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Abstract

We establish a new fixed point theorem for multimaps having KKM
property on G-convex uniform spaces, not necessarily on locally
G-convex uniform spaces. This result is parallel to our previous one for

topological vector spaces in [6].
1. Introduction

Many problems in nonlinear analysis can be formulated as the fixed
point problems for multimaps on topological spaces without linear
structure. In this direction, there have appeared a few kinds of abstract
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convexity notions. For example, the hyperconvex metric spaces due to
Aronszajn and Panitchpakdi [1], the convex spaces due to Lassonde [9],
the c-spaces due to Horvath [5] which are called the H-spaces by Bardaro
and Ceppitelli [2]. These different kinds of concepts can be unified as
G-convex spaces introduced by Park and Kim [13]. Since then, many
results about fixed point theory and KKM theory on topological vector
spaces were extended to G-convex spaces, cf. [10, 12, 15, 16, 17]. However,
the underlying spaces for their fixed point results are locally G-convex
uniform spaces. This paper intends to establish a fixed point theorem for
multimaps having KKM property on G-convex uniform spaces, not
necessarily on locally G-convex uniform spaces. This result is parallel to
that for topological vector spaces in [6] which in turn revises and extends
the Kim’s fixed point theorem for lower semicontinuous multimaps in
Hausdorff topological vector spaces as well as that of Park in [11].

We now recall some basic definitions and facts. Throughout this

paper, (Y) denotes the class of all nonempty finite subsets of a nonempty
set Y. The notation T : X - Y stands for a multimap from a set X into

2Y\{®}. For a multimap T : X — 2, the following notations are used:
(@) T(A) = UxeA T(x) for A ¢ X;
O T (y)={xeX:yeT()for yey,
T " B)={xeX:T(x)NB =} for BcY,;

(d) T¢(x) = Y\T(x) for x € X.

All topological spaces are supposed to be Hausdorff. Let X and Y be

two topological spaces. Then a multimap 7 : X — 2Y is said to be

(a) upper semicontinuous (u.s.c.) if T~ (B) is closed in X for each

closed subset B of Y;

(b) lower semicontinuous (l.s.c.) if T~ (B) is open in X for each open

subset B of Y;
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(c) compact if T(X) is contained in a compact subset of Y;

(d) closed if its graph Gr(T) = {(x, y): ¥y € T(x), x € X} is a closed
subset of X xY.

It is well known that if Y is a regular space and T is a closed-valued
u.s.c. multimap, then T is closed. The converse is true if Y is compact,
cf. [9, Lemma 1].

T : X - 27 is defined to be T(x) = T(x) for each x e X.

The unit coordinate vectors in R”*' are denoted by ey, ..., €,, and

A,, stands for the standard n-simplex of Rnﬂ, that is,

n
A, = {(KO, vy Ap) i A 20 for all i and Zki =1¢.
i=0

Later on, if J € ({0, 1, ..., n}), then cofe; : i € J} will be denoted by A.

Park and Kim [13] unified many different kinds of abstract convexity
in the following way.

Definition 1.1. A generalized convex space or a G-convex space
(X, D; T') consists of a topological space X, a nonempty subset D of X and
amap I : (D) — X such that for each A = {ay, ..., a,} € (D) with | A| =
n +1, there exists a continuous function ¢4 : A,, - I'(A) such that if
0<iy<ij <--<i; <n, then gy(cole;, ... e, }) = T({a;, ., a;, }). When
D = X, (X, D; ') is abbreviated to (X; I'). In this paper, we assume that
a G-convex space (X; I') always satisfies the extra condition: x € I'({x})

for any x € X.

A subset K of a G-convex space (X, I') is said to be I'-convex if for any

Ae(K), T(A) c K.
For convenience, we also express T'(A) by T'4.

A uniformity for a set X is a nonempty family & of subsets of X x X
such that

(a) each member of U/ contains the diagonal A;
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®) if U € U, then U™ € U;

(©if U € U, then VoV < U for some Vin U;

(d) if U and V are members of U, then UV e U; and
eifUeldand U cV c X xX, thenV € U.

Every member Vin U is called an entourage. An entourage V is said
to be symmetric if (x, y) € V whenever (y, x) € V.

If (X, ) is a uniform space, then the topology 7 induced by U is

the family of all subsets W of X such that for each x in W, there is a U in
U such that Ulx] = W, where Ulx] is defined as {y € X : (x, y) € U}.

