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Abstract 

Following work on abstracting the concept of an algebra to that of an 
algebraic system and of an ordered algebra to that of an ordered 
algebraic system, the notion of a first-order structure is abstracted to 
obtain structure systems. The algebraic part of a structure system is an 
algebraic system rather than an algebra as is the case in the ordinary 
first-order structures. This abstraction is accompanied by the 
introduction of a suitably modified notion of a countable first-order 
language with the aim of developing a first-order model theory of 
structure systems and, therefore, axiomatizing classes of structure 
systems. After introducing some basic constructions on structure 
systems, including the ultraproduct construction, an analog of Łoś’ 
Ultraproduct Theorem is provided for structure systems. 

1. Introduction 

A very important part of the theory of abstract algebraic logic deals 
with a characterization of certain classes of logical matrices and of 
reduced logical matrices that form the matrix semantics of sentential 
logics. Results of this kind serve in characterizing classes of logics based 



www.p
phm

j.c
om

GEORGE VOUTSADAKIS 74

on closure properties of their matrix semantics. Theorem 3.15 of [19] 
summarizes the main characterization results of this type and more 
details, including proofs and commentary concerning original sources, are 
provided in Czelakowski’s comprehensive treatise [7]. 

A critical part in relating classes of logical matrices with classes of 
reduced logical matrices is played by the Leibniz operator and the Leibniz 
congruences, first introduced by Blok and Pigozzi [2], with the goal of 
providing an intrinsic characterization of algebraizable logics. Reduction 
by the Leibniz congruence of a logical matrix is the operation that leads 
from a class of logical matrices to the corresponding reduced class. 

Bloom’s work [3], relating sentential logic with universal Horn logic 
without equality, shows that the theory of logical matrices also forms part 
of the theory of first-order languages with a single unary relation, in 
which the unary relation is modeled via the filter of the logical matrix. 
This relation was the basis that led a decade ago Elgueta [13, 14, 15, 16] 
(and, in part, in joint work with Czelakowski [8] and with Jansana [17]) 
and Dellunde [9, 10] (and, in part, jointly with Casanovas and Jansana 
[5] and with Jansana [11]) to consider, in the context of abstract algebraic 
logic, first-order logic without equality and its model theory. 

In [13], Elgueta begins the study of several aspects of the model-
theory of equality-free first-order structures. In the first section, he 
introduces basic notation and constructions for equality-free first order 
logic that carry over, almost without change, from the case of first-order 
logic with equality. In Section 2, the notion of Leibniz equality is 
introduced for arbitrary first-order structures without equality. It 
constitutes a weak form of equality that replaces genuine equality in this 
equality-free context. The inspiration for its consideration comes from its 
role in the theory of logical matrices, as established by Blok and Pigozzi 
[2]. Based on Leibniz equality, Leibniz quotients of structures are 
introduced in Section 3. Finally, in Sections 4 and 5 Elgueta proves the 
main lemmas and the main theorems, respectively, including 
characterization theorems for several classes (elementary, universal, 
universal Horn, universal atomic) of structures defined in equality-free 
first-order logic. 
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In recent work by the author on the algebraization of π-institutions 

[25, 26, 27, 28], it has become clear that the role played by algebras in the 
theory of sentential logics and of their matrix and algebraic models is 
now played by algebraic systems. These are set-valued functors, whose 
algebraic nature is given in the form of a category of natural 
transformations on the functor. Further, if endowed with a partial 
ordering system, algebraic systems give rise to ordered algebraic systems, 
properties of whose classes were recently explored in [29, 30, 31, 32], 
inspired by analogous work of Pałasińska and Pigozzi [24] on the theory of 
partially-ordered algebras. Partially-ordered algebras form a 
generalization of universal algebras and they, in turn, are special cases of 
first-order structures. Thus, it is a natural endeavor to seek to extend the 
theory of first-order structures to structures that would generalize in the 
same direction partially ordered algebraic systems and to explore 
properties of their equality-free first-order model theory, following the 
lead of the works of Elgueta and of Dellunde. 

In fact, inspired by the works of Elgueta and of Dellunde, the concept 
of a structure system is introduced in this paper. Structure systems are 
generalizations of both first-order structures and partially ordered 
algebraic systems. A first-order language is also introduced, a slight 
variant of the ordinary notion, that allows us to syntactically study 
structure systems. Several elementary results are presented on structure 
systems but the most important is an analog of Łoś’ Ultraproduct 
Theorem for structure systems. This line of research is to be continued in 
forthcoming work by the author in which analogs of many other 
properties, analogous to those studied by Elgueta and Dellunde, as 
pertaining to classes of structure systems are studied. 

For general concepts and notation from category theory the reader is 
referred to any of [1, 4, 23]. For an overview of the current state of affairs 
in abstract algebraic logic the review article [19], the monograph [18] and 
the book [7] are all excellent references. To follow recent developments on 
the categorical side of the subject the reader may refer to the series of 
papers [25]-[28] (see also additional references therein). Finally, the 
original reference for Łoś’ Ultraproduct Theorem is the paper [21], 
whereas standard references on model theory, all of which contain 
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treatments of Łoś’ Theorem and related results, are the books by Chang 
and Keisler [6], Hodges [20], Marker [22] and Doets [12]. 

2. Basic Definitions 

A clone category is a category F with objects all finite natural 

numbers that is isomorphic to the category of natural transformations N 

on a given functor SetSign →:SEN  (see [28] for the definition of a 

category of natural transformations on a set-valued functor) via an 
isomorphism that preserves projections, and, as a consequence, also 
preserves objects. Note that in previous papers on the subject, the symbol 

N was used to denote a category of natural transformations on a functor. 
In the present work, boldfaced symbols will be used to denote categories. 

So N in place of N will be preferred. 

A (structure system) language is a triple ,,, ρ= RFL  where F is a 

clone category, R is a nonempty set of relation symbols and ω→ρ R:  is 

an arity function. 

