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Abstract

We discuss the existence of positive solutions of the following singular

nth order three point boundary value problem
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where ,10 <η<  10 1 <αη< −n  and g is allowed to have finitely many

singularities. The existence of positive solutions of the problem is

established by applying the fixed point index theorem under suitable

conditions.
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1. Introduction

Investigation of positive solutions of nonlocal boundary value
problems, initiated by II’in and Moiseev [7, 8], has recently been
addressed by various authors, for instance, [2, 3, 4, 6, 9, 10, 11]. Nonlocal
boundary value problems are also referred as multi-point nonlinear
boundary value problems in the study of disconjugacy theory [1]. This
work is motivated by Eloe and Ahmad [2] who addressed a nonlinear nth
order BVP with nonlocal conditions. In fact, we extend the results of [2]
by allowing g to have finitely many singularities.

In this paper, we shall establish some existence results for the
following nth order singular differential equation

( )( ) ( ) ( ) ( ),1,0,0 ∈=+ tuftgtu n (1.1)

subject to the boundary conditions

( ) ( ) ( )( ) ( ) ( ),1,0000 2 uuuuu n =ηα===′= − (1.2)

where ,10 <η<  .10 1 <αη< −n

Throughout this paper, we assume that

( )1A  [ ) [ )∞→∞ ,0,0:f  is continuous;

( )2A  ( ),1,01Lg ∈  ( ) ,0≥sg  a.e., and there exist [ ]1,, η∈ba  with ba <

such that ( )∫ >
b

a
dssg .0

It is clear that the following condition is a special case of the
condition ( ):A2

( )2A′  For given points ,...,,1 mtt  [ ] { } →== mitEg i ...,,1:\1,0:

[ )∞,0  is continuous and the integral ( )∫
1

0
dssg  exists, and there exist

[ ]1,, η∈ba  with ba <  such that ( )∫ >
b

a
dssg .0

We emphasize that the condition ( )2A′  allows g to have finitely many

singularities at ....,,1 mtt
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( )3A  ,0 1
0 Mf <≤  and .1 ∞≤< ∞fm

( )4A  10 Mf <≤ ∞  and ,01 ∞≤< fm  where

( ) ( ) ( ) ( ) ,,min,,max
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(1.3)

Here ( )stG ,;η  is the Green’s function for the BVP (1.1)-(1.2).

Notation. 
( )

,suplim
x
xf

f
x β→

β =  
( )

,inflim
x
xf

f
x β→β =  where β denotes

either 0 or ∞.

By a solution to (1.1)-(1.2) we mean a function [ ],1,02−∈ nCu

( )( ) [ ]1,01 ACtu n ∈−  and u satisfies (1.1)-(1.2), where [ ]1,0AC  denotes the

space of absolutely continuous functions defined on [ ].1,0

Evidently [ ]1,0Cu ∈  is a positive solution of (1.1)-(1.2) if and only if

[ ]1,0Cu ∈  is a positive solution of the following integral equation:

( ) ( ) ( ) ( )( )∫−=
1

0
., dssufsgstGtu (1.4)

Remark 1.1. We allow f to satisfy either 
( )

a
x
xf

x
<≤

→
suplim0

0
 and

( ) ∞≤<
∞→ x

xf
b

x
inflim  or 

( )
a

x
xf

x
≤≤

∞→
suplim0  and 

( ) ∞≤<
→ x

xf
b

x
inflim

0

for suitable a and b, which implies that f is not necessary superlinear or
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sublinear. This relaxation on f improves the results of [2] even if we

require g to be a continuous function.

Let K be a cone in a Banach space X and let { },: rxKxKr <∈=

{ }rxKxKr =∈=∂ :  and { },:, rxKxK r ≤≤ρ∈=ρ  where ρ<0

.∞<< r

Lemma 1.1 [5]. Let K be a cone in a Banach space X and KKA r →:

be a compact map. Assume that the following conditions hold.

 (i) xAx ≤  for .rKx ∂∈

(ii) There exists an 1Ke ∂∈  such that eAxx λ+≠  for ρ∂∈ Kx  and

.0>λ

Then A has a fixed point in ., rKρ  The same condition remains valid if

(i) holds on ρ∂K  and (ii) holds on .rK∂

We shall need the following well-known results.