For details on uniform spaces we refer to [7].

Definition 1.2. A G-convex uniform space (E; T, U) is a G-convex
space so that its topology is induced by a uniformity .

A G-convex uniform space (E; T, ) is said to be a locally G-convex
uniform space if it satisfies the following conditions:

(a) Ty = {x} for any x € E;

(b) The uniformity &/ has a base B consisting of open symmetric
entourages such that for each Ve B, V[K]={ye X :(x, y) eV for

some x € K} is I'-convex whenever K is I'-convex.

By the definition of G-convex uniform space (E; I', U), it is easy to

check that A < T'y for any A e (E).

For a G-convex space (E;T), a multimap F : E — E is called a
KKM map if T4 < F(A) for each A € (E). The following result is well

known.

Theorem 1.3 (The KKM Principle). Let D be the set of vertices of A,
and F : D — A, be a KKM map (that is, co(A) c F(A) for each A € (D)).

Then ﬂaeD F(a) = @.

The following known results in the literature will be quoted in the
sequel.
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Lemma 1.4 [14]. Suppose X is a compact topological space and (Y; T')

is a G-convex space. If T : X — Y satisfies

(@) T(x) is T-convex for each x € X,

() T (y) is open in X for each y € Y,

then T has a continuous selection.

Lemma 1.5 [16]. Let (X; ') be a compact locally G-convex uniform
space. If p: X —> A,, is continuous and @ : A, — X is u.s.c. with compact

and T'-convex values, then po Q : A, — A, has a fixed point.

Lemma 1.6 [5]. Let X and Y be two topological spaces. If T : X - Y
is l.sc. and g : X —> Y is continuous and V : Y - Y has open graph,
then x — T(x) N V(g(x)) is Ls.c.

2. The Main Results

In this section, we shall establish a new fixed point theorem for
multimaps having KKM property in G-convex uniform spaces. To begin
with, recall that

Definition 2.1. Suppose (X;T) is a G-convex space and Y is a

topological space. If F, T : X — Y are two multimaps satisfying that
T(Ty) c F(A)

for each A e (X), then F'is called a KKM map with respect to 7. If the
multimap 7T satisfies the requirement that for any KKM map F with
respect to 7' the family {F(x) : x € X} has the finite intersection property,

then 7T is said to have the KKM property. The collection of all multimaps
from X to Y that have the KKM property is denoted by KKM(X, Y).

In what follows, T'(V[y]) is defined as I'(V[y]) = UA6<V[y] Ta-

)

Lemma 2.2. Let X be a nonempty I'-convex subset of a G-convex
uniform space (E; T, U) which has a uniformity U with a base B of open
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symmetric entourages. Suppose that for any V € B, x € ['(V[y]) if and
only if y e T(V[x]). If T : X — X is compact and has the KKM property,
then for any V e B, there is an xy € X such that T(V[xy )N T(xy) = @.

Proof. On the contrary, assume there is a V € B such that for any

xeX, T(V[x])NT(x) = 3. Let K =T(X). Then K is compact in X.
Define F : X — 2% by F(x) = K\V[x]. Clearly, for each x € X, F(x)
is closed. Using the fact that x e Ty it is easy to check that F(x) is

nonempty. We now show that F is a KKM map with respect to 7. If not,
there is an A ={x{,..,x,}€(X) such that T([,) ¢ F(A). Choose

z € T(T4) such that z ¢ F(A). Then there isay € I'4 such that z € T(y)
but z ¢ F(A). Since

2 ¢ F(A) = U; F(x;)
- &)

n
= K\, Vi,

we conclude that z € V[x;] for all i =1, ..., n, thatis, (x;, z) € V for all
i =1, .., n. By symmetry, (z, x;) eV for all i =1, ..., n. So, x; € V[z]
for all i =1, ..., n. Consequently, A c V[z], and hence I'y < I'(V[z]). In
particular, y € I'(V[z]). By hypothesis, z € I'(V[y]). Therefore, we reach
the conclusion that z € T(y) N T(V[y]), a contradiction. So, F is a KKM
map with respect to 7. Since T has the KKM property, {F(x): x € X}
has the finite intersection property. Now, noting that for each x € X,

F(x) c K and K is compact, we infer that ﬂxeX F(x) # &. Choose
£ e ﬂxe  F(x). Then & e F(g) = K\V[g], which implies that & ¢ V[¢], a
contradiction. This completes the proof.

