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Abstract

Let F be a field and let n, p;, p9, p3 be positive integers such that

n = p; + pg + p3g. Let

C1 G C3
C = C2,1 02,2 C2,3 € ann’
C31 C32 G333

where the blocks C; ; are of type p; x pj, i,je{l,2, 3} and Cyj,
C2’2 and C3’3 are square submatrices. In this paper we establish

conditions for which it is possible to prescribe arbitrarily the

characteristic polynomial of C, when Cy 1, C 9 and Cg 3 are fixed and

the remaining blocks vary.

1. Introduction

The problem studied in this paper is inserted in the Matrix
Completion Problems. A particular case of this type of problems was
proposed by G. N. Oliveira in 1975 [6].
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Let F be a field. Then we denote by FP*? the set of all matrices of
type p x q, with entries in F.

Problem [6]. Let n, p, g be positive integers such that n = p + ¢g. Let
f(x) € F[x] be a monic polynomial of degree n. Let
A1 A
Ag1 Az

A = S ann, (1)

be a partitioned matrix, where A; ; € FP*P, Ay 4 € F7*?. Suppose that

some of the blocks A; ;, i, j € {1, 2}, are known. Under which conditions

22
does there exist a matrix of the form (1) with characteristic polynomial

flx)?

Many authors have studied this problem, see for example [5, 6, 7, 9,
10, 11, 14]. It is important to emphasize that the problem is completely
solved for some prescription of blocks, however there are cases for which

there are only partial solutions. Concerning the prescription of 4; ;, 4; o

and Ay, there is no answer.

Our aim is to generalize the previous problem to a matrix partitioned

into 3 x 3 blocks. Let n, p;, py, p3 be positive integers such that n = p;

+pg + pgandlet C; ; € FPPPi i e {1, 2, 3). We start by studying the

possible characteristic polynomials of a matrix of the form

Ci1 G GC3
C=|Cyy Cyy Cyg|eF™", 2)
C31 Cg9 (33

when some of the blocks C; ; are prescribed and the others vary, over an

i,J
algebraically closed field. This problem is equivalent to describe the
possible eigenvalues of (2), for the same prescription of blocks. Obviously
we obtain several problems, according to the prescription of some blocks

of C.
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Recently [2], we studied the possible eigenvalues of (2), when C; s,
C13 and Cy; are prescribed and the remaining blocks vary. In [1] we
also described the list of the eigenvalues of (2), when C; ;, C; 9 and Cg 3
are prescribed and the other blocks vary.

In this paper we had the purpose to study the possible eigenvalues of
(2), when C; 1, Cg 9 and Cy 3 are prescribed and the remaining blocks

vary. The approach used, allows us to solve the more general problem, of
describing the possible characteristic polynomials of (2), for the same
prescription of blocks (i.e., C;;, Cy 9 and Cy 3 are prescribed and the

other blocks vary). Note that this situation is more general because still

covers the case where the eigenvalues are outside of the field F.
2. Preliminaries

Let F'be a field.

Let D = F or D = F[x] and let m, n be positive integers. We denote
by D™ the set of all matrices in D of type m x n.

The symbol | is used in the following way: if f(x), g(x) € F|x], then

f(x)| g(x) means “f(x) divides g(x)”.

Let R be the set of all monic polynomials in F[x] and the zero

polynomial.

Definition 1 [3]. Let A(x) € F[x]™". Then the greatest common
divisor chosen in R, of the determinants of the submatrices of size k x k
of A(x), ke {l, ..., min{m, n}} is denoted by dj(x). If k < rank A(x),
then we say that dj(x) is the k-th determinantal divisor of A(x). Make

convention that dy(x) = 1.

It is known [3] that if A(x) € F[x]™" and rank A(x) = r, then
(i) dp(x) # 0 ifand only if £ < r;

(1) dp_;(x)|dp(x), ke {1, ..., r}.
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Definition 2 [3]. The k-th invariant factor of A(x) is the element

ip(x) = ik(x) k e {1, ..., rank A(x)},

with the convention that iy(x) = 1.