An L -term is an arrow ( ),1,nt F∈  for some .ω∈n  The collection of 

all L -terms is denoted by .TeL  An atomic L -formula is an expression of 

the form ( ( ) ),...,, 10 −ρ rttr  where Rr ∈  is a relation symbol of L  and 

( ) 10 ...,, −ρ rtt  are L -terms. Finally, similarly with the case of equality-

free first-order logic, an L -formula is built recursively out of atomic 

formulas as follows: 

• An atomic L -formula is an L -formula. 

• ( ),β∧α  ( )α¬  are L -formulas, for all L -formulas α, β. 

• ( )α∀i  is an L -formula, for every ω∈i  and every L -formula α. 

The collection of all L -formulas is denoted by .FmL  Clearly, all other 

connectives, e.g., ∨, →, ↔, etc., may be defined in terms of these few basic 

connectives. We feel free to use the most convenient collection of 
connectives when a structural induction on the complexity of a formula is 
called for. Moreover, the usual metamathematical conventions in adding 
or omitting parentheses for clarity will be followed throughout. 
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Before introducing the concept of an L -structure system, the 

definition of a relation system on a functor will be presented. 

Let SetSign →:SEN  be a functor. An n-ary relation system R on 

SEN is a family { } ,Sign∈∑∑= RR  such that 

• ∑R  is an n-ary relation on ( ),SEN ∑  for all ,Sign∈∑  and 

• ( ) ( ) ,SEN
21 ∑∑ ⊆ RRf n  for all Sign∈∑∑ 21,  and all ∈f  

( )., 21 ∑∑Sign  

Sometimes, we write ( ) ( )
21

SEN ∑∑ ⊆ RRf  instead of the more precise 

( ) ( )
21

SEN ∑∑ ⊆ RRf n  to simplify notation. 

An L -(structure) system AAAAA RF ,,,SEN N=  is a triple 

consisting of 

• a functor ,:SEN SetSign →AA  

• a category of natural transformations AN  on ,SENA  such that 

AA NF →:F  is a surjective functor that preserves all projections :klp  

,1→k  ,ω∈k  ,kl <  and 

• { }RrrR ∈= :AA  is a family of relation systems on ASEN  indexed 

by R, such that Ar  is n-ary if ( ) .nr =ρ  

Let t be an L -term and A  be an L -system. Let also ASign∈∑  

and ( ) .SEN ω∑∈φ AG
 The value of t at ( )φ∑

G
,  in the system ,A  denoted by 

( ),φ∑
GAt  is the value ( ) ( ),ntF bφ∑

G
 where n is the domain of t: 

( ) ( ) ( ).: ntFt bφ=φ ∑∑
GGA  

Finally, the satisfaction relation of L -formulas by L -systems will be 

defined. 

Let α be an L -formula, A  be an L -system, ASign∈∑  and ∈φ
G

 

( ) .SEN ω∑A  A  satisfies α at ,, φ∑
G

 written [ ],φα∑
G

BA  is defined by 



www.p
phm

j.c
om

GEORGE VOUTSADAKIS 78

recursion on the structure of the L -formula α as follows: 

• If ( )10 ...,, −=α nttr  is atomic, then 

( ) [ ]φ−∑
G

10 ...,, nttrBA   iff  ( ) ( ) ,...,, 10
AAA
∑− ∈φφ

∑∑
rtt n

GG
 

• ( ) [ ]φβ∧α∑
G

BA   iff  [ ]φα∑
G

BA  and [ ],φβ∑
G

BA  

• ( ) [ ]φα¬∑
G

BA   iff  [ ]φα∑
G

HA  and, finally, 

• ( ) [ ]φα∀∑
G

iBA  iff [ ],ψα∑
G

BA  for all ( ) ,SEN ω∑∈ψ AG
 such that 

,jj ψ=φ  for all .ij ≠  

These conditions clearly define the semantics of all other connectives in 
the first-order model theory of L -systems. 

If [ ]φα∑
G

BA  holds for all ASign∈∑  and all ( ) ,SEN ω∑∈φ AG
 then 

we write .αBA  The expressions ΓBA  and ,K αB  for Γ a set of 

L -formulas and K a class of L -systems are defined as usual. Finally, we 

denote by 

( ) { }Γ=Γ BAA :Mod   and  ( ) { },K:K αα= BTh  

the collection of all L -systems that are models of Γ and the L -theory of 

the collection K of L -systems, respectively. 

3. Subsystems, Filter Extensions, Homomorphisms and  

Reduced Products 

3.1. Subsystems and filter extensions 

Before proceeding to define subsystems of structure systems, we need 
to recall from Section 2 of [33] the definition of a subfunctor and that of 

an N-subfunctor. 

Let SetSign →:SEN  be a functor. A functor SetnSig →′′ :NSE  

is a subfunctor of SEN, if 

• nSig ′  is a subcategory of Sign, 

• ( ) ( ),SENNSE ∑′⊆∑′′  for all ,nSig ′∈∑′  and 
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• ( ) ( ) ( ) ( ),SENNSE φ=φ′ ff  for all ( ),, ∑′∑′∈ nSigf  ( ).NSE ∑′∈φ  

If N is a category of natural transformations on SEN, such that, for all 

SENSEN: →σ n  in N, all nSig ′∈∑′  and all ( ) ,NSE n∑′′∈φ′
G

 ( )φ′σ∑′
G

 

( ),NSE ∑′′∈  then NSE ′  will be said to be an N-subfunctor of SEN. If 

SetSign →′ :NSE  is a subfunctor of ,:SEN SetSign →  with the 

same domain category, then NSE ′  is said to be a simple subfunctor of 

SEN. 

