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Abstract

Longitudinal data commonly occur in medical follow-up studies and

epidemiological experiments. They usually include repeated

measurements of the response variable and covariates at a set of

distinct, irregularly spaced time points for each subject. One of the

difficulties for the analysis of such data is that the set of observation

times may vary from subject to subject. For their analysis, a number of

methods have been proposed, but most of them were developed under

specific models. In this paper, a class of general and uniform models is

presented for semiparametric analysis of longitudinal data. For

inference about regression parameters, a class of consistent and

asymptotically normal estimators is proposed. Extensive simulation
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studies are conducted and an example with data from an AIDS clinical

trial is presented to illustrate the proposed methodology.

1. Introduction

Longitudinal data commonly occur in medical follow-up studies and
observational investigations and one major difficulty for their analysis is
that the response variable is often repeatedly measured at irregular and
possibly subject-specific observation times. To address the difficulty,
various models and methods have been proposed (Diggle et al. [3]; Laird
and Ware [5]; Liang and Zeger [7]; Lin and Carroll [8]; Lin and Ying [9]).
For example, Laird and Ware [5] proposed simple linear random effects
models that are now commonly used in many fields. Following Laird and
Ware [5], many authors have developed various more general models
such as semiparametric and nonparametric random effects models. In
particular, Lin and Ying [9] recently studied a general semiparametric
mean function model given by

( ){ } ( ) ( ) ,| 0 ZttZtXE β′+µ= (1.1)

for regression analysis of longitudinal data, where ( )tX  is the response

variable, Z is a vector of covariates, ( )t0µ  is an unspecified smooth

function of time t and β is a vector of unknown regression parameters.

A special case of longitudinal data is panel count data where the
response variable is the outcome of a point process. Panel count data
occur if a recurrent event is under study and only the number of
occurrences of the event is known at each observation time. The analysis
of panel data has recently attracted considerable attention (e.g., Thall
and Lachin [17]; Cheng and Wei [2]; Sun and Wei [16]; Zhang [18]). In
these analyses, a common way is to model the mean function of the
response variable in some semiparametric form. In particular, several
authors have investigated the so-called proportional mean model

( ){ } ( ) ZetZtXE β′µ= 0| (1.2)

(Cheng and Wei [2]; Sun and Wei [16]; Zhang [18]). For example, Zhang
[18] discussed this model and proposed a semiparametric
pseudolikelihood estimation method for inference.
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Like the proportional hazards model in failure time data analysis, the
models (1.1) and (1.2) may not be flexible enough to fit the data
adequately in many realistic situations. To address this problem, some
more general models have been considered. For example, Lin et al. [12]
generalized model (1.2) to

( ){ } ( ( ) )ZetgZtXE β′µ= 0| (1.3)

for regression analysis of panel count data, where ( )⋅g  is a specified

function, assumed to be twice continuously differentiable and strictly
increasing. In this paper, we present a class of general and uniform
models for regression analysis of longitudinal data that includes most of
the existing models as special cases, and present an example of its
application in the analysis of AIDS data.

We will begin with introducing notations and describing the models
that will be used throughout the paper in Section 2. Section 3 presents a
class of estimating equations for the estimation of the regression
parameters and the baseline mean function under the model. We will
first discuss the situation where observation times are independent of
covariates, and then deal with the case where they may depend on
covariates. Results from simulation studies to evaluate the proposed
methods are reported in Section 4. In Section 5 we apply the methodology
to a set of longitudinal data from an AIDS clinical trial, followed by some
concluding remarks in Section 6. Finally, the asymptotic properties of the
proposed estimators and their proofs are provided in Appendix.

2. A Class of Uniform Semiparametric Models

Consider a longitudinal study consisting of n subjects. For the ith
subject, let ( )tXi  denote the univariate response variable, iZ  represent a

1×p  vector of covariates, and iC  be the censoring (follow-up) time on

the subject. Also let ( )tNi  denote the number of times that subject i are

observed by no later than [ ],,0 τ∈t  where τ is a constant. We assume

that ( ) ( ){ },,,, ⋅⋅ iiii NCZX  ,...,,1 ni =  are independent and identically

distributed (i.i.d.). For the analysis, we will consider the following
semiparametric model:
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( ){ } ( )( ),,,| 00 iii ZtZtXE βµΦ= (2.1)

which will be referred to as a semiparametric transformation model,

where ( )wvu ,,Φ  is a known function, which is assumed to be strictly

increasing in u and twice continuously differentiable with respect to u

and v, ( )t0µ  is an unknown baseline mean function, and 0β  is a vector of

unknown regression parameters.

The model in (2.1) specifies only the mean function structure of ( )⋅iX

and leaves the stochastic structure of the process ( )⋅iX  totally free. It

defines a very rich family of models through the link function Φ and

includes many existing models as special cases. For example, model (2.1)

reduces to model (1.1) if ( ) ,,, wvuwvu ′+=Φ  or to the proportional mean

model (1.2) when ( ) ( ).exp,, wvuwvu ′=Φ  Model (1.3) is also a special

case of (2.1) with ( ) ( ).,, wvuegwvu ′=Φ  In addition, the general additive-

multiplicative means model

( ){ } ( ) ( ) ( )iiii ZhtZgZtXE 2200110| β′µ+β′=

is another special case of model (2.1) with ( ) ( ) ( ),,, 2211 wvuhwvgwvu ′+′=Φ

where ( ) ,, 20100
′β′β′=β  ( ) ,, 21

′′′= iii ZZZ  ( )′′′= 21, vvv  and ( ) ., 21
′′′= www

Chen and Little [1] discussed a model similar to model (2.1) in the
context of survival analysis.

