as ordered “bases” for the pre-
modules X and Y, respectively. Then a homomorphism f from X to Y can
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be represented by some m x n (0, 1)-matrix over K. This suggests that

the relation R from A to B corresponding to the homomorphism f can be

identified with the same m x n (0, 1)-matrix over Ks.

On the other hand, in view of the converse, it can be said that any

finite relation or (0, 1)-matrix induces a homomorphism between two

appropriate pre-modules, such as P(4, U) and P(B, U).
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