ALGEBRAS IN $M C_{n}(k)$ YOUNGKWON SONG

(Received September 1, 2006)

Submitted by K. K. Azad

Abstract

Let $(R, J(R), k)$ be a local commutative k-subalgebra of $M_{n}(k)$ with nilpotent maximal ideal $J(R)$ and residue class field k. In this paper, we classify maximal commutative k-subalgebras of $M_{n}(k)$ up to C_{1}-construction and C_{2}-construction according to $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))$.

1. Introduction

In this paper, k denotes an arbitrary field and $(R, J(R), k)$ denotes a local commutative k-subalgebra of $M_{n}(k)$ with nilpotent maximal ideal $J(R)$ and residue class field k. We denote the set of all local maximal commutative k-subalgebras of $M_{n}(k)$ by $M C_{n}(k)$.

Brown and Call introduced C_{1}-construction and Brown introduced C_{2}-construction [1, 2]. These constructions are useful to construct maximal commutative k-subalgebras of $M_{n}(k)$ having dimension less than the size n of matrices.

[^0]In Section 3, we classify the k-algebra R in $M C_{n}(k)$ up to C_{1}-construction and C_{2}-construction according to dimension of $J(R) / \operatorname{soc}(R)$, where $\operatorname{soc}(R)$ is the socle of R.

2. Theorems Prerequisite to the Main Results

In this section, we will restate the definitions and some related properties of C_{1}-construction and C_{2}-construction.

Let $(B, J(B), k)$ be a finite dimensional commutative k-algebra with identity and N be a finitely generated faithful B-module. For a natural number $\ell, R=B \oplus N^{\ell}$ is a commutative k-algebra and $M=B^{\ell} \oplus N$ is a faithful R-module via the following multiplications:

$$
\begin{aligned}
\alpha\left(b, n_{1}, \ldots, n_{\ell}\right) & =\left(\alpha b, \alpha n_{1}, \ldots, \alpha n_{\ell}\right) \\
\left(b, n_{1}, \ldots, n_{\ell}\right)\left(b^{\prime}, n_{1}^{\prime}, \ldots, n_{\ell}\right) & =\left(b b^{\prime}, n_{1} b^{\prime}+n_{1}^{\prime} b, \ldots, n_{\ell} b^{\prime}+n_{\ell}^{\prime} b\right) \\
\left(b_{1}, \ldots, b_{\ell}, n\right)\left(b, n_{1}, \ldots, n_{\ell}\right) & =\left(b_{1} b, \ldots, b_{\ell} b, n b+\sum_{i=1}^{\ell} n_{i} b_{i}\right)
\end{aligned}
$$

where $\alpha \in k, b, b_{i} \in B$, and $n, n_{i}, n_{i}^{\prime} \in N$ for $i=1,2, \ldots, \ell$.
Then $R \cong \operatorname{Hom}_{R}(M, M)$ via the regular representation. Thus R is in $M C_{n}(k)$, where $n=\operatorname{dim}_{k}(M)$.

Definition 2.1. The k-algebra R defined above is called a C_{1}-construction.

Let R be a commutative k-algebra. Then R is a C_{1}-construction if R has an ideal I satisfying the conditions in the following theorem. The proof can be found in [1].

Theorem 2.2. Suppose $(R, J(R), k)$ is a commutative k-algebra. Then R is a C_{1}-construction if and only if there is an ideal I satisfying the following conditions:
(1) $\operatorname{Ann}_{R}(I)=I$.
(2) $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ splits as k-algebras.

Theorem 2.3. Suppose $(B, J(B), k)$ is a finite dimensional commutative k-algebra with identity and N is a finitely generated faithful B-module. Suppose $B \cong \operatorname{Hom}_{B}(N, N)$ via the regular representation. Then there exists an element $w \in \operatorname{soc}(B)$ with $\operatorname{dim}_{k}(N w)=1$.

Definition 2.4. Let $(B, J(B), k)$ be a finite dimensional commutative k-algebra with identity. If $R \cong B[X] /\left(J(B) X, X^{p}-w\right)$ for some $w \in$ $\operatorname{soc}(B)-\{0\}$ and a positive integer $p>1$, then we say that the k-algebra R is a C_{2}-construction.