Returning to the main developments, suppose, now, that ,SENAA =  

,,, AAA RFN  BBBBB RF ,,,SEN N=  are two L -systems. We 

say that A  is a (structure) subsystem of ,B  in symbols ,BA ⊆  if 

• ASEN  is an BN -subfunctor of BSEN  and 

• ( ) ( ),SEN rrr ρ
∑∑ ∑= ABA ∩  for all Rr ∈  and all .ASign∈∑  

We call A  a simple subsystem of B  if it is a subsystem of ,B  such that 

ASEN  is a simple subfunctor of .SENB  In this case, we write .BA s⊆  

Similarly, B  is a filter extension of ,A  written ,BA  if 

• ,SENSEN BA =  ,BA NN =  BA FF =  and 

• ,BA rr ≤  for all ,Rr ∈  where, as usual, ≤ denotes signature-wise 

inclusion. 

Let, now, AAAAA RF ,,,SEN N=  be an L -system. Suppose that 

{ } ASign∈∑∑= XX  is an axiom system of ,SENA  i.e., such that 

• ( ),SEN ∑⊆∑
AX  for all ,ASign∈∑  and 

• ( )( ) ,SEN
21 ∑∑ ⊆ XXfA  for all ,, 21

ASign∈∑∑  ( )., 21 ∑∑∈ ASignf  

Define the collection [ ] {[ ] } ASign∈∑∑= XX  by letting, for all ,ASign∈∑  

[ ] { ( ) LTe: ∈φ= ∑∑ ttX
GA  and }.ω

∑∈φ X
G

 



www.p
phm

j.c
om

GEORGE VOUTSADAKIS 80

It is shown in the next proposition that, given an axiom system X, the 

collection [ ]X  is also an axiom system. 

Proposition 1. Suppose that AAAAA RF ,,,SEN N=  is an 

L -system. If X is an axiom system of ,SENA  then [ ]X  is also an axiom 

system of .SENA  

Proof. It is clear, by definition, that [ ] ( ),SEN ∑⊆∑
AX  for all 

.ASign∈∑  So it suffices to show that, for all ,, 21
ASign∈∑∑  

( ),, 21 ∑∑∈ ASignf  we have that ( ) ([ ] ) [ ] .SEN
21 ∑∑ ⊆ XXfA  In fact, if 

[ ] ,
1∑

∈φ X  then, there exist ,TeL∈t  ( ) ,SEN 1
ω∑∈φ AG

 such that ω
∑∈φ

1
X

G
 

and ( ),
1
φ=φ ∑

GAt  whence 

( ) ( ) ( ) ( ( ))φ=φ ∑

GAAA
1

SENSEN tff  

( ) ( ( ) ( ))ntFf bφ= ∑
G

1
SEN AA  

( ) ( ( ) ( ))nftF bφ= ∑
GAA SEN

2
 

( ) ( ( ) ( ) ),SEN
2 nftF bφ= ∑

GAA  

whence, since ( ) ( ) ,SEN
2

ω
∑∈φ Xf

GA  we get that ( ) ( ) [ ] ,SEN
2∑

∈φ XfA  as 

was to be shown.  

Now, given an axiom system { } ASign∈∑∑= XX  on ,SENA  as above, 

XbA  denotes the subsystem of A  generated by X. This has 

• the same signature category ASign  as ,A  

• its sentence functor maps ASign∈∑  to the set [ ] ( ),SEN ∑⊆∑
AX  

• the same pair AA F,N  as A  and 

• [ ] ( ).rX Xrr ρ
∑∑∑ = ∩AAb  
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It is not difficult to verify that ,XbA  as defined above, is indeed a 

subsystem of A  and that, as a consequence, this definition makes sense. 

Given L -systems A  and ,B  A  is an elementary subsystem of ,B  in 

symbols ,BA e⊆  iff BA ⊆  and for all L -formulas α, all ,ASign∈∑  

and all ( ) ,SEN ω∑∈φ AG
 

[ ]φα∑
G

BA   iff  [ ].φα∑
G

BB  

Finally, A  and B  are elementarily equivalent, written ,BA ≡  iff, for all 

L -sentences L( -formulas without any free variables) α, 

αBA   iff  .αBB  

It is clear that, if A  is a simple elementary subsystem of ,B  written 

,BA s
e⊆  then .BA ≡  

3.2. Homomorphisms 

Suppose that ,,,,SEN AAAAA RFN=  BBBBB RF ,,,SEN N=  

are two L -structure systems. An ( )BA NN , -epimorphic translation 

BA SENSEN:, seF →α  is said to be an L -morphism BA →α :,F  

if 

• the following triangle commutes: 

 (1) 

where the dashed line represents the two-way correspondence established 

by the ( )BA NN , -epimorphic property, and 

• for all ,Rr ∈  with ( ) ,nr =ρ  all ASign∈∑  and all ( ) ,SEN n∑∈φ AG
 

A
∑∈φ r

G
  implies  ( ) ( ).

B
∑∑ ∈φα Fr

G
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If α,F  is injective or surjective, then we write BA Z:, αF  and 

,:, BA \αF  respectively. Finally, BA ≅α :,F  is an isomorphism if 

it is bijective and its inverse mapping is also an L -morphism. 

In the following lemma, we establish a property that will prove very 
useful in the sequel. It gives the analog of the usual universal algebraic 
homomorphism property in the context of L -structures. 

Lemma 2. Let ,,,,SEN AAAAA RFN=  ,,,SEN BBBB FN=  

BR  be two L -systems and BA →α :,F  be an L -morphism. Then, 

for every ,TeL∈t  ,ASign∈∑  ( ) ,SEN ω∑∈φ AG
 

( ( )) ( )( ( )).φα=φα ∑∑∑∑
GG BA

Ftt  

Proof. Let ,TeL∈t  ,ASign∈∑  ( ) .SEN ω∑∈φ AG
 Then 

( ( )) ( ( ) ( ))ntFt bφα=φα ∑∑∑∑
GG AA  (by definition) 

( ) ( )( ( ))nFtF bφα= ∑∑
GB  (by the commutativity of Diagram (1) 

and the ( )BA NN , -epimorphic property) 

( )( ( ))φα= ∑∑

GB
Ft  (again by definition).  