Lemma 1.2 [2]. Let [ ]1,0Cu ∈  satisfy the differential inequality

( )( ) ,0<tu n  together with the boundary conditions (1.2) and .10 1 <αη< −n

Then 0≥u  on [ ].1,0

Lemma 1.3 [2]. Let .10 1 <αη< −n  Let u satisfy ( )( ) ,0≤tu n  10 << t

with the nonlocal conditions (1.2). Then 
[ ]

( ) ,inf
1,

utu
t

γ≥
η∈

 where =γ

{ ( ) ( ) }.,11,min 111 −−− ηαη−η−ααη nn

Lemma 1.4 [2]. For each ( ),1,0∈s  set ( )( )
[ ]

( ) .,max,
1,0

stGssG
t∈

=τ

Then ( ) ( )( ) ,,, ssGstG τγ≥  .10 ≤≤∀ s

2. Main Results

Theorem 2.1. Assume that conditions ( ),A1  ( )2A  and ( )3A  hold.

Then BVP (1.1)-(1.2) has at least one positive solution ( )tu  with ( ) 0≡/tu

for [ ].1,0∈t
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Proof. Let K be a cone in [ ]1,0C  given by

{ [ ]
[ ]

( ) }.min,0,1,0: utuuCuuK
t

γ≥≥∈=
1,η∈

Define an operator as follows:

( ) ( ) ( ) ( ) ( )( )∫−=
1

0
., dssufsgstGtAu

Then from Lemma 1.3 we can get .: KKA →  Now, we prove that A is

compact. We first prove that A is continuous. Let { ( ) ,:,max tstGM −=

[ ]}.1,0∈s  Assume that Kuun ∈0,  and .0uun →  Then Lun ≤  for

every .0≥n  Since f is continuous on [ ],,0 L  it is uniformly continuous.

Therefore, for 0>ε  there exists a 0>δ  such that δ<′′−′ zz  implies

that ( ) ( ) ( ) .
11

0

−






ε<′′−′ ∫ dssgMzfzf  Since ,0uun →  there exists an

N∈0n  such that δ<− 0uun  for .0nn ≥  Thus we have

( )( ) ( )( ) ( ) ,
11

0
0

−









ε<− ∫ dssgMtuftuf n    for 0nn ≥  and [ ].1,0∈t

This implies that

( ) ( ) ( ) ( ) ( )( ) ( )( )∫ ε<−≤−
1

0
00 ,, dstuftufsgstGtAutAu nn

for [ ]1,0∈t  and ,0nn ≥  and therefore ( ) ( ) ε≤− tAutAun 0  for .0nn ≥

Next, let KB∈  be bounded, i.e., mx ≤  for all Bx∈  and some ,0>m

and let ( ){ } ( )∫≤≤=
1

0
.0:max dssgmxxfb  Then ( )BA  is uniformly bounded.

Thus we have bMAx ≤  for .Bx∈  To see ( )BA  is compact, it is

sufficient to prove that ( )BA  is equicontinuous. In fact, since ( )stG ,  is

uniformly continuous for any ( ) [ ] [ ],1,01,0, ×∈st  for any 0>ε  there exists

a 0>δ  such that ( ) ( ) 1
21 ,, −ε<− bstGstG  for δ<− 21 tt  and [ ].1,0∈s

This implies that ( ) ( ) ( ) ( ) ( ) ( )( )∫ ε<−≤−
1

0 2121 .,, dssufsgstGstGtAutAu
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Assume that ( )3A  holds, by the first part of ( ),A3  there exists a 0>ρ