Theorem 2.5 is an equivalent condition for a k-algebra R to be a C_{2}-construction. The proof can be found in [3].

Theorem 2.5. Suppose $(R, J(R), k)$ is a commutative k-algebra. Then R is a C_{2}-construction if and only if R contains a commutative k-subalgebra $(B, J(B), k)$ and an element $x \in J(R)$ satisfying the following conditions:
(1) $0 \neq x^{p} \in \operatorname{soc}(B)$ for some positive integer $p>1$.
(2) $J(B) x=(0)$.
(3) $\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+(p-1)$.

3. Classifications

In this section, we will classify the algebra R in $M C_{n}(k)$ up to C_{1}-construction and C_{2}-construction according to $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))$. If $i(J(R)$), the index of nilpotency of $J(R)$, is two, then obviously R is a C_{1}-construction, but not a C_{2}-construction. Thus we will assume $i(J(R))$ ≥ 3 in this section.

The following theorem can be found in [3].
Theorem 3.1. Suppose $(R, J(R), k) \in M C_{n}(k)$ and $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))$ $=1$. Then R is a C_{2}-construction but not a C_{1}-construction.

Example 3.2. Let $R=k\left[E_{21}+E_{32}, E_{31}, E_{41}, E_{51}, E_{61}\right]$. Then the algebra R is in $M C_{6}(k)$ and $\operatorname{soc}(R)=\left(E_{31}, E_{41}, E_{51}, E_{61}\right)$, the ideal generated by elements $E_{31}, E_{41}, E_{51}, E_{61}$. Thus $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))=1$ and by Theorem 3.1, the algebra R is a C_{2}-construction but not a C_{1}-construction. In fact, if we let $B=k\left[E_{31}, E_{41}, E_{51}, E_{61}\right]$. Then $m_{B}=\left(E_{31}, E_{41}, E_{51}, E_{61}\right)$. Since $J(B)=\operatorname{soc}(R)$, by letting $x=E_{21}+$ E_{32} and $p=2$, the conditions in Theorem 2.4 are obviously satisfied.

The conditions for an algebra R to be a C_{1}-construction or C_{2}-construction is now naturally asked in the case of $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))$ >1.

Theorem 3.3. Suppose $(R, J(R), k) \in M C_{n}(k)$ and $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))$ = 2. Then $r^{2}=0$ for all $r \in J(R)$ if and only if R is a C_{1}-construction.

Proof. Let $\operatorname{dim}_{k}(J(R))=m$ and let $\operatorname{soc}(R)$ be generated by the elements $s_{1}, s_{2}, \ldots, s_{m-2}$, for some $s_{i} \in \operatorname{soc}(R), i=1, \ldots, m-2$. Then there exist elements $r_{1}, r_{2} \in J(R)-\operatorname{soc}(R)$ such that the m vectors $r_{1}, r_{2}, s_{1}, \ldots, s_{m-2}$ generate $J(R)$. Let x and y be in k with $(x, y) \neq(0,0)$ and let I be an ideal generated by $x r_{1}+y r_{2}, s_{1}, \ldots, s_{m-2}$. Then by the hypothesis, we have $I^{2}=(0)$ and so $I \subseteq \operatorname{Ann}_{R}(I)$. Note that $\operatorname{soc}(R) \subseteq I$. Now let $r \in \operatorname{Ann}_{R}(I)-\operatorname{soc}(R)$. Then for some $x_{i} \in k$, the element r is in the following form:

$$
r=x_{1} r_{1}+x_{2} r_{2}+\sum_{i=3}^{m} x_{i} s_{i-2},\left(x_{1}, x_{2}\right) \neq(0,0) .
$$

Moreover

$$
0=r\left(x r_{1}+y r_{2}\right)=\left(x_{1} r_{1}+x_{2} r_{2}\right)\left(x r_{1}+y r_{2}\right)=\left(x_{1} y+x_{2} x\right) r_{1} r_{2} .
$$