An L -morphism BA →α :,F  is said to be a strong L -morphism, 

denoted by ,:, BA sF →α  if, for all ,Rr ∈  with ( ) ,nr =ρ  all ∈∑  

ASign  and all ( ) ,SEN n∑∈φ AG
 

A
∑∈φ r

G
  if and only if  ( ) ( ).

B
∑∑ ∈φα Fr

G
 

L -morphisms correspond to semi-interpretations, whereas strong 

L -morphisms correspond to interpretations in the framework of 

categorical abstract algebraic logic. 

A surjective strong L -morphism is called a reductive L -morphism. If 

BA sF \:, α  is a reductive L -morphism, then B  is said to be a 

reduction of A  and A  is an expansion of ,B  written AB  or .BA  
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Given a singleton translation NSESEN:, ′→αF  and r′  an n-ary 

relation system on ,NSE ′  recall the standard convention of using the 

notation ( ) { ( ( ) )} ,11
Sign∈∑∑

−
∑

− ′α=′α Frr  for the n-ary relation system on 

SEN, generated by pulling back signature-wise the relation system .r′  

This notation will be used in the next lemma, which forms an analog for 

L -systems of Lemma 1.1 of [13]. 

Lemma 3. Suppose that BA SENSEN:, seF →α  is an ( )BA NN , -

epimorphic translation, such that triangle (1) commutes. Then 

(1) BA →α :,F  if and only if ( ),1 BA rr −α≤  for all .Rr ∈  

(2) BA sF →α :,  if and only if ( ),1 BA rr −α=  for all .Rr ∈  

(3) BA sF \:, α  implies ( )BA rr 1−α=  and ( ) ( ),
BA
∑∑∑ =α Frr  for 

all Rr ∈  and all .ASign∈∑  

Proof. All three statements are easy consequences of the definitions 
involved.  

Corollary 4. (1) A bijective strong L -morphism BA →α :,F  is 

an isomorphism. 

(2) If R contains the equality symbol, then reductive L -morphisms 

coincide with isomorphisms. 

Proof. The first statement is obvious. For the second, note that 
reductive L -morphisms are surjective and strong and, moreover, if the 

language contains equality, then they are also injective.  

Let AAAAA RF ,,,SEN N=  and BBBBB RF ,,,SEN N=  be 

L -systems and suppose that BA →α :,F  is an L -morphism. 

Define the triple ( ) ( )BAAAB
1

,,,SEN1 −α− =α RFN  by letting, for 

all ,Rr ∈  with ( ) ,nr =ρ  and all ,ASign∈∑  ( ) ( )nr ∑⊆
−α

∑
AB SEN

1
 be 

given by 
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( ) ( ( ) ).
11 BB

∑
−
∑

α
∑ α=
−

Frr  

Then, the following lemma, forming an analog of Lemma 1.2 of [13], 

asserts that, the restriction of the L -morphism BA →α :,F  to 

( )B1−α  is a strong L -morphism. 

Lemma 5. Let AAAAA RF ,,,SEN N=  and ,,SEN BBB N=  

BB RF ,  be L -systems and BA →α :,F  be an L -morphism. 

(1) ( ) ( ) BB
B sF →αα −

α−
1:, 1b  is a strong L -morphism. 

(2) If α,F  is surjective, then ( ) ( ) BB
B sF \b 1:, 1

−
α

αα −  is a 

reductive L -morphism. 

Proof. (1) The proof of this statement follows directly by the 

definition of ( ).1 B−α  

(2) Just combine the statement of Part (1) with the hypothesis of Part 
(2).  

Let AAAAA RF ,,,SEN N=  and BBBBB RF ,,,SEN N=  be 

L -systems and suppose that BA →α :,F  is an L -morphism. 

Assume that CCCCC RF ,,, NSign=  is a subsystem of A  and that 

=D  DDDD RF ,,, NSign  is a subsystem of .B  

Define, first, the triple ( ) ( ) ( ) ( ) ,,,SEN
1111 DDDD
−−− ααα− =α FN  

( )D1−αR  by setting: 

• ( ) ( ) SetSign →−α− DD 1:SEN
1

F  is given by ( )( ) =∑
−α D1

SEN  

( ( )( )),SEN1 ∑α−
∑ FD  for all ( ) ,1 DSign−∈∑ F  and, ( )( ) =

−α fD1
SEN  

( ),SEN fA  for all ( ) ( ),,1 ∑′∑∈ − DSignFf  

• for all n-ary σ in F, ( )( )σ
−α D1

F  is the restriction of ( )σAF  to 

( ( )( )) ,SEN1 nF ∑α−
∑

D  and 
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• for all ,Rr ∈  with ( ) ,nr =ρ  and all ( ) ,
1 D−α∈∑ Sign  ( ) ⊆

−α
∑

D1
r  

( )( ) ,SEN
1 n∑
−α D  is given by 

( ) ( ( ) ).
11 DD

∑
−
∑

α
∑ α=
−

Frr  

Now, if BA SignSign →:F  is injective and ( )CSignF  is a 

subcategory of ,BSign  define the triple ( ) ( ) ( ),,SEN CCC αα=α N  

( ) ( )CC αα RF ,  by setting: 

• ( ) ( ) SetSign →α CC F:SEN  is given by ( ) ( )( ) =∑α FCSEN  

( ( )),SEN ∑α∑
C  for all ,CSign∈∑  and, given ,, 21

CSign∈∑∑  ∈f  

( ),, 21 ∑∑CSign  ( ) ( )( ) ( )( ),SENSEN fFfF BC =α  

• for all n-ary σ in F, ( )( )σα CF  is the restriction of ( )σBF  to 

( ( ))n∑α∑
CSEN  and 

• for all ,Rr ∈  with ( ) ,nr =ρ  and all ( ) ( ) ,Cα∈∑ SignF  ( )
( ) ⊆α
∑
C

Fr  

( ) ( )( ) ,SEN nF ∑α C  is given by 

( )
( ) ( ).CC

∑∑
α
∑ α= rrF  

It is now shown that if BA sF →α :,  is a strong L -morphism, 

then, for all ,BD ⊆  we have that ( ) AD ⊆α−1  and that, if ,AC ⊆  then 

( ) ,BC ⊆α  when ( )Cα  is defined. 

