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Abstract

Let (R, J(R), k) be a local commutative k-subalgebra of M, (k) with
nilpotent maximal ideal J(R) and residue class field k. In this paper,
we classify maximal commutative k-subalgebras of M, (k) up to

C -construction and Cy -construction according to dimp(J(R)/soc(R)).

1. Introduction

In this paper, k denotes an arbitrary field and (R, J(R), k) denotes a
local commutative k-subalgebra of M, (k) with nilpotent maximal ideal
J(R) and residue class field k. We denote the set of all local maximal
commutative k-subalgebras of M, (k) by MC,, (k).

Brown and Call introduced Cj-construction and Brown introduced
Cy -construction [1, 2]. These constructions are useful to construct
maximal commutative k-subalgebras of M, (k) having dimension less

than the size n of matrices.
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In Section 3, we classify the k-algebra R in MC,(k) up to
C; -construction and Cj-construction according to dimension of

J(R)/soc(R), where soc(R) is the socle of R.

2. Theorems Prerequisite to the Main Results

In this section, we will restate the definitions and some related

properties of Cj -construction and Csy -construction.

Let (B, J(B), k) be a finite dimensional commutative k-algebra with
identity and N be a finitely generated faithful B-module. For a natural
number /, R = B® N' is a commutative k-algebra and M = B'® N is

a faithful R-module via the following multiplications:
a(b, ny, ..., ny) = (ab, any, ..., an;),
(b, nyy oo, 1)@, 1, ..oy ny) = (B, Mb' + 01D, ..., nb' + n)b),

4

(b1, ey by, 1), My, ey ) = | Bib, oy by, M+ D iy |,
=1

where o € k, b, b; € B, and n, n;, n; e N fori =1, 2, ..., /.

Then R = Hompg(M, M) via the regular representation. Thus R is in
MC,,(k), where n = dim(M).

Definition 2.1. The k-algebra R defined above is called a
C; -construction.

Let R be a commutative k-algebra. Then R is a Cj -construction if R
has an ideal I satisfying the conditions in the following theorem. The
proof can be found in [1].

Theorem 2.2. Suppose (R, J(R), k) is a commutative k-algebra.
Then R is a Cy-construction if and only if there is an ideal I satisfying the

following conditions:

(1) Anng(I) = 1.
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(2) 0 > I - R — R/I - 0 splits as k-algebras.

Theorem 2.3. Suppose (B, J(B), k) is a finite dimensional

commutative k-algebra with identity and N is a finitely generated faithful
B-module. Suppose B = Hompg(N, N) via the regular representation.

Then there exists an element w € soc(B) with dim(Nw) = 1.

Definition 2.4. Let (B, J(B), k) be a finite dimensional commutative
k-algebra with identity. If R = B[X]/(J(B)X, X? —w) for some w e
soc(B) — {0} and a positive integer p > 1, then we say that the k-algebra
R is a Cy-construction.

Theorem 2.5 is an equivalent condition for a k-algebra R to be a

C, -construction. The proof can be found in [3].

Theorem 2.5. Suppose (R, J(R), k) is a commutative k-algebra.
Then R is a Cg-construction if and only if R contains a commutative
k-subalgebra (B, J(B), k) and an element x € J(R) satisfying the
following conditions:

(1) 0 # xP € soc(B) for some positive integer p > 1.

@) J(B)x = (0).

3) dim,(R) = dimy,(B) + (p - 1).

3. Classifications

In this section, we will classify the algebra R in MC, (k) up to
C; -construction and Cy -construction according to dimy(J(R)/soc(R)). If
i(J(R)), the index of nilpotency of J(R), is two, then obviously R is a
C; -construction, but not a Cy -construction. Thus we will assume i(J(R))

> 3 in this section.

The following theorem can be found in [3].

Theorem 3.1. Suppose (R, J(R), k) e MC, (k) and dimj,(J(R)/soc(R))

=1. Then R is a Cy-construction but not a C; -construction.
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Example 3.2. Let R = k[Ey; + E39, E3q, E4q, E51, Eg;]. Then the
algebra R is in MCg(k) and soc(R) = (Esy, E41, E51, Egy), the ideal
generated by elements Es;, E4;, E5;, Eg;. Thus dim(J(R)/soc(R)) =1
and by Theorem 3.1, the algebra R is a Cj-construction but not a
C; -construction. In fact, if we let B = k[Es;, E4q, E5;, Eg;]. Then
mp = (Egy, Ey41, E51, Eg1). Since J(B) = soc(R), by letting x = Eqgy +

E39 and p = 2, the conditions in Theorem 2.4 are obviously satisfied.