In the following, we will mainly consider the inference about .0β  For

this, we assume that iC  may depend on .iZ  But conditional on ,iZ  iC  is

independent of ( ),⋅iX  and for technical reasons, we assume that

( ) .0Pr >|τ≥ ii ZC

3. Estimation Procedures

3.1. Independent observation times

We first consider the situations where ( )⋅iN  is independent of

( ){ }.,, iii CZX ⋅  Note that the observed data for the ith subject consist of

observations on ( )⋅iX  at the time points where ( )⋅iN  jumps before the
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censoring time iC  and .iZ  Define ( ) ( )ttENi Λ=  and ( ) ( ),tCItY ii ≥=

where ( )⋅I  is the indicator function. Also define

( ) ( ) ( ) ( )∫=∗
t

iiii sdNsXsYtX
0

and

( ) ( ) ( ) ( )( ) ( )∫ ΛβµΦ−=Λβ ∗
t

iiii sdZssYtXtM
0

0 .,,,;

Under model (2.1), ( ) ( )nitMi ...,,1,; 0 =Λβ  are zero-mean stochastic

processes.

For the unknown mean function ( ),tΛ  a natural estimator is given by

the Nelson-Aalen estimator

( ) ( ) ( )

( )
∑ ∫ ∑=

=

=Λ
n

i

t

n

i i

ii

sY

sdNsY
t

1 0
1

ˆ

(Lawless et al. [6]). Next, as ( ) ,0ˆ,; 0 =ΛβtEMi  it is natural to estimate

( ),0 tµ  based on a given β, by the following equation:

( ) ( ) ( )( ) ( )∑ ∫
=

∗ τ≤≤=








ΛβµΦ−
n

i

t

iii tsdZssYtX
1 0

0 .0,0ˆ,, (3.1)

Denote the above estimator by ( ).;ˆ 0 βµ t  Then consider the estimation of

.0β  Following the idea used in Cheng and Wei [2] and Lin et al. [12], we

propose the following class of estimating functions:

( ) ( ) { ( ) ( ) ( ( ) ) ( )}∑ ∫
=

τ
∗ ΛββµΦ−=β

n

i
iiiia tdZttYtdXZtQU

1 0
0

ˆ,,;ˆ

for ,0β  where ( )tQ  is a known weight function that can have various

forms. A simple but natural choice is ( ) ,1=tQ  which will be referred to

as the log-rank weight function below. Another choice, commonly used in

survival analysis, is ( ) ( )∑ =
−= n

i i tYntQ
1

1 ,  which will be referred to as the

Gehan weight function.



w
w

w
.p

ph
m

j.c
om

XIAN ZHOU, JIANGUO SUN and LIUQUAN SUN238

Let aβ̂  denote the solution to ( ) 0=βaU  and ( ) ( )att βµ=µ ˆ;ˆˆ 00  the

corresponding estimator of the baseline mean function ( ).0 tµ  It can be

shown by following the discussion in Lin et al. [12] that ( )at βµ ˆ;ˆ 0  and aβ̂

always exist and are unique for large n. It is also easy to obtain aβ̂  and

( )t0µ̂  numerically. Specifically, let τ=<<<<= +1210 KK tttt  be

the set of all distinct observed time points where the counting processes

( )⋅iN ’s jump before the censoring time iC  and τ ( )....,,1 ni =  It is clear

from (3.1) that ( )βµ ;ˆ 0 t  is a step function that jumps only at

{ },1...,,0, += Kiti  and { ( ) }1...,,0,;ˆ 0 +=βµ Kiti  are identical to

{ ( ) }.0,;ˆ 0 τ≤≤βµ tt  Thus, equation (3.1) and ( ) 0=βaU  are respectively

equivalent to

{ ( ) ( ) ( ( ) ) ( )}∑
=

∗ +==Λ∆βµΦ−∆
n

i
lillili KltZttYtX

1
0 1...,,0,0ˆ,, (3.2)

and

( ) { ( ) ( ) ( ( ) ) ( )}∑∑
=

+

=

∗ =Λ∆βµΦ−∆
n

i

K

l
lilliliil tZttYtXZtQ

1

1

0
0 ,0ˆ,, (3.3)

where ( )tXi
∗∆  and ( )tΛ∆ ˆ  denote the jump values of ( )tXi

∗  and ( )tΛ̂  at t,

respectively. The estimating equations (3.2) and (3.3) can be solved by

any standard root finding method or the standard Newton-Raphson

algorithm.

In Appendix, we will first prove that ( )0
21 β−

aUn  is asymptotically

normal with mean zero and a covariance matrix that can be consistently

estimated by

( ) { ( )} ( ) ( ) ( ) ( )

( )
,

ˆˆ;ˆˆ;ˆ

2

1 0 0
1

1

⊗

=

τ τ

=

∗
− ∑ ∫ ∫ ∑ 















β

−β−=∑
n

i
n

j j

iia
iaia

tY

tMdtYtR
tMdtZZtQn
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where vvv ′=⊗2  for a column vector v, ( ) ( ) ( ),ˆˆ ttNtM ii Λ−=∗

( ) ( ) ( ) ( ( ) ) ( )∫ ΛβµΦ−= ∗
t

iaiii sdZssYtXtM
0

0 ,ˆ,ˆ,ˆˆ

( ) ( ) { ( )} ( ) ( ( ) )∑
=

ββµΦβ−=β
n

i
iii ZttYtZZtQtR

1
0 ,,,;ˆ;;