Lemma 6. Let AAAAA RF ,,,SEN N=  and ,,SEN BBB N=  

BB RF ,  be L -systems and BA sF →α :,  be a strong L -morphism. 

(1) If ,BD ⊆  then ( ) .1 AD ⊆α−  

(2) If ,AC ⊆  BA SignSign →:F  is injective and ( )CSignF  is a 

subcategory of ,BSign  then ( ) .BC ⊆α  
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Proof. (1) First, to see that ( )D1
SEN

−α  is well defined at the 

morphism level, suppose that ( ) ,, 1
21

DSign−∈∑∑ F  

( ) ( )21
1 , ∑∑∈ − DSignFf  and ( ( )( )).SEN 1

1
1

∑α∈φ −
∑ FD  Then we have 

( ( )( ) ( )) ( ( ) ( ))φα=φα ∑
α

∑
−

ff AD SENSEN
2

1

2
 

( )( ) ( ( ))φα= ∑1
SEN fFB  

( )( ) ( ( ( ( )( ))))1
1 SENSEN
11

∑αα∈ −
∑∑ FfF DB  

( )( ) ( ( )( ))1SENSEN ∑⊆ FfF DB  

( )( ).SEN 2∑⊆ FD  

Thus ( )( ) ( ( )( )) ( )( )21
111

SENSENSEN ∑⊆∑
−−− ααα DDD f  and, hence, 

( )D1
SEN

−α  is well defined on morphisms. 

Next, to see that AN  restricts to a category of natural transformations 

on ( ),SEN
1 D−α  suppose that ,TeL∈t  ( )DSign1−∈∑ F  and ∈φ

G
 

( ( )( )) .SEN1 ω−
∑ ∑α FD  Then 

( ( )( )) ( ( ))φα=φα ∑∑
α
∑∑
− GG AD tt
1

 

( )( ( ))φα= ∑∑

GB
Ft  

( )( )∑∈ FDSEN  (by the BN -subfunctor property), 

whence ( )( ) ( ( )( )).SEN11
∑α∈φ −

∑
α
∑
−

Ft DD G
 Finally, the fact that α,F  

strong implies that ( )D1−α  is an L -subsystem of A  is fairly obvious. 

(2) We follow a similar order as in Part (1). To see that ( )CαSEN  is 

well defined at the morphism level, suppose that ,, 21
CSign∈∑∑  ∈f  

( )21, ∑∑CSign  and ( ).SEN 1∑∈φ C  Then we have 
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( ) ( )( ) ( ( )) ( )( ) ( ( ))φα=φα ∑∑
α

11
SENSEN fFfF BC  

( ( ) ( ))φα= ∑ fASEN
2

 

( ( ) ( ))φα= ∑ fCSEN
2

 

( ( ))2SEN
2

∑α∈ ∑
C  

( ) ( )( ).SEN 2∑= α FC  

Thus ( )( )fCαSEN  is well defined on morphisms. 

Next, to see that BN  restricts to a category of natural transformations 

on ( ),SEN Cα  suppose that ,TeL∈t  CSign∈∑  and ( ) .SEN ω∑∈φ CG
 

Then 

( )
( ) ( ( )) ( )( ( ))φα=φα ∑∑∑

α
∑

GG BC
FF tt  

( ( ))φα= ∑∑
GAt  

( ( ))φα= ∑∑
GCt  

( ( ))∑α∈ ∑
CSEN  

( ) ( )( ),SEN ∑= α FC  

whence ( )Cαt  is also well defined. The fact that α,F  strong implies that 

( )Cα  is an L -subsystem of B  is also obvious.  

An L -morphism BA →α :,F  is said to be elementary if, for every 

L -formula γ, every ASign∈∑  and all ( ) ,SEN ω∑∈φ AG
 

[ ]φγ∑
G

BA   iff  ( ) [ ( )].φαγ ∑∑
G

FBB  

In that case, we write .:, BA eF →α  It is clear from the definitions 

involved that, if ,:, BA eF \α  then .BA ≡  
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Proposition 7. Every reductive L -morphism is elementary. 

Proof. Suppose that ,,,,SEN AAAAA RFN=  ,,SEN BBB N=  

BB RF ,  are L -structures and BA sF \:, α  is a reductive 

L -morphism. It is shown that, for every L -formula γ, for all 

,ASign∈∑  ( ) ,SEN ω∑∈φ AG
 we have that 

[ ]φγ∑
G

BA   iff  ( ) [ ( )].φαγ ∑∑
G

FBB  

The proof goes by induction on the complexity of γ. 

If ( )10 ...,, −=γ nttr  is atomic, then 

[ ]φγ∑
G

BA   iff  ( ) ( ) AAA
∑− ∈φφ

∑∑
rtt n

GG
10 ...,,   (by definition) 

 iff  ( ( )) ( ( )) ( )
BAA
∑−∑∑ ∈φαφα

∑∑ Fn rtt
GG

10 ...,,  

( )BA sF \:,since α  

 iff  
( )

( ( ))
( )

( ( )) ( )
BBB
∑∑−∑ ∈φαφα

∑∑ Fn rtt
FF

GG
10 ...,,   (by Lemma 2) 

 iff  ( ) [ ( )]φαγ ∑∑
G

FBB   (by definition). 