such that ( ) ρ≤ 1Mxf  for .0 ρ≤≤ x  So for every ,ρ∂∈ Ku  we have

( ) ( ) ( ) ( )( ) ( ) ( )∫ ∫ =ρ≤−ρ≤−=
1

0

1

0
1 .,, udssgstGMdssufsgstGtAu

This implies uAu ≤  for every .ρ∂∈ Ku

By the second part of ( ),A3  there exists an γρ>η  such that ( ) xmxf 1≥

for .η≥x  Let .1ηγ= −r  Then we have

( ){ } ,:min η=γ≥≤≤ ubtatu  for .rKu ∂∈

Let ( ) ,1≡φ t  for [ ].1,0∈t  Then .1K∂∈φ  We prove that

,λφ+≠ Auu  for rKu ∂∈  and .0>λ

In fact, if not, there exist rKu ∂∈0  and 00 >λ  such that += 00 Auu

.0φλ  Let ( ){ } .:min 0 η≥≤≤=µ btatu  Then we have, for ,bta ≤≤

( ) ( ) ( ) ( )( ) ( )∫ φλ+−=
1

0
000 , tdssufsgstGtu

( ) ( ) ( )∫ λ+−≥
b

a
dssusgstGm 001 ,

( ) ( )∫ λ+−µ≥
b

a
dssgstGm 01 ,

.0λ+µ≥

This implies ,0 µ>λ+µ≥µ  a contradiction. It follows from Lemma 1.1

that A has a fixed point ., rKu ρ∈

Theorem 2.2. Assume that conditions ( ),A1  ( )2A  and ( )4A  hold.

Then BVP (1.1)-(1.2) has at least one positive solution ( )tu  with ( ) 0≡/tu

for [ ].1,0∈t

Proof. Assume that ( )4A  holds. Choose some ( )., 1Mf ∞∈β  By the

first part of ( )4A  there exists an 01 >r  such that ( ) xxf β≤  for .1rx ≥  Since
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f is continuous, we have ( ){ } .0:max 1 ∞<≤≤= rxxfc  Hence ( )xf≤0

xc β+≤  for .0 ∞<≤ x  Let ( ) 1
1

−β−= Mcr  and { }.rxKxPr <|∈=

Then we have for ,rPz ∂∈

( ) ( ) ( ) ( )∫ ==
β+

≤β+≤
1

0 1
., zr

M
zc

dssgstGzctAz

This implies zAz ≤  for every .rPz ∂∈  On the other hand, by the last

part of ( )4A  there exists a ( )r,0∈ρ  such that ( ) xmxf 1≥  for .0 ρ≤≤ x

By a similar argument to that used in Theorem 2.1 we have λφ+≠ Azz

for ρ∂∈ Pz  and .0>λ  The result follows from Lemma 1.1.

Remark 2.1. In the proof of Theorem 2.1 and also of Theorem 2.2 one
of the key steps is to find the function φ, which is difficult to obtain by
using norm-type cone expansion and compression theorem.

Remark 2.2. In Theorem 2.1 or Theorem 2.2 if g satisfies the
condition ( ),A2′  then we have for any ,Ku ∈

( )1R  ( )( )( ) ( ) ( )( )tuftgtAu n −=  for ,Et ∈

( )2R  ( ) ( ) [ ].1,02−∈ nn CECtAu ∩

3. Application

As an application of Theorem 2.1 or Theorem 2.2, we consider the
following eigenvalue problem

( )( ) ( ) ( )( ) ,0=λ+ tuftgtu n (3.1)

with the boundary condition (1.2). We list the following conditions:

 (P) ( )∫η >
1

;0dssg

( )1P  ∞≠>∞
0,0 ff  and ;0

11 fMfm <∞

( )2P  0, 0 >∞≠∞ ff  and .101
∞< fMfm

We write 01 =βfm  if ∞=βf  and ∞=βfM1  if ,0=βf  where .,0 ∞=β
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We have the following new result on existence for the eigenvalue
problem (3.1).

Theorem 3.1. Assume that (P) and ( )1P  hold. Then for every

( ),, 0
11 fMfm ∞∈λ  equation (3.1) with (1.2) has a solution u with 0≥u

for [ ]1,0∈t  and ( ) 0≡/tu  on [0, 1]. The same result remains valid for

every ( ),, 101
∞∈λ fMfm  if (P) and ( )2P  hold.

Proof. If ( )1P  holds, 1
00 Mf <λ<  and ,1mf >λ ∞  then similar to

the proof of Theorem 2.1, it is easy to prove Theorem 3.1.
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