Corollary 2.3. Suppose (E; T, U) is a locally G-convex uniform space

with a base B of symmetric open entourages and X is a I'-convex subset of
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E If T: X — X is compact and has the KKM property, then for any
V e B, thereis xy € X such that V[xy |NT(xy) = @.

Proof. Since I'(V[x]) = V[x] in a locally G-convex uniform space, the

result follows immediately.

Theorem 2.4. Suppose X is a nonempty compact I'-convex subset of a

G-convex uniform space (E; T, U) with a base B of symmetric open
entourages such that for any V € B, x € [(V[y]) if and only if y € T(V[x]).
If T e KKM(X, X) is closed-valued and satisfies the following condition

(%):

(*) If y € X satisfies thaty ¢ U[T(y)] for some open entourage U, then
yeclixe X :x el (V[T(x)])} for some V e B,
then T has a fixed point.

Proof. For each U € B, put Fy; = {x € X : x € T(U[T(x)])} and Gy
={x e X:x eU[T(x)]}. By Lemma 2.2, there is an xy € X such
that T(U[xy]) N T(xyr) # . Choose a y € T(U[x]) N T'(xy). It follows
from the assumption that x; € [(U[y]), and hence x;; € T(U[T(xg7)]).

Consequently, for each U e B, Fy = @. Since {Fy : U € B} has the
finite intersection property and since X is compact, we conclude that

ﬂUeB Fy; # . Also, it is obvious that ﬂUeB Gy < ﬂUeB Fy; by noting

that Gy < F_U for each U € B. For the reverse inclusion, if there is a

y e mUeBF_U such that y ¢ ﬂUeB Gy, then y ¢ U[T(y)] for some U € B,

hence by (*) we can choose a V € B such that y ¢ E, a contradiction.

Therefore, ﬂUeB Gy = ﬂUeBE # . Letting & € ﬂUeB Gy, we see

ee(),; V@)= TC)

where the equality holds is due to the fact that 7'(§) is closed. This

completes the proof.
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When X is a topological vector space, this is our previous result
[6, Theorem 2.2].

In a locally G-convex uniform space, we have I'(V[x]) = V[x], and so

y € V[x] if and only if x € V[y] for any symmetric open entourage V.

Proposition 2.5. Suppose X is a nonempty compact I'-convex subset of
a locally G-convex uniform space (E; T, U) and T : X — X is closed and

has T'-convex values, then the condition (*) holds:

(*) If y € X satisfies that y ¢ U[T(y)] for some open entourage U,
then y ¢ clix € X : x € T(V[T(x)])} for some V e B.

Proof. Choose a V e B such that V < V < U. Then the set A =
{x € X : x € V[T(x)]} is closed. Indeed, for any x € A, choose a net {x,}

in A such that x, — x. Since x, € A, we can choose z, € T(x,) such
that (x4, z,) € V. By the compactness of X, we may assume that z, — z
for some z € X. So (x4, z,) = (x, 2), and hence (x, z) € V by noting
that {(xy, z,)} © V and V is closed. Meanwhile, since T is closed, we
have that z € T(x), so x € V[T(x)]N X, which shows that A is closed.
Now, if y ¢ U[T(y)]N X, then y ¢ V[T(y»)]NX, and so y¢ A = A.
Hence y ¢ cl{x € X : x € V[T(x)]}. Moreover, since V[T (x)] is I'-convex,
[(V[T(x)]) = V[T'(x)]. Therefore,

yecixe X :x e V[T(x)]} =clix € X : x e T(V[T(x)])}.

Corollary 2.6. Suppose X is a nonempty compact I'-convex subset of a
locally G-convex uniform space (E; T, U). If T e KKM(X, X) is closed

and has T'-convex values, then T has a fixed point.
Proof. This follows from Theorem 2.4 and Proposition 2.5.

Here we like to mention that the condition that 7 has I'-convex
values can be dropped by means of Corollary 2.3 and the technique in
[4, Theorem 3.2].
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3. The KKM Class

In this section, we further study the KKM class.
Proposition 3.1. If f: X — Y 1is a continuous function from a

G-convex space (X, T') to a topological space Y, then f € KKM(X, Y).