( )
( ) ( ( ) )

( ) ( ( ) )
,

,,;ˆ

,,;ˆ
;

1 01

1 01

∑
∑

=

=

ββµφ

ββµφ
=β

n

i ii

n

i iii

ZttY

ZZttY
tZ

and ( ) ( ) .,,,,1 uwvuwvu ∂Φ∂=φ  Following this result, we can show that

( )0
21 ˆ β−βan  is asymptotically normal with a zero mean and a

covariance matrix that can be consistently estimated by ,ˆˆˆ 11 −− ′∑ AA a

where

( ) ( ){ ( )} ( ( ) ) ( )∑ ∫
=

τ
− Λβµφβ−=

n

i
iaaii tdZttZZtYtQnA

1 0
02

1 ,ˆ,ˆ,ˆˆ;ˆ

and ( ) ( ) .,,,,2 vwvuwvu ′∂Φ∂=φ  The proof is given in Appendix.

3.2. Dependent observation times

Now we turn to the case in which the observation frequencies ( )⋅iN

may depend on ,iZ  but conditional on ,iZ  ( )⋅iN  is independent of

( ){ }., ii CX ⋅  Assume that, conditional on ,iZ  the mean function of the

( )⋅iN  has the form

( ){ } ( ) ( ),exp| 00 iii ZtZtNE γ′Λ= (3.4)

where ( )t0Λ  is an unspecified baseline mean function and 0γ  is a p-vector

of unknown regression parameters. Define

( ) ( ) ( ) ( )( ) ( ) ( )∫ Λγ′βµΦ−=Λγβ ∗
t

iiiii sdZZssYtXtM
0

000 .exp,,,,;
~
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Under models (2.1) and (3.4), ( ) ( )nitMi ...,,1,,;
~

000 =Λγβ  are zero-mean

stochastic processes.

For the current situation, given γ, ( )t0Λ  can be estimated by

( ) ( ) ( )

( ) ( )
∑ ∫ ∑=

=
γ′

=γΛ
n

i

t

n

i ii

ii

ZsY

sdNsY
t

1 0
1

0
exp

;ˆ

(Lawless et al. [6]). Given β and γ, we can estimate ( )t0µ  by the solution

to

( ) ( ) ( )( ) ( ) ( )∑ ∫
=

∗ =








γΛγ′βµΦ−
n

i

t

iiii sdZZssYtX
1 0

00 0;ˆexp,,

for .0 τ≤≤ t  Denote the above estimator by ( ).,;~
0 γβµ t  Motivated by

,aU  to estimate 0β  under the current situation, we propose to use the

class of estimating equations ( ) ,0, =γβbU  where

( )γβ,bU

( ) { ( ) ( ) ( ( ) ) ( ) ( )}.;ˆexp,,,;~

1 0
00∑∫

=

τ
∗ γΛγ′βγβµΦ−=

n

i
iiiii tdZZttYtdXZtQ

For the nuisance parameter γ in ,bU  one can estimate it by using the

following partial likelihood sore equation:

( ) ( ){ ( )} ( )∑ ∫
=

τ
∗ =γ−=γ

n

i
iii tdNtZZtYU

1 0
0;

(Sun and Wei [16]), where

( )
( ) ( )

( ) ( )
.

exp

exp
;

1

1

∑
∑

=

=∗

γ′

γ′
=γ

n

i ii

n

i iii

ZtY

ZZtY
tZ

Let bβ̂  and γ̂  denote the estimators given by ( ) 0, =γβbU  and ( ) .0=γU

Given these, the baseline mean function ( )t0µ  can be estimated by

( ) ( ).ˆ,ˆ;~~
00 γβµ=µ btt  As discussed in Section 3.1, ( )γβµ ,;~

0 t  and bβ̂
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always exist and are unique for large n and it is also easy to obtain bβ̂

and ( )t0
~µ  numerically in place of aβ̂  and ( ).ˆ 0 tµ

To investigate the asymptotic property of ,ˆ
bβ  again we first prove in

the Appendix that ( ) ( )( )′γ′γβ′−
000

21 ,, UUn b  is asymptotically normal with

mean zero and a covariance matrix that can be consistently estimated by

,
ˆˆ

ˆˆ
ˆ

2212

1211














∑∑′

∑∑
=∑b

where

( ){ ( )} ( ) ( ) ( ) ( )

( ) ( )
,

ˆexp

ˆˆ,ˆ;~
~ˆ,ˆ;

~ˆ

2

1 0 0
1

1
11

⊗

=

τ τ

=

∗∗
∗− ∑ ∫ ∫ ∑ 
















γ′

γβ
−γβ−=∑

n

i
n

j jj

iib
ibi

ZtY

tMdtYtR
tMdtZZtQn

( ){ ( )} ( )∑ ∫
=

⊗τ
∗∗∗−









γ−=∑

n

i
iii tMdtZZtYn

1

2

0

1
22 ,ˆˆ;ˆ

and

( ){ ( )} ( ) ( ) ( ) ( )