If $r_{1} r_{2}=0$, then $J(R)^{2}=(0)$ which is impossible since $i(J(R)) \geq 3$. Thus $r_{1} r_{2} \neq 0$ and so $x_{1} y+x_{2} x=0$. Since $(x, y) \neq(0,0)$, we have either $x \neq 0$ or $y \neq 0$. If we assume $x \neq 0$, then

$$
x_{1}=\left(x_{1} x^{-1}\right) x, \quad x_{2}=-\left(x_{1} x^{-1}\right) y .
$$

If we assume $y \neq 0$, then

$$
x_{1}=\left(-x_{2} y^{-1}\right) x, \quad x_{2}=-\left(-x_{2} y^{-1}\right) y .
$$

This implies $x_{1} r_{1}+x_{2} r_{2}=t\left(x r_{1}-y r_{2}\right)$ for some $t \in k$. Since $\left(r_{1}+y r_{2}\right)^{2}$ $=0$, we have $2 y r_{1} r_{2}=0$. But $r_{1} r_{2} \neq 0$ and hence $2 y=0$ which implies $y=-y$. Thus

$$
x_{1} r_{1}+x_{2} r_{2}=t\left(x r_{1}+y r_{2}\right)
$$

which implies $r \in I$. Therefore I is an ideal of R satisfying $\operatorname{Ann}_{R}(I)=I$. Now, consider the following exact sequence:

$$
0 \rightarrow I \rightarrow R \stackrel{\vee}{\rightarrow} R / I \rightarrow 0 .
$$

Here $v: R \rightarrow R / I$ is the natural homomorphism. In the element $x r_{1}+$ $y r_{2} \in I$, we may assume $x \neq 0$. Since $x r_{1}+y r_{2} \in I$, we have

$$
0=v\left(x r_{1}+y r_{2}\right)=x v\left(r_{1}\right)+y v\left(r_{2}\right) .
$$

Thus $v\left(r_{1}\right)=\left(-x^{-1} y\right) v\left(r_{2}\right)$. This implies $R / I=k\left[v\left(r_{2}\right)\right]$. Now define a map $\mu: R / I \rightarrow R$ by $\mu\left(v\left(r_{2}\right)\right)=r_{2}, \mu(\alpha)=\alpha$ for all $\alpha \in k$. Obviously, μ is a k-algebra homomorphism and

$$
v \mu\left(\alpha v\left(r_{2}\right)\right)=v\left(\alpha r_{2}\right)=\alpha v\left(r_{2}\right) .
$$

Thus $v \mu$ is the identity homomorphism on R / I and hence the exact sequence splits as k-algebras. Therefore R is a C_{1}-construction.

Conversely, suppose R is a C_{1}-construction. Then there exists an ideal I satisfying $\operatorname{Ann}_{R}(I)=I$. If $s \in \operatorname{soc}(R)$, then $s I=(0)$ and hence $s \in$ $\operatorname{Ann}_{R}(I)=I$. This implies $\operatorname{soc}(R) \subseteq I \subseteq J(R)$. Since $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))$ $=2$, there are following three cases:

Case 1. $\operatorname{dim}_{k}(I / \operatorname{soc}(R))=2$ and $\operatorname{dim}_{k}(J(R) / I)=0$.
Case $2 . \operatorname{dim}_{k}(I / \operatorname{soc}(R))=0$ and $\operatorname{dim}_{k}(J(R) / I)=2$.
Case 3. $\operatorname{dim}_{k}(I / \operatorname{soc}(R))=1$ and $\operatorname{dim}_{k}(J(R) / I)=1$.

