ALGEBRAS IN $MC_n(k)$

YOUNGKWON SONG

(Received September 1, 2006)

Submitted by K. K. Azad

Abstract

Let (R, J(R), k) be a local commutative k-subalgebra of $M_n(k)$ with nilpotent maximal ideal J(R) and residue class field k. In this paper, we classify maximal commutative k-subalgebras of $M_n(k)$ up to C_1 -construction and C_2 -construction according to $\dim_k(J(R)/\operatorname{soc}(R))$.

1. Introduction

In this paper, k denotes an arbitrary field and (R, J(R), k) denotes a local commutative k-subalgebra of $M_n(k)$ with nilpotent maximal ideal J(R) and residue class field k. We denote the set of all local maximal commutative k-subalgebras of $M_n(k)$ by $MC_n(k)$.

Brown and Call introduced C_1 -construction and Brown introduced C_2 -construction [1, 2]. These constructions are useful to construct maximal commutative k-subalgebras of $M_n(k)$ having dimension less than the size n of matrices.

2000 Mathematics Subject Classification: 15A27, 15A33.

Keywords and phrases: C_1 -construction, C_2 -construction.

The present research has been conducted by the Research Grant of Kwangwoon University in 2006.

© 2006 Pushpa Publishing House

In Section 3, we classify the k-algebra R in $MC_n(k)$ up to C_1 -construction and C_2 -construction according to dimension of $J(R)/\operatorname{soc}(R)$, where $\operatorname{soc}(R)$ is the socle of R.

2. Theorems Prerequisite to the Main Results

In this section, we will restate the definitions and some related properties of C_1 -construction and C_2 -construction.

Let (B, J(B), k) be a finite dimensional commutative k-algebra with identity and N be a finitely generated faithful B-module. For a natural number ℓ , $R = B \oplus N^{\ell}$ is a commutative k-algebra and $M = B^{\ell} \oplus N$ is a faithful R-module via the following multiplications:

$$\alpha(b, n_1, ..., n_{\ell}) = (\alpha b, \alpha n_1, ..., \alpha n_{\ell}),$$

$$(b, n_1, ..., n_{\ell})(b', n'_1, ..., n_{\ell}) = (bb', n_1b' + n'_1b, ..., n_{\ell}b' + n'_{\ell}b),$$

$$(b_1, ..., b_{\ell}, n)(b, n_1, ..., n_{\ell}) = \left(b_1b, ..., b_{\ell}b, nb + \sum_{i=1}^{\ell} n_ib_i\right),$$

where $\alpha \in k$, b, $b_i \in B$, and n, n_i , $n_i' \in N$ for $i = 1, 2, ..., \ell$.

Then $R \cong \operatorname{Hom}_R(M, M)$ via the regular representation. Thus R is in $MC_n(k)$, where $n = \dim_k(M)$.

Definition 2.1. The k-algebra R defined above is called a C_1 -construction.

Let R be a commutative k-algebra. Then R is a C_1 -construction if R has an ideal I satisfying the conditions in the following theorem. The proof can be found in [1].

Theorem 2.2. Suppose (R, J(R), k) is a commutative k-algebra. Then R is a C_1 -construction if and only if there is an ideal I satisfying the following conditions:

(1)
$$\operatorname{Ann}_R(I) = I$$
.

(2) $0 \to I \to R \to R/I \to 0$ splits as k-algebras.

Theorem 2.3. Suppose (B, J(B), k) is a finite dimensional commutative k-algebra with identity and N is a finitely generated faithful B-module. Suppose $B \cong \operatorname{Hom}_B(N, N)$ via the regular representation. Then there exists an element $w \in \operatorname{soc}(B)$ with $\dim_k(Nw) = 1$.

Definition 2.4. Let (B, J(B), k) be a finite dimensional commutative k-algebra with identity. If $R \cong B[X]/(J(B)X, X^p - w)$ for some $w \in soc(B) - \{0\}$ and a positive integer p > 1, then we say that the k-algebra R is a C_2 -construction.

Theorem 2.5 is an equivalent condition for a k-algebra R to be a C_2 -construction. The proof can be found in [3].

Theorem 2.5. Suppose (R, J(R), k) is a commutative k-algebra. Then R is a C_2 -construction if and only if R contains a commutative k-subalgebra (B, J(B), k) and an element $x \in J(R)$ satisfying the following conditions:

- (1) $0 \neq x^p \in soc(B)$ for some positive integer p > 1.
- (2) J(B)x = (0).
- (3) $\dim_k(R) = \dim_k(B) + (p-1)$.