Note that according to the previous definitions, the determinantal
divisors and the invariant factors of the matrix A(x) are monic

polynomials.
It is known [3] that i,_;(x)|i,(x), kB € {1, ..., }.
Since F[x] is a unique factorization domain, if 7;(x), ..., i,(x) are the

invariant factors of A(x) € F[x]™", then every ij(x), k € {1, ..., r}, can

be factored as the following product:
in(x) = py (@) p, ™ (x),

where p j (x), j € {1, ..., t}, are distinct irreducible monic polynomials over

Fiand ng ; 20, ke fl, .., r}, jell, ..t

The polynomials

p;bk’j(x), kell,..,r}, jedl, ..t}

for which ny, ; > 0, are called the infinite elementary divisors of A(x) in
F[3].

It is known [3] that if A(x) = A;x + Ay € F[x]™", then A(x) has

rank A(x) — rank A;

infinite elementary divisors.

Let A € F™. Then the polynomial matrix xI,, — A is called the
characteristic matrix of A and its determinant is called the characteristic

polynomial of A [3].

The invariant factors of xI,, — A are called the invariant polynomials

of A [3].
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Note that the matrix xI,, — A has rank m, since its determinant is

different from zero. Consequently A has m invariant polynomials,

It is also known [3] that the characteristic polynomial of a matrix

A e F™™ it is equal to the product of its invariant polynomials.
It is known from systems theory [4] that a pair (A, B), where

A e FP*P B e FP*? is completely controllable if and only if all the

invariant factors of the matrix pencil
[xI p— A -B]
are equal to 1.

3. Main Result

Throughout this section, F' denotes an arbitrary field.

Theorem 3. Let n, p;, ps, ps be positive integers such that n = p;
+pg + ps. Let Cyq e FPU'PL) Cy g e FP2"P2 and Cqy 3 € FP2P3. Let
f(x) € F[x] be a monic polynomial of degree n. Then apart from the
exception listed below, there exist Cy 9 € FP1*P2, Cy 3 € FPU*P3 Cyq e
FP2PLCgq e FP3"PLCq 9 € FP3"P2 and C3 5 € FP3"P3 such that the

matrix of the form (2), has characteristic polynomial f(x). The exception

is the following:

(E) There exist prescribed submatrices of (2) of type q x q9, with at

least one prescribed principal block, such that n < q; + qs.
Theorem 4 [8, 13]. Let [(x), ..., I;(x) € F[x] be monic polynomials
such that L(x)| - |ls(x). Let A(x) e F[x]”*? and let ij(x), ..., i,(x) be the

invariant factors of A(x). Then, there exist B(x) e F[x]?*""9), C(x) e
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Flx]™ P4 D(x) e Flx]™ P00 sych that

Ax)  B(x)
Clx) D(x)
has invariant factors 1 (x), ..., I;(x) if and only if the following conditions

are satisfied:

@r<s<r+(m-p)+(n-q)

(b) s < minfm, n};

(© I |iy, forevery k e {1, ...,r};

() i [ s (m-p)+(n—q)> for every k e {1, ..., r} such that k+(m - p)+
(n-q)<s.

Theorem 5 [14]. Let n, p, q be positive integers such that n = p + q.
Let Ay € FP*P A 9 € FP*? and let f(x) € Flx] be a monic polynomial

of degree n. Let f(x)|--|f,(x) be the invariant factors of
[xIp - A1,1 —A1,2]-

There exist Ag 1 € FUP, Ay 9 € FU? such that the matrix of the form

(1) has characteristic polynomial f(x) if and only if

fi(x) - fp ()| f (). ®3)

Lemma 6 [12]. Suppose that C; ; € FPPPijef1,2), jef,2 3.

The following conditions are equivalent:

(a) There exists a Cy 1 € FP2*P such that

Co1 02,2’ Cy 3

is completely controllable.
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(b) The following conditions are satisfied:
@) The pair

(C11,[Cr2 Cy5]) 6))

is completely controllable.

(11) The matrix pencil

(6)

—Cy2 —Cy3
i

xlp2 — 0272 —02,3
has, at least, one infinite elementary divisor and the number of its infinite

elementary divisors is greater than or equal to the number of its invariant
factors different from (1).

Lemma 7. If the exception condition (E) holds, then there exists no

matrix of the form (2) with arbitrary characteristic polynomial f(x).