First of all, case 1 is impossible since $i(J(R)) \geq 3$. In case $2, r \in$ $J(R)$ implies $r I=r \operatorname{soc}(R)=(0)$ and hence $r \in \operatorname{Ann}_{R}(I)=I$. Thus $J(R)=I$ which is also impossible. Thus we have only the case 3 . Let $r \in J(R)-I . \quad$ Since $\quad \operatorname{dim}_{k}(J(R) / I)=1$, we have $\quad J(R)=I \oplus k r \quad$ as k-vector spaces. Thus $r^{2}=s+\alpha r$ for some $s \in I$ and $\alpha \in k$. If $\alpha \neq 0$, then $r-\alpha I_{n}$ is a unit and so $r=s\left(r-\alpha I_{n}\right)^{-1}$. But then $r \in I$ which is impossible. Thus $\alpha=0$ and $r^{2}=s \in I$. From the hypothesis, the following exact sequence splits as k-algebras via the k-algebra homomorphism $\mu: R / I \rightarrow R$,

$$
0 \rightarrow I \rightarrow R \stackrel{v}{\rightarrow} R / I \rightarrow 0
$$

Here $v: R \rightarrow R / I$ is the natural homomorphism. Note $\mu(r+I)=r+r_{1}$ for some $r_{1} \in I$. Moreover, we have

$$
0=\mu(r+I)^{2}=r^{2}+r_{1}^{2}+2 r r_{1}=r\left(r+2 r_{1}\right)
$$

Here $r+2 r_{1} \in J(R)$ but $r \in 2 r_{1} \notin I$. Since $\operatorname{dim}_{k}(J(R) / I)=1$, we have $r+2 r_{1}=\beta r$ for some nonzero β in k. Thus

$$
\beta r^{2}=r\left(r+2 r_{1}\right)=0
$$

Since $\beta \neq 0$, we have $r^{2}=0$. Moreover, $I^{2}=(0)$ implies $r^{2}=0$ for all $r \in J(R)$.

Example 3.4. Suppose k is a field of characteristic two. Let $R=$ $k\left[E_{21}+E_{43}, E_{31}+E_{42}, E_{41}\right]$. Then the algebra R is in $M C_{4}(k)$. Moreover, we have $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))=2, \quad i(J(R))=3$, and $r^{2}=0$ for all $r \in J(R)$. Thus R is a C_{1}-construction by Theorem 3.3.

Example 3.5. Let $R=k\left[E_{21}+E_{32}+E_{43}, E_{31}+E_{42}, E_{41}, E_{51}\right]$. Then R is in $M C_{5}(k), \operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))=2$, and $i(J(R))=4$. If we let $r=a\left(E_{21}+E_{32}+E_{43}\right)$ for some $a \neq 0 \in k$, then $r^{2} \neq 0$. Thus the algebra R is not a C_{1}-construction by Theorem 3.3.

Theorem 3.6. Suppose $(R, J(R), k) \in M C_{n}(k)$ and $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))$ $=t$ for some positive integer t. If there exists an element $r \in J(R)-\operatorname{soc}(R)$ such that $r^{t+1}=0$ and $r^{t} \neq 0$, then R is a C_{2}-construction.

Proof. Since $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))=t$, the maximal ideal $J(R)$ can be expressed as follows:

$$
J(R)=\operatorname{soc}(R) \oplus k r \oplus k s_{1} \oplus \cdots \oplus k s_{t-1}
$$

for some $s_{i} \in J(R)$ as k-vector spaces. Since $r^{t+1}=0$ and $r^{t} \neq 0$, the following elements are all distinct:

$$
r, \alpha_{1} r^{2}, \alpha_{2} r^{3}, \ldots, \alpha_{t-1} r^{t} \quad\left(\alpha_{i} \neq 0 \in k\right)
$$

Now, let $B=k\left[\operatorname{soc}(R) \oplus k r^{t}\right]$. Then

$$
J(B)=\operatorname{soc}(R) \oplus k r^{t}
$$

Since $r^{t} \operatorname{soc}(R)=(0)$ and $r^{t} r^{t}=0$, we have $r^{t} J(B)=(0)$ which implies

$$
r^{t} \in \operatorname{soc}(B)-\{0\}
$$

Moreover

$$
J(B) r=(0)
$$

By the definition of B,

$$
\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+(t-1)
$$

Thus by letting $x=r$ and $p=t$, the algebra R satisfies the three conditions in Theorem 2.5 and hence R is a C_{2}-construction.