( ) ( )
∑ ∫ ∫ ∑=

τ τ

=

∗∗
∗−

























γ′

γβ
−γβ−=∑

n

i
n

j jj

iib
ibi

ZtY

tMdtYtR
tMdtZZtQn

1 0 0
1

1
12

ˆexp

ˆˆ,ˆ;
~

~ˆ,ˆ;~ˆ

( ){ ( )} ( ) ,ˆˆ;
0 







′γ−× ∫

τ
∗∗∗ tMdtZZtY iii

with

( ) ( ) ( ) ( ),ˆ,ˆˆexpˆ
0 γΛγ′−=∗∗ tZtNtM iii

( ) ( ) ( ) ( ( ) ) ( ) ( ),ˆ;ˆˆexp,ˆ,~~
0

0
0 γΛγ′βµΦ−= ∫∗∗ sdZZssYtXtM i

t

ibiii

( ) ( ){ ( )} ( ) ( ( ) ) ( ),exp,,,;~,;
~

,;
~

0
1

iii

n

i
i ZZttYtZZtQtR γ′βγβµΦγβ−=γβ ∑

=
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and

( )
( ) ( ( ) ) ( )

( ) ( ( ) ) ( )
.

exp,,,;~

exp,,,;~
,;

~

1 01

1 01

∑
∑

=

=

γ′βγβµφ

γ′βγβµφ
=γβ

n

i iii

n

i iiii

ZZttY

ZZZttY
tZ

Then it can be shown that ( )0
21 ˆ β−βbn  has an asymptotic normal

distribution with mean zero and a covariance matrix that can be

consistently estimated by

( ) ( ) ,ˆˆ,ˆˆˆˆ,ˆ 1111 ′−∑− −−−− CBBCBB b

where

( ) ( ){ ( )} ( ( ) ) ( ) ( )∑ ∫
=

τ
γΛγ′βµφγβ−=

n

i
iibbii tdZZttZZtYtQ

n
B

1 0
002 ,ˆ,ˆˆexp,ˆ,~ˆ,ˆ;

~1ˆ

and 1
21

ˆˆˆ −= CCC  with

( ) ( ) ( ( ) ){ ( )}∑ ∫
=

τ
γβ−βµΦ=

n

i
biibi tZZZttYtQ

n
C

1 0
01 ˆ,ˆ;

~
,ˆ,~1ˆ

{ ( )} ( ) ( )γΛγ′′γ−⋅ ∗ ˆ,ˆˆexpˆ; 0 tdZtZZ ii

and

( )
( ) ( )

( ) ( )
( ) ( ).ˆ;

ˆexp

ˆexp
1ˆ

1 0

2

1

1
2

2 ∑∫ ∑
∑

=

τ ⊗∗

=

=
⊗

















γ−
γ′

γ′
=

n

i
in

j jj

n

j jjj

i tdNtZ
ZtY

ZZtY
tY

n
C

4. Simulation Studies

Simulation studies were conducted to assess the performance of the

proposed estimation procedures for various practical situations. In the

studies, we focused on the situation where observation times depend on

covariates through model (3.4) with ( ) 10 =Λ t  and ,2log0 =γ  and

assumed that iZ  was a Bernoulli random variable with success
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probability 0.5. The follow-up time iC  was generated from the uniform

distribution [ ],5,3U  which resulted in an average of 6 observations per

subject. Among others, we considered the following two models: the

proportional mean model

( ) ( ) ( ) ( ),exp 00 tZttX iii σε+βµ= (4.1)

and the Box-Cox transformation model

( ) ( ) ( ){ } ( )tZttX iii σε+−βµ+= 1exp1 2
00 (4.2)

with ( ) 10 =µ t  and independent standard normal variables ( )tiε ’s. Note

that the second model is a nonproportional mean model. The results
reported here are based on 2000 replicates.

Table 1 below displays the means of point estimates bβ̂  and their

standard error estimates given in Section 3.2 along with the empirical
95% coverage probabilities under the above proportional mean model. In

the table, different values of ,0β  σ and sample size n were considered

and both log-rank and Gehan weight functions were used. For

comparison, the sample standard errors of bβ̂  based on simulated data

are also calculated and included in the table. In all cases, τ was set to be

the maximum length of follow-up times.

Table 1. Simulation results based on the proportional mean model

50=n

Log-rank Gehan

0β σ Mean SE SEE ECP Mean SE SEE ECP

0.5 0.10 0.4999 0.0735 0.0722 0.9420 0.5006 0.0640 0.0636 0.9430

0.25 0.5002 0.0770 0.0758 0.9410 0.5009 0.0656 0.0649 0.9440

0.50 0.4989 0.0797 0.0784 0.9340 0.4993 0.0710 0.0696 0.9380

1.0 0.10 0.9998 0.0737 0.0721 0.9400 1.0003 0.0642 0.0631 0.9420

0.25 1.0011 0.0748 0.0735 0.9390 1.0004 0.0651 0.0648 0.9410

0.50 1.0003 0.0779 0.0769 0.9450 0.9992 0.0699 0.0687 0.9400
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100=n

0.5 0.10 0.4997 0.0521 0.0517 0.9440 0.5003 0.0456 0.0453 0.9420

0.25 0.5006 0.0533 0.0526 0.9470 0.5008 0.0460 0.0467 0.9520

0.50 0.4990 0.0549 0.0547 0.9420 0.4999 0.0492 0.0493 0.9510

1.0 0.10 1.0001 0.0527 0.0518 0.9410 0.9997 0.0457 0.0450 0.9460

0.25 1.0003 0.0539 0.0530 0.9400 0.9993 0.0462 0.0469 0.9490

0.50 1.0009 0.0548 0.0543 0.9450 0.9998 0.0494 0.0489 0.9430

Note: Mean represents the mean of the estimates of ,0β  SE represents

the sampling standard error of the estimates of ,0β  SEE represents the

mean of the standard error estimators, and ECP represents the empirical
coverage probability of the 95% confidence interval.

Table 2 below presents the results for the same situations considered
in Table 1, but under the Box-Cox transformation model.