3. Classifications

In this section, we will classify the algebra R in $MC_n(k)$ up to C_1 -construction and C_2 -construction according to $\dim_k(J(R)/\operatorname{soc}(R))$. If i(J(R)), the index of nilpotency of J(R), is two, then obviously R is a C_1 -construction, but not a C_2 -construction. Thus we will assume i(J(R)) ≥ 3 in this section.

The following theorem can be found in [3].

Theorem 3.1. Suppose $(R, J(R), k) \in MC_n(k)$ and $\dim_k(J(R)/\operatorname{soc}(R))$ = 1. Then R is a C_2 -construction but not a C_1 -construction. **Example 3.2.** Let $R = k[E_{21} + E_{32}, E_{31}, E_{41}, E_{51}, E_{61}]$. Then the algebra R is in $MC_6(k)$ and $soc(R) = (E_{31}, E_{41}, E_{51}, E_{61})$, the ideal generated by elements E_{31} , E_{41} , E_{51} , E_{61} . Thus $\dim_k(J(R)/soc(R)) = 1$ and by Theorem 3.1, the algebra R is a C_2 -construction but not a C_1 -construction. In fact, if we let $B = k[E_{31}, E_{41}, E_{51}, E_{61}]$. Then $m_B = (E_{31}, E_{41}, E_{51}, E_{61})$. Since J(B) = soc(R), by letting $x = E_{21} + E_{32}$ and p = 2, the conditions in Theorem 2.4 are obviously satisfied.

The conditions for an algebra R to be a C_1 -construction or C_2 -construction is now naturally asked in the case of $\dim_k(J(R)/\operatorname{soc}(R)) > 1$.

Theorem 3.3. Suppose $(R, J(R), k) \in MC_n(k)$ and $\dim_k(J(R)/\operatorname{soc}(R))$ = 2. Then $r^2 = 0$ for all $r \in J(R)$ if and only if R is a C_1 -construction.

Proof. Let $\dim_k(J(R)) = m$ and let $\operatorname{soc}(R)$ be generated by the elements $s_1, s_2, ..., s_{m-2}$, for some $s_i \in \operatorname{soc}(R)$, i = 1, ..., m-2. Then there exist elements $r_1, r_2 \in J(R) - \operatorname{soc}(R)$ such that the m vectors $r_1, r_2, s_1, ..., s_{m-2}$ generate J(R). Let x and y be in k with $(x, y) \neq (0, 0)$ and let I be an ideal generated by $xr_1 + yr_2, s_1, ..., s_{m-2}$. Then by the hypothesis, we have $I^2 = (0)$ and so $I \subseteq \operatorname{Ann}_R(I)$. Note that $\operatorname{soc}(R) \subseteq I$. Now let $r \in \operatorname{Ann}_R(I) - \operatorname{soc}(R)$. Then for some $x_i \in k$, the element r is in the following form:

$$r = x_1 r_1 + x_2 r_2 + \sum_{i=3}^{m} x_i s_{i-2}, (x_1, x_2) \neq (0, 0).$$

Moreover

$$0 = r(xr_1 + yr_2) = (x_1r_1 + x_2r_2)(xr_1 + yr_2) = (x_1y + x_2x)r_1r_2.$$

If $r_1r_2 = 0$, then $J(R)^2 = (0)$ which is impossible since $i(J(R)) \ge 3$. Thus $r_1r_2 \ne 0$ and so $x_1y + x_2x = 0$. Since $(x, y) \ne (0, 0)$, we have either $x \ne 0$ or $y \ne 0$. If we assume $x \ne 0$, then

$$x_1 = (x_1 x^{-1})x, \quad x_2 = -(x_1 x^{-1})y.$$

If we assume $y \neq 0$, then

$$x_1 = (-x_2y^{-1})x$$
, $x_2 = -(-x_2y^{-1})y$.

This implies $x_1r_1 + x_2r_2 = t(xr_1 - yr_2)$ for some $t \in k$. Since $(r_1 + yr_2)^2 = 0$, we have $2yr_1r_2 = 0$. But $r_1r_2 \neq 0$ and hence 2y = 0 which implies y = -y. Thus

$$x_1r_1 + x_2r_2 = t(xr_1 + yr_2)$$

which implies $r \in I$. Therefore I is an ideal of R satisfying $\operatorname{Ann}_R(I) = I$. Now, consider the following exact sequence:

$$0 \to I \to R \stackrel{\mathsf{v}}{\to} R/I \to 0.$$

Here $v: R \to R/I$ is the natural homomorphism. In the element $xr_1 + yr_2 \in I$, we may assume $x \neq 0$. Since $xr_1 + yr_2 \in I$, we have

$$0 = v(xr_1 + yr_2) = xv(r_1) + yv(r_2).$$

Thus $v(r_1) = (-x^{-1}y)v(r_2)$. This implies $R/I = k[v(r_2)]$. Now define a map $\mu: R/I \to R$ by $\mu(v(r_2)) = r_2$, $\mu(\alpha) = \alpha$ for all $\alpha \in k$. Obviously, μ is a k-algebra homomorphism and

$$v\mu(\alpha v(r_2)) = v(\alpha r_2) = \alpha v(r_2).$$

Thus $\nu\mu$ is the identity homomorphism on R/I and hence the exact sequence splits as k-algebras. Therefore R is a C_1 -construction.