Example 3.7. Let $R=k\left[E_{21}+E_{32}\right]$. Then the algebra R is a k-subalgebra in $M C_{3}(k)$. Moreover, $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))=1$. If we let $r=$ E_{31}, then $r^{2}=0$ and $r \neq 0$. Therefore, if we let $t=1$, then by Theorem 3.6 , the algebra R is a C_{2}-construction.

Theorem 3.8. Suppose $(R, J(R), k) \in M C_{n}(k)$ and $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))$ $=t$ for some positive integer t. If there exists an element $r \in J(R)-\operatorname{soc}(R)$ such that $r^{t+2}=0$ and $r^{t+1} \neq 0$, then R is a C_{2}-construction.

Proof. Since $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))=t$, the maximal ideal $J(R)$ can be expressed as follows:

$$
J(R)=\operatorname{soc}(R) \oplus k r \oplus k s_{1} \oplus \cdots \oplus k s_{t-1}
$$

for some $s_{i} \in J(R)$ as k-vector spaces. Let $B=k[\operatorname{soc}(R)]$. Then

$$
J(B)=\operatorname{soc}(R)=\operatorname{soc}(B)
$$

Since $r^{t+1} \in J(R), r^{t+1} \operatorname{soc}(R)=(0)$ and hence $r^{t+1} J(B)=(0)$. Thus r^{t+1} $\in \operatorname{soc}(B)-\{0\}$. Obviously, we have

$$
J(B) r=\operatorname{soc}(R) r=(0)
$$

Since $B=k[\operatorname{soc}(R)]$, we have

$$
\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(\operatorname{soc}(R))+1+(t-1)+1=\operatorname{dim}_{k}(B)+t
$$

Thus, by letting $x=r$ and $p=t+1$, the algebra R satisfies the three conditions in Theorem 2.5 and we conclude R is a C_{2}-construction.

Example 3.9. Let $R=k\left[E_{21}+E_{32}, E_{31}, E_{41}\right]$. Then the algebra R is a k-subalgebra in $M C_{4}(k)$. Moreover, $\operatorname{dim}_{k}(J(R) / \operatorname{soc}(R))=1$. If we let $r=E_{21}+E_{32}$, then $r^{2}=E_{31} \neq 0$ and $r^{3}=0$. Therefore, if we let $t=1$, then by Theorem 3.8, the algebra R is a C_{2}-construction.

References

[1] W. C. Brown and F. W. Call, Maximal commutative subalgebras of $n \times n$ matrices, Comm. Algebra 21(12) (1993), 4439-4460.
[2] W. C. Brown, Two constructions of maximal commutative subalgebras of $n \times n$ matrices, Comm. Algebra 22(10) (1994), 4051-4066.
[3] W. C. Brown, Constructing maximal commutative subalgebras of matrix rings in small dimensions, Comm. Algebra 25(12) (1997), 3923-3946.
[4] R. C. Courter, The dimension of maximal commutative subalgebras of K_{n}, Duke Math. J. 32 (1965), 225-232.
[5] R. C. Courter, Maximal commutative subalgebras of K_{n} at exponent three, Linear Algebra Appl. 6 (1973), 1-11.
[6] T. J. Laffey, The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra Appl. 71 (1985), 199-212.
[7] Youngkwon Song, On the maximal commutative subalgebras of 14 by 14 matrices, Comm. Algebra 25(12) (1997), 3823-3840.
[8] Youngkwon Song, Maximal commutative subalgebras of matrix algebras, Comm. Algebra 27(4) (1999), 1649-1663.
[9] Youngkwon Song, Notes on the constructions of maximal commutative subalgebra of $M_{n}(k)$, Comm. Algebra 29(10) (2001), 4333-4339.
[10] D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic Press, 1968.

Department of Mathematics
Research Institute of Basic Science
Kwangwoon University
Seoul 139-701, Korea

[^0]: 2000 Mathematics Subject Classification: 15A27, 15A33.
 Keywords and phrases: C_{1}-construction, C_{2}-construction.
 The present research has been conducted by the Research Grant of Kwangwoon University in 2006.

