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Abstract

The periodic wave solution for the generalized Hirota-Satsuma system
and the Nutku-Oguz equation are obtained by using the F-expansion

method which can be thought of as a generalization of the Jacobi elliptic
function method proposed recently. In the limit cases, the solitary wave
solutions are obtained.

1. Introduction

It is known that soliton, breather, compaction, etc. come from the
robust interaction of the dissipation and dispersion in physics system.
The robust interaction can be expressed by the mathematical form of
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subtle balance between the nonlinear term and the highest order partial
derivative term. So the nonlinear transform can be introduced as follows

[6]:

n

u:ZaJGJ, (1)

J=0
where G is an arbitrary function, a; is a parameter to be determined,
n is determined by the subtle balance [8] of the nonlinear term and the

highest order partial derivative term [6].

Recently, Jacobi elliptic function expansion method was proposed
1, 2, 3,5, 9, 11, 12, 13, 14] and improved to F-expansion method [4, 10]
as the summary and generalization of the Jacobi elliptic function method.
These methods are effective to construct the periodic wave solutions of
nonlinear equations, when dJacobi elliptic functions degenerate as
hyperbolic functions or trigonometric functions, the solitary wave

solutions and singularity solutions can be obtained.

Jacobi elliptic function expansion sets

Gy = F(0), @)
where F({) is the Jacobi elliptic function, § = x + ¢t. F7 () is the Jth
order power of F({).

F-expansion method demands that F({) is the solution of the

following equation [10]:
F(0) = PFY(0)+ QF*() + R. 3)

Substituting (1) into the nonlinear equation (3) yields an equation for

F J(C). For the subtle balance in nonlinear transform, the equation for

F J(C) can be solved easily in most cases by setting the coefficient

polynomials into zero and getting a series of algebraic equations. Solving
these algebraic equations by using Mathematica or Maple programs, we

can get the relations of undetermined parameters aj;. Thus we get the

exact solutions of nonlinear partial differential equation (PDE).

The paper is organized as follows: in Section 2, we first search for the
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periodic wave solutions for the new generalized Hirota-Satsuma coupled
system [7] and then in Section 3, we find the periodic solutions for the

Nutku-Oguz equation [4, 10]. A conclusion is then given in the final

Section 4.
2. The Generalized Hirota-Satsuma System

The new generalized Hirota-Satsuma coupled system is given as [7]:

1
Uy = 5 Uy = Buu, + 3(wv),,
Uy = —Upyy + UV,
Wy = —Wyyy + SUW,, 4)

which was introduced by Wu et al. recently [14].

First, we seek the travelling wave solution of equation (4) in the form
u(x, t) =UQ), vlx,t)=V(), wlx t)=W(EC), C=x+ct. (5

Substituting (5) into equations (4), we have the following system of
ordinary differential equations:

U’ = %U _3UU' + 3WV' + VW,
V' = -V 13UV,
W' = -W" + 3UW', 6)

where ' means differentiation with respect to C.

Secondly, based on the subtle balance, n = 2, we introduce the

following nonlinear transforms:
U@Q) = ap + 0y F(C) + agF2(C), ag =0,
V(©) = by + b F() + b F2(C), by # 0,
W(Q) = dy + dy F(C) + dyF2(C), dy # 0, (7)

where ag, a1, ag, by, by, by, dy d;, dy are constants to be determined.
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Considering (3) and substituting (7) into (6) and collecting all terms

with the same degree of F({) to zero respectively, we obtain a series of

algebraic equations corresponding to U, V, W respectively:
F°: —2caq + Qaq — 6aga; + 6b1dy + 6bydy = 0,

Fl:  —6a? - 4cay + 8Qay — 12agay + 12bydy + 12byd; +12byds = 0,
F?:  (6a;(P - 3as) + 18byd; + 18bydy) = 0,

F3:  (24Pay —12a3 + 24bydy) = 0,

F:  cb + Qb —3agb, =0,

F':  —3ajb; + 2cby + 8Qby — 6agby = 0,

F?:  6Pd; - 3asd; — 6a;ds = 0,

F3:  6Pb — 3agb, — 6a;by = 0,

F:  cdy + Qdy —3agd; =0,

F':  —3a;d; + 2cdy + 8Qds — 6agdy = 0,

F?:  6Pd; - 3asd; — 6a;ds = 0,

F3:  24Pdy — 6asdy = 0.

