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Abstract

Let ( )( )kRJR ,,  be a local commutative k-subalgebra of ( )kMn  with

nilpotent maximal ideal ( )RJ  and residue class field k. In this paper,

we classify maximal commutative k-subalgebras of ( )kMn  up to

1C -construction and 2C -construction according to ( ) ( )( ).socdim RRJk

1. Introduction

In this paper, k denotes an arbitrary field and ( )( )kRJR ,,  denotes a

local commutative k-subalgebra of ( )kMn  with nilpotent maximal ideal

( )RJ  and residue class field k. We denote the set of all local maximal

commutative k-subalgebras of ( )kMn  by ( ).kMCn

Brown and Call introduced 1C -construction and Brown introduced

2C -construction [1, 2]. These constructions are useful to construct

maximal commutative k-subalgebras of ( )kMn  having dimension less

than the size n of matrices.
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In Section 3, we classify the k-algebra R in ( )kMCn  up to

1C -construction and 2C -construction according to dimension of

( ) ( ),soc RRJ  where ( )Rsoc  is the socle of R.

2. Theorems Prerequisite to the Main Results

In this section, we will restate the definitions and some related

properties of 1C -construction and 2C -construction.

Let ( )( )kBJB ,,  be a finite dimensional commutative k-algebra with

identity and N be a finitely generated faithful B-module. For a natural

number ,  NBR ⊕=  is a commutative k-algebra and NBM ⊕=  is

a faithful R-module via the following multiplications:

( ) ( ),...,,,...,,, 11 nnbnnb ααα=α

( )( ) ( ),...,,,...,,,...,,, 1111 bnbnbnbnbbnnbnnb ′+′′+′′=′′

( )( ) ,,...,,...,,,,...,,
1

111 












+= ∑

=i
iibnnbbbbbnnbnbb

where ,k∈α  ,, Bbb i ∈  and Nnnn ii ∈′,,  for ....,,2,1=i

Then ( )MMR R ,Hom≅  via the regular representation. Thus R is in

( ),kMCn  where ( ).dim Mn k=

Definition 2.1. The k-algebra R defined above is called a

1C -construction.

Let R be a commutative k-algebra. Then R is a 1C -construction if R

has an ideal I satisfying the conditions in the following theorem. The
proof can be found in [1].

Theorem 2.2. Suppose ( )( )kRJR ,,  is a commutative k-algebra.

Then R is a 1C -construction if and only if there is an ideal I satisfying the

following conditions:

(1) ( ) .Ann IIR =
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(2) 00 →→→→ IRRI  splits as k-algebras.

Theorem 2.3. Suppose ( )( )kBJB ,,  is a finite dimensional

commutative k-algebra with identity and N is a finitely generated faithful

B-module. Suppose ( )NNB B ,Hom≅  via the regular representation.

Then there exists an element ( )Bw soc∈  with ( ) .1dim =Nwk

Definition 2.4. Let ( )( )kBJB ,,  be a finite dimensional commutative

k-algebra with identity. If [ ] ( ( ) )wXXBJXBR p −≅ ,  for some ∈w

( ) { }0soc −B  and a positive integer ,1>p  then we say that the k-algebra

R is a 2C -construction.

Theorem 2.5 is an equivalent condition for a k-algebra R to be a

2C -construction. The proof can be found in [3].

Theorem 2.5. Suppose ( )( )kRJR ,,  is a commutative k-algebra.

Then R is a 2C -construction if and only if R contains a commutative

k-subalgebra ( )( )kBJB ,,  and an element ( )RJx ∈  satisfying the

following conditions:

(1) ( )Bx p soc0 ∈≠  for some positive integer .1>p

(2) ( ) ( ).0=xBJ

(3) ( ) ( ) ( ).1dimdim −+= pBR kk

3. Classifications

In this section, we will classify the algebra R in ( )kMCn  up to

1C -construction and 2C -construction according to ( ) ( )( ).socdim RRJk  If

( )( ),RJi  the index of nilpotency of ( ),RJ  is two, then obviously R is a

1C -construction, but not a 2C -construction. Thus we will assume ( ( ))RJi

3≥  in this section.

The following theorem can be found in [3].

Theorem 3.1. Suppose ( )( ) ( )kMCkRJR n∈,,  and ( ) ( )( )RRJk socdim

.1=  Then R is a 2C -construction but not a 1C -construction.



www.p
phm

j.c
om

YOUNGKWON SONG438

Example 3.2. Let [ ].,,,, 615141313221 EEEEEEkR +=  Then the

algebra R is in ( )kMC6  and ( ) ( ),,,,soc 61514131 EEEER =  the ideal

generated by elements .,,, 61514131 EEEE  Thus ( ) ( )( ) 1socdim =RRJk

and by Theorem 3.1, the algebra R is a 2C -construction but not a

1C -construction. In fact, if we let [ ].,,, 61514131 EEEEkB =  Then

( ).,,, 61514131 EEEEmB =  Since ( ) ( ),soc RBJ =  by letting += 21Ex

32E  and ,2=p  the conditions in Theorem 2.4 are obviously satisfied.