Proof. Let F : X - Y be any closed-valued KKM map with respect
to fand A = {qg, ..., a,} be any member in (X). Since X is a G-convex
space, there is a continuous function ¢4 : A,, > I'y such that, for any

0<iy<-—<ip<n,

dalcoleiy, - € )) € Tigy . ap } N 0a(A2),
SO
colejg, s €y ) € 0a (Mg ,..oq 1 04 (A5)). 1)

Also, since F'is a KKM map with respect to f, we have

f(r{aio,...,aik}) - F({aio’ e Qi })’
that is,
Nl vy € £ (Fllag o ) @

It follows from (1) and (2) that

colejy, - €;) S da(f (F(lajys - @, D) N d4(A,)).
Noting that ¢; - ¢4 (f (F(a;))Nd4(A,)) is a KKM map, we infer from
the KKM principle that

(oa( (Fl@)Noad,) 2,
i=0

which implies that ()" F(q;) # @. Hence f € KKM(X, Y).

Lemma 3.2. Let X be a compact topological space and (Y; T, U) be a

locally G-convex uniform space. If T : X - Y is a l.s.c. multimap with
I'-convex values, then for any symmetric entourage V of the uniformity of

Y, there exists a continuous function f : X — Y such that, for any x € X,

Tx)NV[f(x)] # @.
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Proof. We may assume that V is open in Y xY. For each x € X,
taking y € T(x), we see that y € T(x)N V[y]. Define F:X —-Y by
F(x)={yeY:T(x)NV[y] # @}. Since V[T(x)]={y €Y : (z, y) € V for
some z € T(x)}, we have F(x) = V[T(x)] for each x € X. Due to T(x) is
I'-convex, we infer that V[T(x)] is I'-convex, so F(x) is I'-convex. Also, for

any y € Y, since
F(y)={re X:yeFx)

={xeX:Tx)NV[y] = <}

=T (VIy])
and since V[y] is open in Y, it follows from the lower semi-continuity of 7'
that F~(y) is open in X. By Lemma 1.4, F has a continuous selection

f:X —>Y, so f(x) e F(x), which implies that T'(x) N V[f(x)] # @.

Definition 3.3. Let (Y; T') be a G-convex space. We call it a locally

G-convex metric space if (Y, d) is a metric space such that for any ¢ > 0,
yeY:dy E)<el

is a ['-convex set whenever E — Y 1is a I'-convex set, and all open balls

are I'-convex.

Proposition 3.4. Let X be a compact topological space and (Y; T') be

a complete locally G-convex metric space. If T : X =Y is a ls.c.

multimap with closed I'-convex values, then T has a continuous selection.

Proof. For each n e NU {0}, let V,[y] = {2 €Y :d(y, 2)< Ln} By
2

Lemma 3.2, there exists a continuous function fy : X — Y such that
T(x)N Vplfo(x)] = @. Define T} : X < Y by Ty(x) = T(x) N Vy[fo(x)] By
Lemma 1.6, T} is l.s.c. Obviously, for each x € X, Tj(x) is I'-convex. So,

it follows from Lemma 3.2 that there exists a continuous function
fi : X > Y such that Tj(x) N V;[f;(x)] # &. Continuing in this manner,
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we obtain a sequence of multimaps 7, : X =Y and a sequence of
continuous functions f, : X — Y such that for each n € NU {0} and for

1 + 1
2n+1 2_n

each x € X, T,(x)NV,[f,(x)] # D. Since d(f,.1(x), f(x)) <

for all x € X, the sequence {f,;} is uniformly Cauchy, its limit function f

is continuous and it is clear that f(x) € T(x) for each x € X.

Proposition 3.5. Let (X; T) be a compact locally G-convex metric
space. If T : X — X is a l.s.c. multimap with closed I'-convex values, then

T ¢ KKM(X, X).

Proof. By Proposition 3.4, T has a continuous selection f : X —» X.

Since every KKM map F with respect to T is also a KKM map with
respect to f and since f e KKM(X, X), it follows immediately that

T e KKM(X, X).

Corollary 3.6. Let X be a nonempty compact I'-convex subset of a

locally G-convex uniform space (E; T, U). If T : X - X is a l.s.c. multimap

with closed I'-convex values, then T has a fixed point.

Proof. By Proposition 3.4, T has a continuous selection ¢ which has a
fixed point by Park [12, Theorem 3]. Therefore T has a fixed point.