Thirdly, solving algebraic equations above by using Mathematica or
Maple, we have the following solution:

ay = %(c +4Q), a9 = 4P,

4P(- 3Pdy + 2(c + Q)ds) 4p?
by = 3 , by = a5
3d2 2
a = 07 bl = 07 dl = 07 (8)

with ¢, dy, dg # 0 being arbitrary constants.

Substituting (8) into (7), we have a general form of travelling wave
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solutions of equations (4):

U(E) = 5 (c +4Q) + 4PF2(0)

_ 2
V(o) = AP 3Pdg +22(c +Q)dp] (45 JFQ(C),
3d2 2
W(C) = do + dyF2(C). ©)

When F(C) = sn(C, m) or F(C) = cd(C, m) = cn(C, m)/dn(C, m), we get
P =m?, @ =-(1+m?) from equation (3), where m is the modulus of

Jacobi elliptic function, 0 < m? < 1. The solution of (4) is obtained as:

U (¢) = %[C -2(1 + mg)] + 4m23n2(q, m),

2 2 2
() - 2" L= 5m7dy + 2(20 —(U+m)d] (4;74 an2(C, m),

3d2 2
Wi(¢) = do + dasn®(C, m). (10)

It is known that sn({, m) — tanh(£) when m — 1; thus (10) degenerates

into the following form:

U1(6) = 5 (c - 8) + 4 tanh?(¢),

“12dy + 8(c - 2)dy [ 4
Vi) = f 52 2+ (@]tanhQ(C),

Wi(5) = do + dy tanh®(5). (11)

For F(¢) = cd(¢, m) = cn(¢, m)/dn(L, m), we have

Uy(¢) = %[c —4(1 + m2)] + 4mzcd2(§, m),

Vy(€) = 4m2[— 3m2d0 +20c-(1+ mg))dg] N (4m4ch2(C’ m),

3d2 do

Wy (5) = do + daed®(G, m).
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When F(¢) = cn(g, m), we get P = —mz, Q = 2m? -1 from equation (3).

The nondegenerative elliptic function solution is

Us(¢) = %[c +4(2m? - 1)] - 4m2cn2(g, m),

2 2 2
Vi(Q) = = 4m*[8m*dy + 2(2 +(2m* —1))ds] . [4214 Jcn2(c’ ),
3d2 2
W5(6) = do + daen® (G, m). (12)

Allowing m — 1 (12) reduces to the following soliton solution:

Us(¢) = %(C +4)-4 sechg((;),

2
Vy(c) = ~H8do + 22(0 +1)dy) [421 jsech2(c),
3d2 2
W5 () = do + dgsech®(C). (13)

When F(¢) = dn(¢, m), we get P = -1, @ = (2—m?) from equation (3),

the nondegenerative elliptic function solution is given as:

Us(Q) = 3 (e + 42 - m?)) - 4dn® (&, m),

- 48dy +2(c+ (2-m*)ds] (4, 2
V4(€) - 3d§ + (d_zjdn (Q’ m)’
W, (¢) = do + dgdn®(G, m). 14)

When m — 1, dn({, m) — sech({) and we get the solution (13).

When F(§)=ns(C, m)=1/sn(C, m) or F(C)=dc(, m)=dn(C, m)/cn(C, m),

we get P =1, @ = —(1+m?) from equation (3). The nondegenerative

elliptic function solution is obtained, which is the periodic singularity
solution:

Us(©) = 5 (c — 401 + m?) + dns*(C, m),
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2
V(o) = 4[- 3dy + 2(3c0l;2 1+ m*))d] . (%)nsz(g ),

W5 () = do + dans®(C, m). (15)
Taking m — 0, in equation (15) we get the following singularity solution:

Us(©) = 5 (c - 4) + 4 esc?(©),

vi(c) = A3 o DL, (4 ese? o),

Ws(6) = do + dg csc?(C). (16)

When m — 1, we get the singularity solution:

Us(©) = 5 (c - 8) + 4 coth?(0),

V(o) = 34 ;;22( —2)d] (%]coth%),

Ws(6) = do + dy coth® (). 17)