Table 2. Simulation results based on the Box-Cox transformation model

50=n

Log-rank Gehan

0β σ Mean SE SEE ECP Mean SE SEE ECP

0.5 0.10 0.4991 0.0614 0.0596 0.9470 0.4993 0.0497 0.0495 0.9450

0.25 0.5004 0.0622 0.0611 0.9430 0.4998 0.0510 0.0501 0.9550

0.50 0.4979 0.0635 0.0624 0.9390 0.4976 0.0523 0.0514 0.9390

1.0 0.10 0.9937 0.0607 0.0590 0.9420 0.9927 0.0493 0.0490 0.9420

0.25 0.9942 0.0616 0.0596 0.9380 0.9918 0.0528 0.0515 0.9380

0.50 0.9925 0.0631 0.0618 0.9350 0.9906 0.0539 0.0521 0.9340

100=n

0.5 0.10 0.4994 0.0422 0.0420 0.9470 0.4999 0.0351 0.0352 0.9510

0.25 0.5005 0.0434 0.0425 0.9440 0.4986 0.0358 0.0354 0.9430

0.50 0.4986 0.0446 0.0437 0.9420 0.4988 0.0365 0.0357 0.9400

1.0 0.10 0.9917 0.0428 0.0421 0.9450 0.9909 0.0340 0.0343 0.9440

0.25 0.9930 0.0439 0.0433 0.9430 0.9920 0.0356 0.0349 0.9420

0.50 0.9911 0.0448 0.0440 0.9400 0.9903 0.0369 0.0353 0.9390
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It can be seen from Tables 1 and 2 that the proposed estimation

procedures performed well for all situations considered under both the

proportional mean model and the Box-Cox transformation model. It

appears that the estimates are unbiased and there is a good agreement

between the estimated and empirical standard errors. The confidence

intervals have reasonable coverages and the results become better when

the sample size increases from 50 to 100. We also simulated other models

and the results were similar to those given above.

5. An Example of Application

In this section, we apply the proposed methodology to CD4 cell counts

from protocol 116A of the AIDS Clinical Trials Group. This is a three

arms randomized double-blind trial comparing three treatments, ZDV,

500mg/day DDI, and 750mg/day DDI (Dolin et al. [4]). The study began in

October 1989 and ended in May 1992. Among other variables, CD4 cell

counts were supposed to be measured every 8 weeks and as expected,

there are a lot of missing measurements. In the analysis here, we focus

on the patients for whom at least one CD4 cell count was available at

week 2, 8, 12, 16, 24, 32, 40, 48, 56, or 64 after baseline CD4 cell count

measurements (at week 0). In total, the data set includes 1302

observations on CD4 cell counts from 156 patients.

In the study, a binary covariate DXAIDS was measured, which

equals 1 if a patient was diagnosed with AIDS at entry to the study and 0

otherwise. To investigate the effect of DXAIDS on CD4 cell counts, we

applied the proposed method to estimate the regression parameter vector

.0β  The proportional mean model (4.1) and the Box-Cox transformation

model (4.2) are studied, each with the log-rank and Gehan weight

functions. The estimates ,ˆ
aβ  together with the estimated standard error

(ESE), are summarized in Table 3 below.
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Table 3. The estimates aβ̂  of the regression parameter and their

estimated standard errors (in bracket) for the CD4 cell count data

Weight Model (4.1) Model (4.2)

Log-rank )1646.0(5151.0− )0825.0(2807.0−

Gehan )1623.0(4848.0− )0805.0(2637.0−

From Table 3 we see that, under the proportional mean model (4.1),

5151.0ˆ −=βa  with 1646.0ESE =  using the log-rank weight function,

and 4848.0ˆ −=βa  with 1623.0ESE =  using the Gehan weight function.

Both results suggest that DXAIDS has a significant effect on CD4 cell
counts and that the patients with AIDS diagnosed at the beginning
tended to have lower CD4 cell counts than the patients free of AIDS. It

also shows that estimate aβ̂  is reasonably robust against the weight

function, as the estimates and their estimated standard errors are close
between the two weight functions.

Similar conclusions can be drawn from the Box-Cox transformation

model (4.2) as well, where 2807.0ˆ −=βa  and 2637.0−  respectively with

the log-rank and Gehan weight functions, and the corresponding
estimated standard errors are 0.0825 and 0.0805, respectively. These
results again indicate that CD4 cell counts were significantly different
between patients diagnosed with AIDS and free of AIDS. Note that,
however, we did not consider treatment effect in the above analyses, since
the final analysis of the study showed that there were no significant
treatment differences (Dolin et al. [4]). Also, the study suggested that it is
reasonable to assume that observation times are independent of DXAIDS.

6. Concluding Remarks

We have discussed the regression analysis of longitudinal data under
general semiparametric transformation models, which include many
existing regression models for panel count data and longitudinal data as
special cases. Estimation procedures are proposed for the regression
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parameters that allow observation times to depend on covariates.
Simulation studies show that the methods work well for the situations
considered. The methodology was applied to a set of longitudinal data
about CD4 cell counts from an AIDS clinical trial. We considered only
time-independent covariates in this paper, but it is straightforward to
generalize the proposed methods to situations with time-dependent
covariates.

There are several open questions for future researches. One is the

selection of weight functions, which is usually a complicated problem (Lin

and Ying [9]). It would be useful to investigate how to find a weight

function that gives the optimal efficiency of the proposed estimate of

regression parameters if it exists. Another interesting problem is the

development of model-checking procedures for model (2.1). Since model

(2.1) allows many choices, it would be helpful to have methods available

for selecting a valid or best-fitting model. A third open question is the

asymptotic distribution of the proposed estimators of the baseline mean

function ( ),0 tµ  which requires further investigations. Also it would be

useful to generalize the proposed methodology to the situation where

there exist informative drop-outs (Lin and Ying [10]).