The conditions for an algebra R to be a 1C -construction or

2C -construction is now naturally asked in the case of ( ) ( )( )RRJk socdim

.1>

Theorem 3.3. Suppose ( )( ) ( )kMCkRJR n∈,,  and ( ) ( )( )RRJk socdim

.2=  Then 02 =r  for all ( )RJr ∈  if and only if R is a 1C -construction.

Proof. Let ( )( ) mRJk =dim  and let ( )Rsoc  be generated by the

elements ,...,,, 221 −msss  for some ( ),soc Rsi ∈  .2...,,1 −= mi  Then

there exist elements ( ) ( )RRJrr soc, 21 −∈  such that the m vectors

2121 ,,,, −mssrr …  generate ( ).RJ  Let x and y be in k with

( ) ( )0,0, ≠yx  and let I be an ideal generated by .,,, 2121 −+ mssyrxr …

Then by the hypothesis, we have ( )02 =I  and so ( ).Ann II R⊆  Note that

( ) .soc IR ⊆   Now let ( ) ( ).socAnn RIr R −∈  Then for some ,kxi ∈  the

element r is in the following form:

( ) ( )∑
=

− ≠++=
m

i
ii xxsxrxrxr

3
2122211 .0,0,,

Moreover

( ) ( )( ) ( ) .0 212121221121 rrxxyxyrxrrxrxyrxrr +=++=+=

If ,021 =rr  then ( ) ( )02 =RJ  which is impossible since ( )( ) .3≥RJi  Thus

021 ≠rr  and so .021 =+ xxyx  Since ( ) ( ),0,0, ≠yx  we have either

0≠x  or .0≠y  If we assume ,0≠x  then

( ) ( ) ., 1
12

1
11 yxxxxxxx −− −==
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If we assume ,0≠y  then

( ) ( ) ., 1
22

1
21 yyxxxyxx −− −−=−=

This implies ( )212211 yrxrtrxrx −=+  for some .kt ∈  Since ( )221 yrr +

,0=  we have .02 21 =ryr  But 021 ≠rr  and hence 02 =y  which implies

.yy −=  Thus

( )212211 yrxrtrxrx +=+

which implies .Ir ∈  Therefore I is an ideal of R satisfying ( ) .Ann IIR =

Now, consider the following exact sequence:

.00 →→→→
ν

IRRI

Here IRR →ν :  is the natural homomorphism. In the element +1xr

,2 Iyr ∈  we may assume .0≠x  Since ,21 Iyrxr ∈+  we have

( ) ( ) ( ).0 2121 ryrxyrxr ν+ν=+ν=

Thus ( ) ( ) ( ).2
1

1 ryxr ν−=ν −  This implies ( )[ ].2rkIR ν=  Now define a map

RIR →µ :  by ( )( ) ,22 rr =νµ  ( ) α=αµ  for all .k∈α  Obviously, µ is a

k-algebra homomorphism and

( )( ) ( ) ( ).222 rrr αν=αν=αννµ

Thus νµ  is the identity homomorphism on IR  and hence the exact

sequence splits as k-algebras. Therefore R is a 1C -construction.

Conversely, suppose R is a 1C -construction. Then there exists an

ideal I satisfying ( ) .Ann IIR =  If ( ),soc Rs∈  then ( )0=sI  and hence ∈s

( ) .Ann IIR =  This implies ( ) ( ).soc RJIR ⊆⊆  Since ( ) ( )( )RRJk socdim

,2=  there are following three cases:

Case 1. ( )( ) 2socdim =RIk  and ( )( ) .0dim =IRJk

Case 2. ( )( ) 0socdim =RIk  and ( )( ) .2dim =IRJk

Case 3. ( )( ) 1socdim =RIk  and ( )( ) .1dim =IRJk



www.p
phm

j.c
om

YOUNGKWON SONG440

First of all, case 1 is impossible since ( )( ) .3≥RJi  In case 2, ∈r

( )RJ  implies ( ) ( )0soc == RrrI  and hence ( ) .Ann IIr R =∈  Thus

( ) IRJ =  which is also impossible. Thus we have only the case 3. Let

( ) .IRJr −∈  Since ( )( ) ,1dim =IRJk  we have ( ) krIRJ ⊕=  as

k-vector spaces. Thus rsr α+=2  for some Is ∈  and .k∈α  If ,0≠α  then

nIr α−  is a unit and so ( ) .1−α−= nIrsr  But then Ir ∈  which is

impossible. Thus 0=α  and .2 Isr ∈=  From the hypothesis, the

following exact sequence splits as k-algebras via the k-algebra

homomorphism ,: RIR →µ

.00 →→→→
ν

IRRI

Here IRR →ν :  is the natural homomorphism. Note ( ) 1rrIr +=+µ

for some .1 Ir ∈  Moreover, we have

( ) ( ).220 11
2

1
22 rrrrrrrIr +=++=+µ=

Here ( )RJrr ∈+ 12  but .2 1 Irr ∉∈  Since ( )( ) ,1dim =IRJk  we have

rrr β=+ 12  for some nonzero β in k. Thus

( ) .02 1
2 =+=β rrrr

Since ,0≠β  we have .02 =r  Moreover, ( )02 =I  implies 02 =r  for all

( ).RJr ∈

Example 3.4. Suppose k is a field of characteristic two. Let =R

[ ].,, 4142314321 EEEEEk ++  Then the algebra R is in ( ).4 kMC

Moreover, we have ( ) ( )( ) ,2socdim =RRJk  ( )( ) ,3=RJi  and 02 =r  for

all ( ).RJr ∈  Thus R is a 1C -construction by Theorem 3.3.

Example 3.5. Let [ ].,,, 51414231433221 EEEEEEEkR +++=

Then R is in ( ),5 kMC  ( ) ( )( ) ,2socdim =RRJk  and ( )( ) .4=RJi  If we let

( )433221 EEEar ++=  for some ,0 ka ∈≠  then .02 ≠r  Thus the

algebra R is not a 1C -construction by Theorem 3.3.
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Theorem 3.6. Suppose ( )( ) ( )kMCkRJR n∈,,  and ( ) ( )( )RRJk socdim

t=  for some positive integer t. If there exists an element ( ) ( )RRJr soc−∈

such that 01 =+tr  and ,0≠tr  then R is a 2C -construction.

Proof. Since ( ) ( )( ) ,socdim tRRJk =  the maximal ideal ( )RJ  can be

expressed as follows:

( ) ( ) 11
...soc −⊕⊕⊕⊕= tkskskrRRJ

for some ( )RJsi ∈  as k-vector spaces. Since 01 =+tr  and ,0≠tr  the

following elements are all distinct:

( ).0...,,,, 1
3

2
2

1 krrrr i
t

t ∈≠αααα −

Now, let [ ( ) ].soc tkrRkB ⊕=  Then

( ) ( ) .soc tkrRBJ ⊕=

Since ( ) ( )0soc =Rrt  and ,0=ttrr  we have ( ) ( )0=BJrt  which implies

( ) { }.0soc −∈ Brt

Moreover

( ) ( ).0=rBJ

By the definition of B,

( ) ( ) ( ).1dimdim −+= tBR kk

Thus by letting rx =  and ,tp =  the algebra R satisfies the three

conditions in Theorem 2.5 and hence R is a 2C -construction.

Example 3.7. Let [ ].3221 EEkR +=  Then the algebra R is a

k-subalgebra in ( ).3 kMC  Moreover, ( ) ( )( ) .1socdim =RRJk  If we let =r

,31E  then 02 =r  and .0≠r  Therefore, if we let ,1=t  then by Theorem

3.6, the algebra R is a 2C -construction.

Theorem 3.8. Suppose ( )( ) ( )kMCkRJR n∈,,  and ( ) ( )( )RRJk socdim

t=  for some positive integer t. If there exists an element ( ) ( )RRJr soc−∈

such that 02 =+tr  and ,01 ≠+tr  then R is a 2C -construction.
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Proof. Since ( ) ( )( ) ,socdim tRRJk =  the maximal ideal ( )RJ  can be

expressed as follows:

( ) ( ) 11
...soc −⊕⊕⊕⊕= tkskskrRRJ

for some ( )RJsi ∈  as k-vector spaces. Let ( )[ ].soc RkB =  Then

( ) ( ) ( ).socsoc BRBJ ==

Since ( ),1 RJrt ∈+  ( ) ( )0soc1 =+ Rrt  and hence ( ) ( ).01 =+ BJrt  Thus 1+tr

( ) { }.0soc −∈ B  Obviously, we have

( ) ( ) ( ).0soc == rRrBJ

Since ( )[ ],soc RkB =  we have

( ) ( )( ) ( ) ( ) .dim111dimdim tBtRsocR kkk +=+−++=

Thus, by letting rx =  and ,1+= tp  the algebra R satisfies the three

conditions in Theorem 2.5 and we conclude R is a 2C -construction.

Example 3.9. Let [ ].,, 41313221 EEEEkR +=  Then the algebra R is

a k-subalgebra in ( ).4 kMC  Moreover, ( ) ( )( ) .1socdim =RRJk  If we let

,3221 EEr +=  then 031
2 ≠= Er  and .03 =r  Therefore, if we let

,1=t  then by Theorem 3.8, the algebra R is a 2C -construction.
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