For F(¢) = dc(¢, m) = dn(E, m)/cn(C, m), we have

Us(C) = %(c — 401+ m2)) + 4d2(C, m),

2
Vi(©) = 4[- 8dy + 2(;d;2 1+ m*))d] . (%)dc‘z(g, )

We(6) = do + dadc® (G, m). (18)
When m — 0, we get the singularity solution:

Us(€) = 5 (c —4) + 4 sec?(0),

ve(o) = A3 ;;22('“" —2)d], (o Jsec* 0

We(C) = do + dg sec®(). (19)
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When F(C) = ne(G, m) = 1/en(C, m), we get P = (1 -m?), @ = (2m? -1)

from equation (3). The nondegenerative solution is
Us() = 3 (e + 4@m? 1) + 4L - m®)nc?(C, m),

41 - m?)[- 31 - m?)dy + 2(c + (2m? -1))d]

V. =
7(8) 52
2
N (MJ@ ),
dy
Wi(C) = do + dinc*(C, m). (20)

Taking m — 0 we get solution (19).

When F(C) = nd(¢, m) = 1/dn(C, m), we get P = (m? -1), @ = (2 - m?)
from equation (3). The nondegenerative solution is
Us(¢) = do + dynd® (g, m),

~4(m? - 1)[-3(m% —1)dy + 2(c + (2 - m?))ds]
- 3d2

2 2
+ (%J nd? (€, m),

Vs(C)

Wy(C) = do + dgnd*(C, m). @1)
When F(C) = Sc(C? m) = sn(C, m)/cn(g7 m)’ we get P = (1 - m2)7 Q =
- m2) from equation (3), the nondegenerative solution is

Ug() = 5 (¢ + 42 - m?) + 4(1 - m?)sc*(C, m),

401 - m?)[- 301 = m?)dy + 2(c + (2 - m?))d]
3d3

2\2
+ (%Jscz(g m),

Wy(C) = dy + dgsc®(C, m). (22)

Vo(6) =
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When m — 0, sc(¢, m) — tan({), we get the solution:

Ug(€) = 5 (¢ +8) + 4 tan*(0),

_ —12dy + 8(c + 2)d 4 2
Vo(6) = 52 + (@)tan (©)s
Wo(() = do + dy tan®(g). (23)

When F(C) = sd(§, m) = sn(C, m)/dn(C, m), we get P = m?(m? 1), @ =

(2m2 —1) from equation (3). The nondegenerative solution is
1
Uo() = g(c +4(2m? - 1)) + 4m*(m® - 1)sd*(C),

am®(m? - 1)[ - 3m2%(m? - 1)dy + 2(c + (2m? -1))d]

Vio(€) =

3d3
4 2 2
+(4m (m* -1) ]sd2(C)
dy
Wio(C) = do + dgsd?(C). (24)

When F(§) = ¢s(C, m) = cn(C, m)/sn(C, m), we get P =1, Q = (2-m?)

from equation (3). The nondegenerative solution is

U () = 5 (e + 42 = m?)) + 4es* (&, m),

2
V() = 4[- 3Pd, + 2(02+ (2 -m*))d] . [dij032(@ )
3d2 2
Wi1(C) = do + dacs® (G, m). (25)

When m — 1, es(C, m) — csch(C), we get the following solution:

U11(€) = 5 (e + 4) + desch?(©),

4[-3Pdy + 2(c +1)dy] " (di)cschZ(C),
2

V11(6) = 22
2

Wi1(C) = do + diesch(C). (26)
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Taking m — 0, ¢s(¢, m) — cot(C), equation (25) reduces to

Up(€) = 5 (c + 8) + 4 cot?(©),

_ 4[-3Pdy +2(c + 2)dy] [ 4 2
Vi1(Q) = 52 + (@]CO’E (©),
Wi1(C) = do + dy cot?(5). 27)

When F(C) = ds(C, m) = dn(C, m)/sn(C, m), we get P =1, @ = (2m? - 1)

from equation (3). The nondegenerative solution is

Uia(€) = 3 (e + 42m? - 1)) + 4d5%(0),

2
Vi (C) = 4[- 3dy + 2(c + @m® ~1)d] | ( 4

2 \ds? ,
3d3 d2) ()
Wis () = do + dads*(C). (28)

When m — 1, we get the solution (26) and when m — 0, we get the
solution (17).