Appendix: Proofs of Asymptotic Properties

In this section we prove the asymptotic properties of ( ),0βaU

( ),, 00 γβbU  ( ),0γU  aβ̂  and bβ̂  given in the previous sections through

three theorems.

In the following, we will assume that the iZ ’s are bounded and that

( )tQ  has bounded variation and converges almost surely to ( )tq  uniformly

in [ ].,0 τ∈t  First by using the uniform strong law of large numbers

(Pollard [13, p. 41]), it is not difficult to show that ( ),;ˆ 0 βµ t  ( ),,;~
0 γβµ t

( ),; βtZ  ( )γβ,;
~

tZ  and ( )γ∗ ;tZ  converge almost surely to nonrandom

functions ( ) ( ) ( ) ( )γββγβµβµ ,;~,;,,;,; 00 tztztt  and ( )γ∗ ;tz  uniformly in

t, β and γ, respectively. Let
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( ) ( ) ( ),,;; 000000 γβµ=βµ=µ ttt

( ) ( ) ( ) ( ) ( ) ( ),;,,;~~,; 0000 γ=γβ=β= ∗∗ tztztztztztz

( ) ( ) ( ) ( ) ( ) ( ) ( ),,,,;
~~

,,; 0000 ttNtMtMtMtMtM iiiiii Λ−=Λγβ=Λβ= ∗

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ),exp~,,exp 101100 ZtYEttEYttZtNtM iii γ′=π=πΛγ′−=∗∗

( ) ( ) ( ){ } ( ) ( )( )[ ],,, 10011 ZttYtzZtQEtr βµΦ−=   and

( ) ( ) ( ){ } ( ) ( )( ) ( )[ ].exp,,~~
1010011 ZZttYtzZtQEtr γ′βµΦ−=

We first study the following three processes:

( ) ( ) [ ( ) ( ) ( ( ) ) ( )],ˆ,,;ˆ;
1 0

0∑∫
=

∗ ΛββµΦ−=β
n

i

t

iiiia sdZssYsdXZsQtU

( )γβ,;tUb

( ) [ ( ) ( ) ( ( ) ) ( ) ( )]∑ ∫
=

∗ γΛγ′βγβµΦ−=
n

i

t

iiiii sdZZssYsdXZsQ
1 0

00 ,;ˆexp,,,;~

( ) ( ){ ( )} ( )∑ ∫
=

∗ γ−=γ
n

i

t

iii sdNsZZsYtU
1 0

.;;

Their asymptotic properties are shown below:

Theorem 1. Under the above assumptions, ( )0
21 ; β− tUn a  and

( ) ( )( )′γ′γβ′−
000

21 ;,,; tUtUn b  converge weakly, as ,∞→n  to zero-mean

Gaussian processes with covariance functions

( ) ( ) ( ){ } ( ) ( ) ( ) ( )
( )















π

−−=Γ ∫ ∫
∗1 1

0 0

11
1121,

t t

a s
sdMsYsr

sdMszZsqEtt

( ) ( ){ } ( ) ( ) ( ) ( )
( ) ,

2 1

0 0

11
11 





′









π

−−× ∫ ∫
∗t t

s
sdMsYsr

sdMszZsq
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and

( )
( ) ( )

( ) ( )










ΓΓ′

ΓΓ
=Γ

21221212

21122111
21

,,

,,
,

tttt

tttt
ttb

respectively, where

( ) ( ) ( ){ } ( ) ( ) ( ) ( )
( )

















π

−−=Γ ∫ ∫
∗∗1 1

0 0

11
112111 ~

~~~,
t t

s
sdMsYsr

sMdszZsqEtt

 ( ) ( ){ } ( ) ( ) ( ) ( )
( ) ,~

~~~2 2

0 0

11
11 





′











π

−−× ∫ ∫
∗∗t t

s
sdMsYsr

sMdszZsq

( )2122 , ttΓ

( ) { ( )} ( ) ( ) { ( )} ( ) ,
1 2

0 0
111111 







 ′−−= ∫ ∫ ∗∗∗∗∗∗
t t

sdMszZsYsdMszZsYE

( ) ( ) ( ){ } ( ) ( ) ( ) ( )
( )