If ( ),21 γ∧γ=γ  then 

[ ]φγ∑
G

BA   iff  [ ]φγ∑
G

1BA  and [ ]φγ∑
G

2BA   (by definition) 

 iff  ( ) [ ( )]φαγ ∑∑
G

1FBB  and ( ) [ ( )]φαγ ∑∑
G

2FBB  

(by the induction hypothesis) 

 iff  ( ) [ ( )]φαγ ∑∑
G

FBB   (by definition). 

The case of negation may be handled similarly. Suppose, now, that =γ  

( ) .γ′∃i  Then 

       ( ) [ ]φγ′∃∑
G

iBA   iff  ( ) ( [ ])ψγ′≠φ=ψψ∃ ∑
GG

BAijjj ,:   (by definition) 

 iff  ( ) ( ( ) [ ( )])ψαγ′≠φ=ψψ∃ ∑∑
GG

Fjj ij BB,:  

(by the induction hypothesis) 
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 iff  ( ) ( ) [ ( )]φαγ′∃ ∑∑
G

iFBB   (by definition and 

the surjectivity of )., αF   

3.3. Reduced products 

Recall from Section 3 of [33] the definitions of a product functor, 
category of natural transformations on the product functor and product 
translation. 

Suppose that ,,,,SEN iiiii RFN=A  ,Ii ∈  is a family of L -

systems. The direct product of the iA  is defined by 

∏ ∏ ∏∏ ∏
∈ ∈ ∈∈ ∈

=
Ii Ii Ii

i

Ii Ii

iiii RF ,,,,SEN NA  

where ∏ ∏∈ ∈ 





 ∈=

Ii Ii
ii RrrR :  is defined, for every ,Rr ∈  with 

( ) ,nr =ρ  by setting, for all ,i
i Sign∈∑  ( ),SEN i

ij
i ∑∈φ  ,Ii ∈  ...,,0=j  

,1−n  

∏
∈

∑
−

∏ ∈
∈φφ

Ii

in

Ii i
r10 ...,,

GG
 iff ,...,, 10 in

ii i
r∑

− ∈φφ  for all .Ii ∈  

In case ,∅=I  then the trivial system is obtained by taking the product 

∏∅.  

Suppose now, that, in addition to the structure systems ,iA  ,Ii ∈  we 

are given a filter F  on I. Define the equivalence system =≡F  

∏ ∏∏
∈ ∈

∈ ∈∑
∑ 





≡

Ii Ii
i

iIi i Sign

F  on ∏∈Ii
iSEN  by setting, for all ∈∑i  

,iSign  ( ) ,,SEN, Iii
i

ii ∈∑∈ψφ  

ψ≡φ ∏ ∈ ∑
GG F

Ii i
  iff  { } .: F∈ψ=φ∈ iiIi  

This is also a ∏∈Ii
iN -congruence system on ∏∈Ii

i .SEN  We can thus 
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define the reduced product functor ∏ ∏∈ ∈
≡=

F F
Ii Ii

ii ,SENSEN  with 

category of natural transformations ∏ ∏∈ ∈
≡=

F F
Ii Ii

ii NN  via 

∏ ∏∈ ∈
≡→

F F
Ii Ii

iiF ,: NF  which is defined by composing the product 

functor ∏ ∏∈ ∈
→

Ii Ii
iiF NF:  with the quotient functor :FP  

∏ ∏∈ ∈
≡→

Ii Ii
ii .FNN  

∏ ∏∈ ∈
≡ → → ∏∈

Ii Ii
iPiFIi

i

.F
F

NNF  

We may also define the relation system ∏∈
F

Ii
iR  on ∏∈

F
Ii

iSEN  by 

setting, for all ,Rr ∈  with ( ) ,nr =ρ  and all ,i
i Sign∈∑  

( ),SEN i
ij

i ∑∈φ  ,Ii ∈  ,1...,,0 −= nj  

 ∏
∈

∑∑
−

∑ ∏∏∏ ∈∈∈
∈≡φ≡φ

F
FF

Ii

in

Ii iIi iIi i
r10 ...,,

GG
 

iff  { } ....,,: 10 F∈∈φφ∈ ∑
− in

ii i
rIi  

It may be shown that this definition is independent of the choice of 

representatives and, thus, well defines a relation system ∏∈
F

Ii
ir ,  for all 

,Rr ∈  on ∏∈
F

Ii
i .SEN  

In fact, note that, if ( )∏ ∈
− ∑∈ψψ

Ii i
in SEN...,, 10 GG

 are such that 

,jj

Ii i
ψ≡φ ∏ ∈ ∑
GG F  for all ,1...,,0 −= nj  then we have that { j

iIi φ∈ :  

} ,F∈ψ= j
i  for all ,1...,,0 −= nj  whence { }∩ 1

0
.:

−
=

∈ψ=φ∈
n
j

j
i

j
iIi F  

Therefore, if { } ,...,,: 10 F∈∈φφ∈ ∑
− in

ii i
rIi  then 

{ } { }in
ii

in
ii ii

rIirIi ∑
−

∑
− ∈φφ∈⊇∈ψψ∈ 1010 ...,,:...,,:  

{ }∩∩
1

0

:
−

=

∈ψ=φ∈
n

j

j
i

j
iIi F  
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and, hence, { } ....,,: 10 F∈∈ψψ∈ ∑
− in

ii i
rIi  By symmetry, we get that 

{ } F∈∈ψψ∈ ∑
− in

ii i
rIi 10 ...,,:   iff  { } ,...,,: 10 F∈∈φφ∈ ∑

− in
ii i

rIi  

i.e., that 

 ∏∈ ∑∑
−

∑ ∏∏∏ ∈∈∈
∈≡φ≡φ

FFF
Ii

in

Ii iIi iIi i
r10 ...,,

GG
 

iff ∏∈ ∑∑
−

∑ ∏∏∏ ∈∈∈
∈≡ψ≡ψ

FFF
Ii

in

Ii iIi iIi i
r ....,, 10 GG

 

Now, let 

∏ ∏ ∏∏ ∏
∈ ∈ ∈∈ ∈

=
F F FF F

Ii Ii Ii

i

Ii Ii

iiii RF ,,,SEN NA  

be the reduced product of the structure systems ,iA  ,Ii ∈  by the filter 

F  on I. As is customary, the reduced product by an ultrafilter is termed 

an ultraproduct. 