The conditions for an algebra R to be a Cj-construction or

C, -construction is now naturally asked in the case of dim(J(R)/soc(R))
> 1.

Theorem 3.3. Suppose (R, J(R), k) e MC, (k) and dim(J(R)/soc(R))

= 2. Then r2 = 0 forall r € J(R) if and only if R is a Cy -construction.

Proof. Let dimj(J(R)) = m and let soc(R) be generated by the
elements sp, Sg, ..., S,,_9, for some s; € soc(R), i=1,.., m—-2. Then
there exist elements r, rp € J(R)—soc(R) such that the m vectors
", T, 81, ..., Sy_g generate J(R). Let x and y be in k with
(x, ¥) # (0, 0) and let I be an ideal generated by xr + yry, sy, ..., Sy_9-
Then by the hypothesis, we have I% =(0) and so I c Ann r(I). Note that
soc(R)c I. Now let r € Annp(I)- soc(R). Then for some x; € k, the
element r is in the following form:

m
ro=x1 + Xoly + insi_g, (21, x9) = (0, 0).

=3
Moreover

0 =r(xn +ymp) = (x17 + xamp) (X1 + y12) = (1Y + X9X)1y7y.

If iy = 0, then J(R)? = (0) which is impossible since i(J(R)) > 3. Thus
rnry # 0 and so x;y + x9x = 0. Since (x, y)# (0,0), we have either

x #0 or y # 0. If we assume x # 0, then

6 = (mxHx, xg = —(xx )y



ALGEBRAS IN MC,, (k) 439

If we assume y # 0, then
_ -1 _ -1
xp = (=297 )%, xg = —(=x9y7") .

This implies x;7 + xory = t(xr; — yry) for some t € k. Since (1 + yry )
=0, we have 2ynr, = 0. But nry # 0 and hence 2y = 0 which implies
y = —-y. Thus

X1+ Xory = t(xry + yry)

which implies r € I. Therefore I is an ideal of R satisfying Anng(I) = I.

Now, consider the following exact sequence:

v
0—>1—>R->R/I > 0.

Here v: R — R/I is the natural homomorphism. In the element xry +

yry € I, we may assume x # 0. Since xr; + yry € I, we have
0 = v(xn + yry) = av(n) + yv(ry).

Thus v(11) = (~x 1y)v(ry). This implies R/I = k[v(r;)]. Now define a map
u: R/I - R by u(v(rg)) =1y, wla) =a for all a € k. Obviously, p is a
k-algebra homomorphism and

vi(av(ry)) = v(ary) = av(ry).
Thus vu is the identity homomorphism on R/I and hence the exact

sequence splits as k-algebras. Therefore R is a C; -construction.

Conversely, suppose R is a Cj-construction. Then there exists an
ideal I satisfying Anng(I)=1. If sesoc(R), then sI =(0) and hence s €
Anng(I) = I. This implies soc(R) c I < J(R). Since dim(J(R)/soc(R))
= 2, there are following three cases:

Case 1. dimy(I/soc(R)) = 2 and dimy(J(R)/I) = 0.

Case 2. dimy(I/soc(R)) = 0 and dimj(J(R)/I) = 2.

Case 3. dimy(I/soc(R)) = 1 and dim(J(R)/I) = 1.
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First of all, case 1 is impossible since i(J(R)) > 3. In case 2, r e
J(R) implies rI =rsoc(R)=(0) and hence r e Annp(I)= 1. Thus
J(R) = I which is also impossible. Thus we have only the case 3. Let
red(R)-1. Since dim,(J(R)/I)=1, we have J(R)=1®kr as

2

k-vector spaces. Thus r“ = s+ ar for some sl and a € k. If a =0, then

r—ol, is a unit and so r =s(r—al,)". But then r e I which is

2

impossible. Thus o =0 and r° =s e I. From the hypothesis, the

following exact sequence splits as k-algebras via the k-algebra
homomorphism p : R/T — R,

A%
0—>1—->R—->R/I ->0.