Conversely, suppose R is a C_1 -construction. Then there exists an ideal I satisfying $\operatorname{Ann}_R(I) = I$. If $s \in \operatorname{soc}(R)$, then sI = (0) and hence $s \in \operatorname{Ann}_R(I) = I$. This implies $\operatorname{soc}(R) \subseteq I \subseteq J(R)$. Since $\dim_k(J(R)/\operatorname{soc}(R)) = 2$, there are following three cases:

Case 1. $\dim_k(I/\operatorname{soc}(R)) = 2$ and $\dim_k(J(R)/I) = 0$.

Case 2. $\dim_k(I/\operatorname{soc}(R)) = 0$ and $\dim_k(J(R)/I) = 2$.

Case 3. $\dim_k(I/\operatorname{soc}(R)) = 1$ and $\dim_k(J(R)/I) = 1$.

First of all, case 1 is impossible since $i(J(R)) \geq 3$. In case 2, $r \in J(R)$ implies $rI = r \operatorname{soc}(R) = (0)$ and hence $r \in \operatorname{Ann}_R(I) = I$. Thus J(R) = I which is also impossible. Thus we have only the case 3. Let $r \in J(R) - I$. Since $\dim_k(J(R)/I) = 1$, we have $J(R) = I \oplus kr$ as k-vector spaces. Thus $r^2 = s + \alpha r$ for some $s \in I$ and $\alpha \in k$. If $\alpha \neq 0$, then $r - \alpha I_n$ is a unit and so $r = s(r - \alpha I_n)^{-1}$. But then $r \in I$ which is impossible. Thus $\alpha = 0$ and $r^2 = s \in I$. From the hypothesis, the following exact sequence splits as k-algebras via the k-algebra homomorphism $\mu: R/I \to R$,

$$0 \to I \to R \xrightarrow{\mathsf{v}} R/I \to 0.$$

Here $v: R \to R/I$ is the natural homomorphism. Note $\mu(r+I) = r + r_1$ for some $r_1 \in I$. Moreover, we have

$$0 = \mu(r+I)^2 = r^2 + r_1^2 + 2rr_1 = r(r+2r_1).$$

Here $r + 2r_1 \in J(R)$ but $r \in 2r_1 \notin I$. Since $\dim_k(J(R)/I) = 1$, we have $r + 2r_1 = \beta r$ for some nonzero β in k. Thus

$$\beta r^2 = r(r+2r_1) = 0.$$

Since $\beta \neq 0$, we have $r^2 = 0$. Moreover, $I^2 = (0)$ implies $r^2 = 0$ for all $r \in J(R)$.

Example 3.4. Suppose k is a field of characteristic two. Let $R = k[E_{21} + E_{43}, E_{31} + E_{42}, E_{41}]$. Then the algebra R is in $MC_4(k)$. Moreover, we have $\dim_k(J(R)/\operatorname{soc}(R)) = 2$, i(J(R)) = 3, and $r^2 = 0$ for all $r \in J(R)$. Thus R is a C_1 -construction by Theorem 3.3.

Example 3.5. Let $R = k[E_{21} + E_{32} + E_{43}, E_{31} + E_{42}, E_{41}, E_{51}].$ Then R is in $MC_5(k)$, $\dim_k(J(R)/\mathrm{soc}(R)) = 2$, and i(J(R)) = 4. If we let $r = a(E_{21} + E_{32} + E_{43})$ for some $a \neq 0 \in k$, then $r^2 \neq 0$. Thus the algebra R is not a C_1 -construction by Theorem 3.3.

Theorem 3.6. Suppose $(R, J(R), k) \in MC_n(k)$ and $\dim_k(J(R)/\operatorname{soc}(R))$ = t for some positive integer t. If there exists an element $r \in J(R) - soc(R)$ such that $r^{t+1} = 0$ and $r^t \neq 0$, then R is a C_2 -construction.

Proof. Since $\dim_k(J(R)/\operatorname{soc}(R)) = t$, the maximal ideal J(R) can be expressed as follows:

$$J(R) = \operatorname{soc}(R) \oplus kr \oplus ks_1 \oplus \cdots \oplus ks_{t-1}$$

for some $s_i \in J(R)$ as k-vector spaces. Since $r^{t+1} = 0$ and $r^t \neq 0$, the following elements are all distinct:

$$r, \alpha_1 r^2, \alpha_2 r^3, ..., \alpha_{t-1} r^t \quad (\alpha_i \neq 0 \in k).$$

Now, let $B = k[\operatorname{soc}(R) \oplus kr^t]$. Then

$$J(B) = \operatorname{soc}(R) \oplus kr^t$$
.