4. Łoś’ Ultraproduct Theorem for L -systems 

Recall the definition of an arbitrary first-order Horn formula. 
Theorem 8 is an extension of a classical theorem from first-order model 
theory to the model theory of L -systems. It states, roughly speaking, 

that, for a given Horn formula, a given indexed collection of L -systems 

and a given proper filter on the index set, if the set of all indices for which 
the formula is satisfied at a given tuple of elements in the corresponding 
structure belongs to the filter, then the formula is also satisfied by the 
equivalence class of the product tuple in the filtered product of the 
indexed family of the L -systems by that filter. 

Theorem 8. Suppose that α is an arbitrary Horn L -formula and let 

,,,,SEN iiiii RFN=A  ,Ii ∈  be a family of L -systems, with .∅≠I  

Let F  be a proper filter on I. If ,i
i Sign∈∑  ( ),SEN i

ij
i ∑∈φ  ,Ii ∈  

,ω∈j  then 
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{ [ ]} FB ∈φα∈ ∑ i
i

i
Ii

G
A:   implies  [ ]∏

∈
∑∑ ∏∏ ∈∈

≡φα
F

FB
Ii

i

Ii iIi i
.

G
A  

The above implication becomes an equivalence in case α is an atomic 

L -formula. 

Proof. Suppose, first, that ( ) ,...,, 10
1
0 ⊥→=α −
−
=∧ j

k
j

j
n
j j

ttr  where 

( ) ,,...,, 10 njttr j
k

j
j j

<−  are atomic. Then we have 

( ) [ ] FB ∈




 φ⊥→∈ −

−
=∑ ∧ i

j
k

j
j

n
j

i
ji

ttrIi
G

10
1
0 ...,,: A  

iff ( ) [ ] FB ∈




 φ¬∈ −

−
=∑ ∨ i

j
k

j
j

n
j

i
ji

ttrIi
G

10
1
0 ...,,: A  

iff { ( ) [ ]}∪ G1

0 10 ...,,:
−

= −∑ ∈φ¬∈
n

j i
j
k

j
j

i
ji

ttrIi FBA  

iff { ( ) [ ]}∪ G1

0 10 ...,,:
−

= −∑ ∈φ∈
n

j

c
i

j
k

j
j

i
ji

ttrIi FBA  

iff { ( ) [ ]} FB ∈





 φ∈

−

= −∑

cn

j i
j
k

j
j

i
ji

ttrIi∩ G1

0 10 ...,,: A  

implies { ( ) [ ]}∩ G1

0 10 ...,,:
−

= −∑ ∉φ∈
n

j i
j
k

j
j

i
ji

ttrIi FBA  

iff ( ) ({ ( ) [ ]} )FB ∉φ∈<∃ −∑ i
j
k

j
j

i
ji

ttrIinj
G

10 ...,,: A  

iff ( ) ( ) [ ]





 ≡φ<∃ ∏∈ ∑−∑ ∏∏ ∈∈

F FH
Ii

j
k

j
j

i

Ii ijIi i
ttrnj

G
10 ...,,A  

iff ( ) ( ) [ ]





 ≡φ¬<∃ ∏∈ ∑−∑ ∏∏ ∈∈

F FB
Ii

j
k

j
j

i

Ii ijIi i
ttrnj

G
10 ...,,A  

iff ( ) [ ]∏ ∈ ∑−
−
=∑ ∏∏ ∈∈

≡φ¬∨F FB
Ii

j
k

j
j

n
j

i

Ii ijIi i
ttr

G
10

1
0 ...,,A  

iff ( ) [ ]∏ ∈ ∑−
−
=∑ ∏∏ ∈∈

≡φ⊥→∧F FB
Ii

j
k

j
j

n
j

i

Ii ijIi i
ttr ....,, 10

1
0

G
A  
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Suppose, next that ( ) ( )n
k

n
n

j
k

j
j

n
j nj

ttrttr 1010
1
0 ...,,...,, −−
−
= →=α ∧  and that 

( ) ( ) [ ] ....,,...,,: 1010

1

0
FB ∈













φ→∈ −−

−

=
∑ ∧ i

n
k

n
n

j
k

j
j

n

j

i
nji

ttrttrIi
G

A  (2) 

Now, if ( )[ ]∏ ∈ ∑−∑ ∏∏ ∈∈
≡φ

F FB
Ii

j
k

j
j

i

Ii ijIi i
ttr ,...,, 10

G
A  for all ,1...,,0 −= nj  

we get that, for all { ( ) [ ]} ....,,:,1...,,0 10 FB ∈φ∈−= −∑ i
j
k

j
j

i
ji

ttrIinj
G

A  

Therefore 

{ ( ) [ ]}∩ G1

0
10 ....,,:

−

=
−∑ ∈φ∈

n

j
i

j
k

j
j

i
ji

ttrIi FBA  (3) 