Proposition 3.7. Let (X; T') be a compact locally G-convex uniform

space. If T : X - X is a u.s.c. closed-valued multimap with T'-convex
values, then T € KKM(X, X).

Proof. If T ¢ KKM(X, X), then there exist a closed-valued KKM map
F : X - X with respect to T'and a nonempty finite subset A = {xg, ..., x,,}

of X such that ﬂ?:o F(x;) = &. Since (X, I') is a G-convex space, there
exists a continuous function ¢4 : A,, > X satisfying that
() $4(4,)<T4, and

(i) ¢4(Ag) S Tiyiicays forany J € ({0, 1, ..., nj).
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Moreover, since X = U?:o F¢(x;), it has a partition of unity {o;}g
subordinated to the open covering {F¢(x;)}; of X. Define f : X — A, by

flx) = z:L:o a;(x)e;. Obviously, fis continuous, and so T oy : A, = X
is u.s.c. with compact and I'-convex values. By Watson [16] foT o ¢y :

A, — A, has a fixed point x. Choose y € T o ¢ 4(x) such that x = f(9).
Denote by o the set of indices i such that o;(y) > 0. Then y € F¢(x;) for
allied, £ =f(y)eAyand ¢4 (%) € 04(Ay) € Tiyicgy- S0 € T(Tix,ica))s
and hence T(Tiy .jcq)) & UieJ F(x;). This is a contradiction. Therefore,
T e KKM(X, X).

Corollary 3.8. Suppose X is a nonempty compact I'-convex subset of a
locally G-convex uniform space (E; T, U). If T : X - X is u.s.c. with

closed and T'-convex values, then T has a fixed point.

Proof. Since T is u.s.c. and closed-valued, 1t 1s closed, and so the

result follows from Proposition 3.7 and Corollary 2.6.

This corollary is due to Watson [16, Theorem 4.1].

References

[1] N. Aronszajn and P. Panitchpakdi, Extensions of wuniformly continuous
transformations and hyperconvex metric spaces, Pacific J. Math 6 (1956), 405-439.

[2] C. Bardaro and R. Ceppitelli, Some further generalizations of the Knaster-
Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl.
132 (1988), 484-490.

[3] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal.
Appl. 203 (1996), 224-235.

[4] T. H. Chang, Y. Y. Huang, J. C. Jeng and K. W. Kuo, On S-KKM property and
related topics, J. Math. Anal. Appl. 229 (1999), 212-227.

[6] C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156
(1991), 341-357.

[6] Y.Y. Huang and J. C. Jeng, Fixed point theorems of the Park type in S-KKM class,
Nonlinear Analysis Forum 5 (2000), 51-59.

[7]1 J. L. Kelly, General topology, Van Nostrand, Princeton, New Jersey, 1955.



(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

FIXED POINT THEOREMS FOR MULTIMAPS ... 13

W. K. Kim, A fixed point theorem in a Hausdorff topological vector space, Comment.
Math. Univ. Carolinae 36 (1995), 33-38.

M. Lassonde, On the use of KKM multifunctions in fixed point theory and related
topics, J. Math. Anal. Appl. 97 (1983), 151-201.

S. Park, Foundations of the KKM theory on generalized convex spaces, J. Math.
Anal. Appl. 209 (1997), 551-571.

S. Park, Fixed point theorems for new classes of multimaps, Acta Math. Hungar. 81
(1998), 155-161.

S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002),
869-879.

S. Park and H. Kim, Admissible classes of multifunctions on generalized convex
spaces, Proc. Coll. Natur. Sci. Seoul. Nat. Univ. 18 (1993), 1-21.

K. K. Tan and X. L. Zhang, Fixed point theorems in G-convex spaces and
applications, The Proceedings of the First International Conference on Nonlinear
Functional Analysis and Applications, Kyungnam University, Masan, Korea, 1
(1996), 1-19.

E. Tarafdar, Fixed point theorems in locally H-convex uniform spaces, Nonlinear
Anal. 29 (1997), 971-978.

P. J. Watson, Coincidences and fixed points in locally G-convex spaces, Bull. Austral.
Math. Soc. 59 (1999), 297-304.

G. X.-Z. Yuan, Fixed points of upper semicontinuous mappings in locally G-convex
uniform spaces, Bull. Austral. Math. Soc. 59 (1998), 469-478.
|