Proof. Suppose that the condition (E) holds and assume that there
exist Cjq e FP*P2 ()4 € FPL*P3, Coq € FPZPL Cqq e FP3*PL
Cy 9 € FPP2 and C3 5 € FP3*P such that the matrix of the form (2)
has characteristic polynomial f(x). Since the prescribed submatrices of
(2) with principal prescribed blocks are C; 1, Cy o and [Cy o Cy 3], at
least one of the following conditions must occur: 2p; > n, 2py > n or

2py + p3 > n. Clearly, if 2py > n, then necessarily 2py + ps > n.

Let ay|---|a, be the invariant polynomials of Cy 1, By|--|Bp, be the

invariant polynomials of Cy 5, 7] be the invariant factors of

.. |Yp2
[xIp, —Co9 —Cy 3]
and py|---|p, be the invariant polynomials of (2).

Case 1. Suppose that 2p; > n. Then, p; > py + p3. According to
Theorem 4, it follows that

O |Miy2py+2pys LS P1— D2 — D3
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Hence,

Q1 = Qp —py—ps3 |l’l1+2p2+2p3 U Mg Hy, = f(x)

Consequently, the roots of a;, ... must be roots of f(x), so the

» % p1—pg-p3
prescription of f(x) is not arbitrary.
Case 2. Suppose that 2py > n. Then, py > p; + p3. By Theorem 4, it
follows that
BilWis2p +2ps. 1S P2 — P1 — D3
Therefore,

P1 "'sz—pl—p3 ‘“1+2p1+2p3 My By Hy = f(x)

Consequently, the roots of B, must be roots of f(x). Again

e sz—m—ps

the prescription of f(x) is not arbitrary.

Case 3. Suppose that 2py + pg > n. Then, py > p;. According to
Theorem 4, it follows that

VilMivop +pgs U< P2 = D1
Then,

Y1 " Tpo-p “11+2p1+p3 fp [py ey = f(x)

Consequently, the roots of v, must be roots of f(x). Once

v Toppy

again the prescription of f(x) is not arbitrary.

Proof of Theorem 3. Suppose that the exception (E) is not satisfied.
According to the hypothesis, it follows that 2p; < n, 2py <n and

2py + p3 < n. Consequently, p; < ps + p3, ps < p; + p3 and py < p;.

Case 1. Suppose that py < p;. Let

0

1 0

IP2
01’2 = (S Fplsz and 01,3 =
0 p1—D2

:| c FP1><P3.

The pair of the form (5) is completely controllable. Let A(x) be the matrix
pencil of the form (6). Clearly, A(x) has rank greater than or equal to p;.

Hence A(x) has, at least, p; — pg > 0 infinite elementary divisors. It is
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clear that the matrix pencil A(x) has all its invariant factors equal to 1.
Then according to Lemma 6, there exists a Cy; € FP2*P1 such that the
pair of the form (4) is completely controllable. By Theorem 5, we can state
that there exist C3; € FP3"P1, Cg 9 € FP3"P2 and Cg 3 € FP3"P3 such

that the matrix of the form (2) has characteristic polynomial f(x). Clearly,

the matrix C has the prescribed form.

Case 2. Suppose that p; = py. Let

IPI*I 0 DP1XD DP1XD
C]_,z = e FA7F and 0173 = 0 0 0 e F 3.
0 0 “en

Then the pair of the form (5) is completely controllable. Consider again
the matrix pencil A(x) of the form (6). Clearly, A(x) has rank greater

than or equal to p; +1. Then A(x) has, at least, one infinite elementary

divisor. On the other hand, the number of nonconstant invariant factors

of A(x) is less than or equal to 1. Hence, according to Lemma 6 there

exists a Cy 1 € FP2™P1 such that the pair of the form (4) is completely
controllable. Now applying Theorem 5, there exist Cy; € FP*P1 Cg 5 e

FP3P2 and Cy 3 € FP3"P3 such that the matrix of the form (2) has

characteristic polynomial f(x). Clearly, the matrix C has the prescribed

form.

Corollary 8. Let n, p;, ps, b3 be positive integers such that n = p;
+pg +p3. Let Cq e FPUPL Cy g e FP2"P2 and Cy 5 € FP2*P3. Let
€1, - ¢y € F. Then apart from the exception (E), there exist C; 9 €
FP1XP2’ CL3 e FP1XP3’ C2,1 c szxpl, 03’1 c Fp3xp1, C3,2 c FPSXPZ
and C3 3 € FP3"P3 such that the matrix of the form (2), has eigenvalues
Cly wer Cppe

Proof. Straightforward.
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