π

−−=Γ ∫ ∫
∗∗1 1

0 0

11
112112 ~

~~~,
t t

s
sdMsYsr

sMdszZsqEtt

 ( ) { ( )} ( ) .
2

0
111 



′−× ∫ ∗∗∗
t

sdMszZsY

Proof. Using the linear expansion of ( )wvu ,,Φ  about u in ( ),; 0βtUa

we have

( ) ( ) [ ( ) ( ) ( ( ) )∑ ∫
=

∗−− βµφ−Λβ=β
n

i

t

iiiia ZssYsdMZsQntUn
1 0

010
21

0
21 ,,ˆ,;;

{ ( ) ( )} ( )],ˆ;ˆ 000 sdss Λµ−βµ× (A.1)

where ( )t∗µ  lies between ( )00 ;ˆ βµ t  and ( ).0 tµ  Note that ( )βµ ;ˆ 0 t  satisfies

( ) ( ) ( ( ) ) ( ) .0ˆ,,;ˆ
1 0

0 =







ΛββµΦ−∑ ∫

=

∗
n

i

t

iii sdZttYtX (A.2)
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Then the linear expansion yields

[ ( ) ( )] ( )
( )

( ) ( ( ) )
,

,,

ˆ,;
ˆ;ˆ

1 01

1 0
000

∑
∑
=

∗∗
=

βµφ

Λβ
=Λµ−βµ

n

i ii

n

i i

ZttY

tdM
tdtt (A.3)

where ( )t∗∗µ  also lies between ( )00 ;ˆ βµ t  and ( ).0 tµ  It follows from

the functional central limit theorem (Pollard [13, p. 53]) and

( ) ( ) ( )21
0

ˆsup −
τ≤≤ =Λ−Λ nOtt pt  that ( )∑ =

Λβn
i i tM

1 0
ˆ,;  is ( )21nOp

uniformly in t. Hence, combining (A.1) and (A.3) with the uniform

convergence of ( ),;ˆ 00 βµ t  we obtain

( )0
21 ; β− tUn a

( )
( ) ( ( ) )

( ) ( ( ) )
( )∑ ∫ ∑

∑
=

=
∗∗

=
∗

− Λβ
















βµφ

βµφ
−=

n

i
i

t

n

j jj

n

j jjj

i sdM
ZstY

ZZssY
ZsQn

1
0

0
1 01

1 01
21 ˆ,;

,,

,,

( ) ( )[ ] ( ) ( )∑ ∫
=

− +Λβ−=
n

i
pi

t

i osdMszZsQn
1

0
0

21 1ˆ,;

( ) ( ) ( ),121 paa otUtU +−=

where

( ) ( ) ( ){ } ( )∑ ∫
=

− −=
n

i
i

t

ia sdMszZsQntU
1 0

21
1 ,

( ) ( ) ( ){ } ( ) ( ( ) ) [ ( ) ( )].ˆ,,;ˆ
1

000
0

21
2 ∑∫

=

− Λ−ΛββµΦ−=
n

i
ii

t

ia ssdZssYszZsQntU

Using tools from the modern empirical process theory (e.g., Pollard [13]),
we can get

( ) ( ) { } ( ) ( )∑ ∫
=

− +−=
n

i
pi

t

ia osdMzZsqntU
1 0

21
1 .1
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Note that

( ) ( ) ( ) ( )
( ) ( ),ˆ 21

1 0

−

=

∗

∑ ∫ +
π

=Λ−Λ no
s

sdMsY
tt

n

i

t

p
ii

which implies

( ) ( ) ( ) ( )
( ) ( ).1

1 0

21
2 ∑∫

=

∗
− +

π
=

n

i

t

p
ii

a o
s

sdMsYsr
ntU

Thus,

( ) ( ) ( )∑
=

−− +Ψ=β
n

i
pa otntUn

1

21
0

21 ,1; (A.4)

where

( ) ( ) ( ){ } ( ) ( ) ( ) ( )
( )∫ ∫ π

−−=Ψ
∗t t
ii

iii s
sdMsYsr

sdMszZsqt
0 0

.

Because ( ) ( )niti ...,,1=Ψ  are i.i.d. zero-mean random variables for any

fixed t, the finite-dimensional normality of (A.4) follows from the

multivariate central limit theorem. Using similar arguments to those in

the proof of Theorem 1 of Lin et al. [11], we can show that (A.4) is tight

and thus converges weakly to a zero-mean Gaussian process with

covariance function ( ) ( )( ) ( )212111 , ttttE aΓ=ΨΨ  at ( )., 21 tt  In a similar

manner and using

[ ( ) ( )] ( )
( )

( ) ( ( ) ) ( )
,

exp,,~

ˆ,,;
~

;ˆ,;~

1 001

1 00
000000

∑
∑

=
∗

=

γ′βµφ

Λγβ
=γΛµ−γβµ

n

i iii

n

i i

ZZttY

tMd
tdtt

and

( ) ( ) ( ) ( )
( ) ( )∑ ∫

=

−
∗∗

+
π

γ
=Λ−γΛ

n

i

t

p
ii no
s

sdMsY
tt

1

21

0

0
000 ,~

;
;ˆ
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where ( )t∗µ~  lies between ( )000 ,;~ γβµ t  and ( ),0 tµ  we have

( )00
21 ,; γβ− tUn b

( ) ( ){ } ( ) ( ) ( ) ( )
( ) ( )∑ ∫∫

=

∗∗
− +












π

−−=
n

i
p

t
ii

i

t

i o
s

sdMsYsr
sMdszZsqn

1 00

21 ,1~
~~~

( ) ( ) { ( )} ( ) ( )∑ ∫
=

∗∗∗−− +−=γ
n

i
pi

t

ii osdMszZsYntUn
1 0

21
0

21 .1;

Therefore, ( ) ( )( )′γ′γβ′−
000

21 ;,,; tUtUn b  also converges weakly to zero-

mean Gaussian processes with covariance function ( )21, ttbΓ  at ( )., 21 tt

This completes the proof of Theorem 1.

Next, we study the asymptotic properties of aβ̂  and .ˆ
bβ  To do so, let

( ) ( ) ,,,, 000
′γ′β′=θ′γ′β′=θ  and ( ) ( ),, θ=γβ bb UU  and we need to establish

the asymptotic linearity of ( )βaU  and ( )θbU  in ( )0βN  and ( ),0θ
∗N

respectively, where ( )0θ
∗N  is a compact neighborhood of .0θ  The results

are given in the next theorem.