Here v : R — R/I is the natural homomorphism. Note u(r + I)=r+n

for some r; € I. Moreover, we have

0=n(r+I72=r2+rd+2rm =r(r+2n).

Here r +2r € J(R) but r € 2r, ¢ I. Since dimy(J(R)/I) =1, we have

r +2r = pr for some nonzero B in k. Thus

BrZ = r(r +2r) = 0.
Since B # 0, we have r? = 0. Moreover, I? = (0) implies 7% = 0 for all
r e J(R).

Example 3.4. Suppose k is a field of characteristic two. Let R =
k[Ey, + Eu3, E31 + E49, E41]. Then the algebra R is in  MCy(k).
Moreover, we have dimy,(J(R)/soc(R)) = 2, i(J(R)) = 3, and r? =0 for
all r € J(R). Thus R is a C -construction by Theorem 3.3.

Example 3.5. Let R = k[E21 + E32 + E43, E31 + E42, E41, E51].
Then R is in MCj(k), dimj(J(R)/soc(R)) = 2, and i(J(R)) = 4. If we let

r=a(Ey + E3s + Eg3) for some a #0 ek, then r? = 0. Thus the

algebra R is not a Cj -construction by Theorem 3.3.
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Theorem 3.6. Suppose (R, J(R), k) e MC,,(k) and dimj,(J(R)/soc(R))

=t for some positive integer t. If there exists an element r € J(R)— soc(R)
such that r'*' = 0 and r' %0, thenRisa C,, -construction.

Proof. Since dimy(J(R)/soc(R)) = ¢, the maximal ideal J(R) can be

expressed as follows:

J(R) = soc(R)® kr ® ks; © -+ @ ks;_;
for some s; € J(R) as k-vector spaces. Since Pl =0 and r’ %0, the
following elements are all distinct:

r,oqr?, agrd, . apqrt (a; # 0 € k).
Now, let B = k[soc(R) ® kr']. Then

J(B) = soc(R) @ kr'.
Since r‘soc(R) = (0) and r'r' = 0, we have r’J(B) = (0) which implies
rt e soc(B) - {0}.
Moreover
J(B)r = (0).
By the definition of B,
dim(R) = dimy(B) + (¢t - 1).

Thus by letting x =r and p =t, the algebra R satisfies the three
conditions in Theorem 2.5 and hence R is a C5 -construction.

Example 3.7. Let R = k[Ey; + E35]. Then the algebra R is a
k-subalgebra in MC5(k). Moreover, dimy(J(R)/soc(R)) = 1. If we let r =
Esq, then r2 = 0 and r # 0. Therefore, if we let ¢ = 1, then by Theorem
3.6, the algebra R is a Cy -construction.

Theorem 3.8. Suppose (R, J(R), k) e MC,,(k) and dim(J(R)/soc(R))
=t for some positive integer t. If there exists an element r € J(R)— soc(R)

such that r'*2 = 0 and r'*' = 0, then R is a Cy-construction.
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Proof. Since dimj(J(R)/soc(R)) = ¢, the maximal ideal J(R) can be

expressed as follows:

J(R) = soc(R)® kr ® ks; ® - @ ks;_;

for some s; € J(R) as k-vector spaces. Let B = k[soc(R)]. Then

J(B) = soc(R) = soc(B).

Since r'*! € J(R), r'*'soc(R) = (0) and hence r'*1J(B) = (0). Thus r'*!
€ soc(B) — {0}. Obviously, we have

J(B)r = soc(R)r = (0).

Since B = k[soc(R)], we have

dimy(R) = dimp(soc(R)) +1 + (¢t —=1) + 1 = dimj(B) + ¢.

Thus, by letting x = r and p =t +1, the algebra R satisfies the three

conditions in Theorem 2.5 and we conclude R is a C, -construction.

Example 3.9. Let R = k[Eq; + E39, E3;, E41]. Then the algebra R is

a k-subalgebra in MC4(k). Moreover, dimj(J(R)/soc(R)) = 1. If we let

r = Eg + Egg, then r?2 = E3; =0 and r® = 0. Therefore, if we let

t =1, then by Theorem 3.8, the algebra R is a Cy -construction.
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