3. The Nutku-Oguz Equation

The Nutku-Oguz equation [4] is written as
Up = Upey + 20Uty + VU, + (w0),,
Uy = Uggy + 2000, + ut, + (wv),, (29)
where A and p are real constants satisfying the condition
L+po=1. (30)
Nutku-Oguz equation [4] pointed out that this system (29) decouples if
A =p =1/2. It is further shown that subject to the condition (30) the

system (29) is a bi-Hamiltonian system with two local Hamiltonian
structures. Thus, one has a bi-Hamiltonian system which contains a free
parameter. In general, a bi-Hamiltonian system is supposed to be
integrable since it has infinite number of conserved quantities. However,
it is peculiar that a system is integrable with arbitrary value of
parameter. Hu and Liu [4] showed that the parameter can be removed.
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The dispersionless version of this system with condition (30) was studied
recently by Matsuno [7]. We concentrate here to find solution of the
system (29) under the condition (30) for a certain value of parameters.

First, we seek travelling wave solution of equation (29) in the form
ulx, t) =UL),  vlx, ) =V(G), C=x+ct (31)

Substituting (31) into equations (29), we have the following system of
ordinary differential equations:

U" +(@0U - )U' + ([UV) +VV' = 0,
V" 4 (2uV - o)V' + (UV) + UU' = 0. (32)

Secondly, based on the subtle balance, we introduce the following
nonlinear transforms:

UG) = ap + a, F(C) + agF?(L), ag = 0,

V(©) = by + BF(Q) + by F2(C), by # 0, (33)
where ag, a1, as, by, by, by are constants to be determined.

Considering (3) and substituting (33) into (32) and collecting all the
terms with the same degree of F({) to zero respectively, we obtain a

series of algebraic equations corresponding to U, V, and W respectively as:
FO. —2ay + Qa; + 2hagay + ayby + agb; + byby = 0,
Fl':  2a? - 2cas + 8Qag + 2bgas + 2a1by + b + 2bgbs,
+2ag(2hay + by) = 0,
F2:  6a,P + 6Lajas + 3agh; + 3ajaby + 3byby = 0,

F3 . 24Paqy + 4a§ + 4agby + 2b§ =0,
F°:  aga; + aby — cby + Qby + aghy + 2ubgb, = 0,
F'. a? + 2agby + 2ayb; + 2ub? — 2cby + 8Qby + 4pbyby

+ 2(10(&2 + ()2) =0,
F2 : 6b1P + 3b1(12 + Gszb]_ + 3(11((12 + b2) = O,

F3:  24Pby + 2a3 + daghy + 4ub2 = 0. (34)
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Thirdly, solving the algebraic equations above by using Mathematica,
for example, when A = 1/3 and p = 2/3 we find that

ay =-3(c-4Q), a; =0, a9 = 36P,
by = 3(c—4Q), b =0, by =—36P. (35)
The corresponding solutions are
U(5) = -3(c - 4Q) + 36PF>(¢),

V(5) = 3(c - 4Q) - 36PF(C). (36)

Fourthly, choose P, @ and R in ODE (3) such that the corresponding
solution F({) of ODE (3) is one of Jacobi elliptic functions. By the same

method used above we can obtain twelve periodic wave solutions to

equations (27). For example, when F({) = cn(¢, m), we get P = -m?2,

Q@ = (2m? —-1) from equation (3). The nondegenerative solution is

obtained as:
U(©) = -3(c - 4 (2m® - 1)) - 36m*en” (¢, m),
V() = 3(c — 4(2m? - 1)) + 36mZcn?(C, m). (37)
When m — 1 we get the solution:
U(¢) = -3(c - 4) - 36sech’(¢),

V(C) = 3(c — 4) + 36sech?(¢). (38)

The other wave solutions to the system (29) with the condition (30) can be
obtained for different values of A, p by the same manner introduced in
Section 2, but we omit them here for simplicity.

4. Conclusions

In this paper we have applied the F-expansion method to find a series
of 12 exact solutions for the new generalized Hirota-Satsuma system. The

same method is also applied for the coupled Nutku-Oguz equation. The

limit cases are obtained for all solutions.
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