Since $r^t \operatorname{soc}(R) = (0)$ and $r^t r^t = 0$, we have $r^t J(B) = (0)$ which implies

$$r^t \in \operatorname{soc}(B) - \{0\}.$$

$$J(B)r = (0).$$

Moreover

$$J(B)r = (0)$$

By the definition of B,

$$\dim_k(R) = \dim_k(B) + (t-1).$$

Thus by letting x = r and p = t, the algebra R satisfies the three conditions in Theorem 2.5 and hence R is a C_2 -construction.

Example 3.7. Let $R = k[E_{21} + E_{32}]$. Then the algebra R is a k-subalgebra in $MC_3(k)$. Moreover, $\dim_k(J(R)/\operatorname{soc}(R)) = 1$. If we let r = E_{31} , then $r^2 = 0$ and $r \neq 0$. Therefore, if we let t = 1, then by Theorem 3.6, the algebra R is a C_2 -construction.

Theorem 3.8. Suppose $(R, J(R), k) \in MC_n(k)$ and $\dim_k(J(R)/\operatorname{soc}(R))$ = t for some positive integer t. If there exists an element $r \in J(R) - soc(R)$ such that $r^{t+2} = 0$ and $r^{t+1} \neq 0$, then R is a C_2 -construction.

Proof. Since $\dim_k(J(R)/\operatorname{soc}(R)) = t$, the maximal ideal J(R) can be expressed as follows:

$$J(R) = \operatorname{soc}(R) \oplus kr \oplus ks_1 \oplus \cdots \oplus ks_{t-1}$$

for some $s_i \in J(R)$ as k-vector spaces. Let $B = k[\operatorname{soc}(R)]$. Then

$$J(B) = soc(R) = soc(B).$$

Since $r^{t+1} \in J(R)$, $r^{t+1}\operatorname{soc}(R) = (0)$ and hence $r^{t+1}J(B) = (0)$. Thus $r^{t+1} \in \operatorname{soc}(B) - \{0\}$. Obviously, we have

$$J(B)r = soc(R)r = (0).$$

Since $B = k[\operatorname{soc}(R)]$, we have

$$\dim_k(R) = \dim_k(soc(R)) + 1 + (t-1) + 1 = \dim_k(B) + t.$$

Thus, by letting x = r and p = t + 1, the algebra R satisfies the three conditions in Theorem 2.5 and we conclude R is a C_2 -construction.

Example 3.9. Let $R = k[E_{21} + E_{32}, E_{31}, E_{41}]$. Then the algebra R is a k-subalgebra in $MC_4(k)$. Moreover, $\dim_k(J(R)/\operatorname{soc}(R)) = 1$. If we let $r = E_{21} + E_{32}$, then $r^2 = E_{31} \neq 0$ and $r^3 = 0$. Therefore, if we let t = 1, then by Theorem 3.8, the algebra R is a C_2 -construction.

References

- [1] W. C. Brown and F. W. Call, Maximal commutative subalgebras of $n \times n$ matrices, Comm. Algebra 21(12) (1993), 4439-4460.
- [2] W. C. Brown, Two constructions of maximal commutative subalgebras of n×n matrices, Comm. Algebra 22(10) (1994), 4051-4066.
- [3] W. C. Brown, Constructing maximal commutative subalgebras of matrix rings in small dimensions, Comm. Algebra 25(12) (1997), 3923-3946.
- [4] R. C. Courter, The dimension of maximal commutative subalgebras of K_n , Duke Math. J. 32 (1965), 225-232.
- [5] R. C. Courter, Maximal commutative subalgebras of K_n at exponent three, Linear Algebra Appl. 6 (1973), 1-11.

- [6] T. J. Laffey, The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra Appl. 71 (1985), 199-212.
- [7] Youngkwon Song, On the maximal commutative subalgebras of 14 by 14 matrices, Comm. Algebra 25(12) (1997), 3823-3840.
- [8] Youngkwon Song, Maximal commutative subalgebras of matrix algebras, Comm. Algebra 27(4) (1999), 1649-1663.
- [9] Youngkwon Song, Notes on the constructions of maximal commutative subalgebra of $M_n(k)$, Comm. Algebra 29(10) (2001), 4333-4339.
- [10] D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic Press, 1968.

Department of Mathematics Research Institute of Basic Science Kwangwoon University Seoul 139-701, Korea

WWW.PPhrnil.com