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Abstract 

Much research has concentrated on developing accurate and robust 

pavement condition and performance prediction models whose goals are 

both to assess the factors that affect pavement deterioration and to 

predict future pavement performance. In recent years, many authors 

have departed from the classical statistical approaches for model 

development and have worked with alternative techniques, commonly 

known as soft computing, that are particularly well suited for data that 

exhibit nonlinear properties. Based on a large European database with 

more than 900 test sections from 15 (European) countries, this paper 

complements prior research in two ways; first, it compares prediction 

results from three different soft computing techniques, Neural 

Networks, Hierarchical Tree Based Regression and Multivariate 

Adaptive Regression Splines, on a common database and, second, it 

assesses the importance of various structural, environmental and traffic 

characteristics on pavement condition based on these flexible 

computational approaches. The results show that the approaches tested 

provide very encouraging prediction results, especially in comparison to 

regression models, and that the approaches evaluate differently the 

factors affecting performance. 
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1. Introduction 

Transportation makes up almost 10% of Europe’s GNP. Further, over 
80% of the total transport of people and goods is provided by the road 
infrastructure. As such, it is obvious that a well maintained road 
infrastructure is an essential part of Europe’s economic development. 
Further, poor pavement maintenance can have serious consequences on 
road safety and ride comfort. To this end, pavement maintenance 
involves substantial costs, both to the operating authorities and the user. 
For authorities, costs for planning maintenance, maintaining and 
treating pavements are very high; for users, maintenance costs are 
manifested through increased work-zone delays and temporary lane 
closures and increased safety risks associated with such closures. Given 
that both these costs are usually very high and that resources are scarce, 
pavement maintenance must be planned systematically; this is usually 
done through the implementation of Pavement Management Systems 
(PMS). 

PMS are commonly used to select maintenance strategies that result 
in lower project life cycle costs. Integral part of these systems are 
pavement deterioration models that predict deterioration based on 
present condition, deterioration factors such as traffic, environmental 
and construction properties and the effects of maintenance. Interestingly, 
besides being the backbone of PMS, deterioration models are frequently 
the weak points of such systems. Inaccurate models may lead to 
suboptimal maintenance strategies, while well developed models may 
help to ensure that life-cycle cost analysis will contribute to well selected 
maintenance strategies that lead to prudent investment decisions. 

Based on the above, it comes as little surprise that the literature 
contains a vast body of work regarding deterioration modeling of 
infrastructure facilities with a particular interest in pavements (Madanat 
et al. [9], Flintsch [4], Loizos et al. [8]). Most of the work has revolved 
around the extended linear regression framework that, although 
powerful and with many attractive features, should not be chosen for 
data that can better be approximated using non-parametric approaches. 
As a result, many authors have worked with a number of flexible 
approaches under the general term of soft computing in an effort to 
develop more accurate, 
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in terms of prediction error models (a thorough review of the literature on 
soft computing applications in pavement and infrastructure modeling 
appears in Flintsch [4]; as such, interested readers should refer to that 
paper for a wider coverage of the available literature). From the 
literature it appears that most of the research interest has revolved 
around the development of Artificial Neural Networks (ANN) because 
they yield very satisfactory predictions and can straightforwardly 
accommodate for nonlinearities in the data (Zadeh [15], Yang et al. [14], 
Felker et al. [3]). But, the area of soft computing offers a number of other 
promising approaches that should be tested against both more traditional 
linear models and ANNs to establish their potential advantages and 
shortcomings. 

The goal of this paper is to test and compare predictions from three 

flexible and promising soft computing techniques, ANNs, Hierarchical 

Tree Based Regression (HTBR) and Multivariate Adaptive Regression 

Splines (MARS). It should be noted that, for the comparisons to be 

complete and valid, all models are developed using and tested against the 

same data. The remainder of this paper is organized as follows; the 

second section describes the data set used in this work. The third section 

briefly reviews the three methodological approaches used in the paper 

and the fourth section presents the empirical findings. Finally, the fifth 

section summarizes the findings and offers some concluding remarks. 