But note that 

{ ( ) [ ]}i
n
k

n
n

i
ni

ttrIi φ∈ −∑
G

10 ...,,: BA  

{ ( ) [ ]}∩ G1

0 10 ...,,:
−

= −∑ φ∈⊇
n

j i
j
k

j
j

i
ji

ttrIi BA  

( ) ( ) [ ] ,...,,...,,: 1010
1
0 



 φ→∈ −−

−
=∑ ∧ i

n
k

n
n

j
k

j
j

n
j

i
nji

ttrttrIi
G

∩ BA  

whence, by Conditions (2) and (3), we obtain that { ( ,: 0
n

n
i trIi

i∑∈ BA  

) [ ]} ,..., 1 F∈φ− i
n
kn

t
G

 giving that 

( ) ( ) [ ]∏∈ ∑−−
−
=∑ ∏∏ ∈∈

≡φ→∧F FB
Ii

n
k

n
n

j
k

j
j

n
j

i

Ii injIi i
ttrttr ....,,...,, 1010

1
0

G
A  

To finish the proof, it suffices now to show that, if the conclusion 

holds for the formulas α, 1α  and ,2α  then it holds also for ( )21 α∧α  and 

( )α∃k  and ( ) .α∀k  

Suppose, first, that { ( ) [ ]} .: 21 FB ∈φα∧α∈ ∑ i
i

i
Ii

G
A  Then 

{ [ ]}∩
G2

1
.:

= ∑ ∈φα∈
j ij

i
i

Ii FBA  This immediately yields that { :Ii ∈  
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[ ]} ,FB ∈φα∑ ij
i

i

G
A  for ,2,1=j  whence, by the induction hypothesis, 

[ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡φα

Ii j
i

Ii iIi i
,FB

G
A  for ,2,1=j  which, finally, gives that 

( ) [ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡φα∧α

Ii
i

Ii iIi i
.21

FB
G

A  

For the existential quantification we have 

{ ( ) [ ]} FB ∈φα∃∈ ∑ i
i kIi

i

G
A:  

iff { [ ],: i
i

i
Ii ψα∈ ∑

G
BA  for some } F∈≠φ=ψψ kjj

i
j
ii ,:

G
 

implies { [ ]} ,: FB ∈ψα∈ ∑ i
i

i
Ii

G
A  

for some ( ) ,,:SEN kjjj
Ii i

i

Ii i
≠φ≡ψ






 ∑∈ψ ∏ ∈ ∑

ω

∈∏
GGG F  

iff [ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡ψα

F FB
Ii

i

Ii iIi i
,

G
A  

for some ( ) ,,:SEN kjjj
Ii i

i

Ii i
≠φ≡ψ






 ∑∈ψ ∏ ∈ ∑

ω

∈∏
GGG F  

iff ( ) [ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡φα∃

F FB
Ii

i

Ii iIi i
k .

G
A  

A similar reasoning works also for the universal quantification.  

Finally, we present the main theorem of the paper, an analog of Łoś’ 
Ultraproduct Theorem for L -systems. The original reference for Łoś’ 
Ultraproduct Theorem is Łoś’ 1955 paper [21]. See also Theorem 4.1.9 of 
[6] and Theorem 9.5.1 of [20]. 

Theorem 9 (Łoś’ Ultraproduct Theorem). Let ∅≠I  be a set, 

,,,,,SEN IiRF iiiii ∈= NA  be a collection of L -systems, U  be an 

ultrafilter over I and α be an arbitrary L -formula. If ,i
i Sign∈∑  

( ),SEN i
ij

i ∑∈φ  ,Ii ∈  ,ω∈j  then 

{ [ ]} UB ∈φα∈ ∑ i
i

i
Ii

G
A:   iff  [ ]∏

∈
∑∑ ∏∏ ∈∈

≡φα
U

UB
Ii

i

Ii iIi i
.

G
A  
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Proof. Suppose, first, that ( )....,, 10 −=α nttr  Then we have 

 ( ) [ ]∏ ∈ ∑−∑ ∏∏ ∈∈
≡φ

U UB
Ii n

i

Ii iIi i
ttr

G
10 ...,,A  

iff  ( ) ( ) ∏
∏∏

∏
∏∏

∏
∏

∈

∈∈

∈

∈
∑∈

∈

∈
∑ ∑∑−∑

∈≡φ≡φ
UUU

UU Ii
i

Ii iIi i
Ii

i

Ii iIi i
Ii

i

Ii i
rtt n

AAA GG
10 ...,,  

iff  { ( ) ( ) } U∈∈φφ∈ ∑− ∑∑

i
i

i
ni

i
iii

rttIi
GG

10 ...,,:  

iff  { ( ) [ ]} ....,,: 10 UB ∈φ∈ −∑ in
i ttrIi

i

G
A  

Next, if ( ),21 α∧α=α  then we have 

 ( ) [ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡φα∧α

U UB
Ii

i

Ii iIi i

G
21A  

iff  [ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡φα

U UB
Ii

i

Ii iIi i

G
1A  and 

 [ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡φα

U UB
Ii

i

Ii iIi i

G
2A  

iff  { [ ]} UB ∈φα∈ ∑ i
i

i
Ii

G
1: A  and { [ ]} UB ∈φα∈ ∑ i

i
i

Ii
G

2: A  

iff  { [ ]} { [ ]} UBB ∈φα∈φα∈ ∑∑ i
i

i
i

ii
IiIi

G
∩

G
21 :: AA  

iff  { ( ) [ ]} .: 21 UB ∈φα∧α∈ ∑ i
i

i
Ii

G
A  

Similarly, if ,α′¬=α  then, we have 

[ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡φα′¬

U UB
Ii

i

Ii iIi i

G
A  iff [ ]∏ ∈ ∑∑ ∏∏ ∈∈

≡φα′
U UH

Ii
i

Ii iIi i

G
A  

iff { [ ]} UB ∉φα′∈ ∑ i
i

i
Ii

G
A:  

iff { [ ]} UB ∈φα′∈ ∑
c

i
i

i
Ii

G
A:  

iff { [ ]} UH ∈φα′∈ ∑ i
i

i
Ii

G
A:  

iff { [ ]} .: UB ∈φα′¬∈ ∑ i
i

i
Ii

G
A  
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Finally, if ( ) ,α′∃=α k  then, we have 

( ) [ ]∏ ∈ ∑∑ ∏∏ ∈∈
≡φα′∃

U UB
Ii

i

Ii iIi i
k

G
A  
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i kIi
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G
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