Theorem 2. Suppose that the above assumptions hold and .∞→n

Then for any sequence ,0→nc

( ) ( ) ( ) ( ),1sup
0

00

0

o
n

nAUU aa

cn

=
β−β

β−β+β−β

≤β−β
(A.5)

and

( ) ( ) ( ) ( )( ) ( ) ( )1sup
0

000

0

o
n

nBUUCUU bb

cn

=
θ−θ

β−β+γ−γ−θ−θ

≤θ−θ
(A.6)

almost surely, where

( ) ( ) ( ){ } ( )( ) ( ) ,,,
0

100211 







Λβµφ−= ∫

τ
tdZttzZtYtqEA

( ) ( ) ( ){ } ( )( ) ( ) ( ) ,exp,,~
0

010100211 







Λγ′βµφ−= ∫

τ
tdZZttzZtYtqEB
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and ,1
21
−= CCC  with

( ) ( ) ( )( )



βµΦ= ∫

τ

0
10011 ,, ZttYtqEC

( ){ }{ ( )} ( ) ( ) ,exp~
01011 

Λγ′′−−⋅ ∗ tdZtzZtzZ

( ) { ( )} ( ) ( ) .exp
0

010
2

112 







Λγ′−= ∫

τ ⊗∗ tdZtzZtYEC

Furthermore, if A has full rank, then aβ̂  is strongly consistent and

( )0
21 ˆ β−βan  converges in distribution to a zero-mean normal vector with

covariance matrix ( ) ., 11 −− ′ττΓ AA a  If B has full rank, then bβ̂  is strongly

consistent and ( )0
21 ˆ β−βbn  converges in distribution to zero-mean

normal with covariance matrix ( ) ( ) ( ) .,,, 1111 ′−ττΓ− −−−− CBBCBB b

Proof. Let ( ) ( ) .ˆ 1 β′∂β∂−=β −
aUnA  Then

( ) ( ) ( ) ( ( ) ) ( )∑ ∫
=

τ
−




β′∂
βµ∂

ββµφ=β
n

i
iii

t
ZtZtYtQnA

1 0

0
01

1 ;ˆ
,,;ˆˆ

 ( ( ) ) ( ).ˆ,,;ˆ 02 tdZt i Λ
ββµφ+

Differentiate (A.2) with respect to β, we get

( ) ( )
( ) ( ( ) )

( ) ( ( ) )
( ).ˆ

,,;ˆ

,,;ˆ
ˆ;ˆ

1 01

1 020 td
ZttY

ZttY
td

t
n

i ii

n

i ii
Λ

ββµφ

ββµφ
−=Λ

β′∂
βµ∂

∑
∑

=

=

Thus

( ) ( ) ( ){ ( )} ( ( ) ) ( )∑ ∫
=

τ
− Λββµφβ−=β

n

i
iii tdZttZZtYtQnA

1 0
02

1 .ˆ,,;ˆ;ˆ

The uniform convergence of ( )βµ ;ˆ 0 t  and the continuity of ( )wvuk ,,φ

( )2,1=k  together with the uniform strong law of large numbers imply

that ( )βÂ  converges almost surely to nonrandom function ( )βA  uniformly
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in β. It is easily checked that ( ) .0 AA =β  Hence, (A.5) immediately

follows from Taylor’s expansion and the continuity of ( ).βA  When A is

nonsingular, the consistency of aβ̂  follows from the arguments used in

the Appendix of Lin et al. [12, p. 627] (also see Lin et al. [11]). Now it

follows from (A.5) and consistency of aβ̂  that ( ) =β−β 0
21 ˆ

an

( ) ( ),10
211

pa oUnA +θ−−  which yields the asymptotic normality of aβ̂

from Theorem 1. According to the proof of (A.5), we have

( ) ( ) ( ) ( ) ( ).1sup
0

0100

0

o
n

nCnBUU bb

cn

=
θ−θ

γ−γ+β−β+θ−θ

≤θ−θ
(A.7)

Using Taylor’s expansion, we get

( ) ( ) ( ) ( ).1sup
0

020

0

o
n

nCUU

nc
=

γ−γ
γ−γ+γ−γ

≤γ−γ
(A.8)

Thus, (A.6) follows from (A.7) and (A.8). Similar to ,ˆ
aβ  we can obtain

consistency and the asymptotic normality of .ˆ
bβ

Finally, we prove the convergence for the estimators of the covariance

matrices.

Theorem 3. Under the same conditions as Theorem 2, ( )ττΓ→∑ ,ˆ
kl

( ) ,ˆ,ˆ,, BBAAbal →→=  and CC →ˆ  almost surely.

Proof. The uniform convergence of ( ) ( ) ( )βββµ ,,;,;ˆ 0 tRtZt  and ( )tΛ̂

and the strong consistency of aβ̂  entail that ∑ =
− →−n

i ii DDn
1

21 0ˆ

almost surely, where

{ ( ){ ( )} ( ) ( ) ( ) ( )

( )
,

ˆˆ;ˆˆ;ˆ
0

1
0 ∫ ∑∫

τ

=

∗τ β
−β−=

n

j j

iia
iaii

tY

tMdtYtR
tMdtZZtQD

( ){ ( )} ( ) ( ) ( ) ( )
( ) .

00 ∫∫
τ ∗τ

π
−−=

t
tdMtYtr

sdMtzZtqD ii
iii
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It follows from the strong law of large numbers that ∑ =
⊗− →n

i iDn
1

21

( )ττΓ ,a  almost surely. Therefore, a∑̂  converges almost surely to ( )., ττΓa

Similarly, ( ) ,ˆ,ˆ,,ˆ BBAAbb →→ττΓ→∑  and CC →ˆ  almost surely.

This completes the proof of the theorem.
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