2. Database Development 

2.1. General 

The data used in this paper were collected as part of the PARIS 

project in the European Union (EU), considered as one of the most 

successful infrastructure research projects in Europe (PARIS 2000). The 

general objective of the PARIS project was to develop pavement 

deterioration models for use in pavement management systems; more 

specifically, the project was geared toward producing uniform data 

collection mechanisms and definitions, data acquisition systems and 

analysis methods to interpret road pavement performance in the EU, to 

develop a central research database for road condition data gathered in 
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the participating countries, to develop a coherent set of pavement 

deterioration models, applicable for different traffic conditions, climates 

and materials based on data from in-service road sections and, finally, to 

validate the pavement deterioration models developed using a separate 

set of data. 

It must be mentioned again that the major target of the PARIS 
project was to provide performance models, namely models for the 
initiation and propagation of pavement distress. The distress types used 
have been based on the results of the European Cooperation in the field 
of Scientific and Technical Research. The final selection of distress types 
to be used in the project was made by taking into account the fact that 
the available and collected data would be used for the development of 
models. For each possible distress, historical data (at least 5 years) 
should be available and each section should have - if possible - a complete 
set of data (construction, distress, traffic, deflections, etc.) in order to be 
suitable for analysis. 

The importance of each distress was also considered, but it is 
practically impossible to examine the entire range of distresses in the 
present paper. Pothole detailed data, for example, are regularly collected 
by very few agencies (countries in the PARIS project); and, even in those 
cases, where these data are available, they come from very low volume 
roads for which several other critical data such as traffic, inventory and 
so on are not available. Basic aim of the analyses was to provide models 
for cracking, rutting and raveling initiation and propagation, as well as 
longitudinal unevenness propagation. 

The pavement deterioration models produced in the project and used 
in this paper are based on the observed performance of a large number of 
test sections across Europe (Table 1). Most sections are located on the 
national road networks and subjected to the influence of climate and 
regular traffic. 

2.2. The collection of data 

A prime criterion for selecting the test sections used in the paper was 

the availability of sufficient historical distress data. The test sections for 

the project were selected from ongoing pavement performance studies in 
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each country, with a minimum of two distress surveys prior to the start of 

the project. Using these criteria, a total number of 900 test sections were 

selected from ongoing pavement performance studies in eleven of the 

fifteen countries participating in the project. Data from four countries 

where local pavement performance studies were not available on a 

historical basis were used as the validation set. Finally, it is noted that 

distinction is made in the type of pavement structure used in the 

sections. Flexible constructions are defined as pavement constructions 

with one or more asphalt layers placed on the subgrade (so-called full-

depth constructions). Semi-rigid constructions were defined as 

constructions with asphalt layers on a rigid (cemented or hydraulically 

bound) base with or without a granular sub-base on the subgrade. 

2.3. The variables 

For all test sections three types of data were collected: inventory 

data, data on dependent variables and data on explanatory variables. 

Inventory data are general data on the location of the test section and the 

type of construction (Table 2). Dependent variables are data on the extent 

and severity of the distresses to be modeled. Explanatory variables are 

external factors that are assumed to influence the performance and 

deterioration of the pavements. 

The project, in general, developed models regarding four types of 

distresses: cracking, rutting, raveling and longitudinal unevenness. In 

this paper we demonstrate the potential use of soft computing techniques 

on pavement cracking propagation, a variable that has attracted 

considerable attention in both practice and literature. The data on 

explanatory variables were divided into five data groups; construction, 

deflection, maintenance and rehabilitation, traffic and climate (all the 

data and information collected appear in Tables 3-6). 

3. Methodological Approaches 

3.1. Soft computing 

The past few years have witnessed a growing recognition of soft 



w
w

w
.p

ph
m

j.c
om

ANDREAS LOIZOS and MATTHEW G. KARLAFTIS 92

computing technologies that underlie the conception, design and 
utilization of intelligent systems. According to Zadeh [16], soft 
computing consists of artificial neural networks, fuzzy inference systems, 
genetic algorithms, approximate reasoning, derivative free optimization 
techniques and flexible non-parametric statistical techniques. The 
concept of soft computing is to offer an innovative approach for 
constructing computationally intelligent systems that possess humanlike 
expertise within a specific domain, adapt themselves and learn to do 
better in changing environments, and for explaining how such systems 
make decisions. As previously mentioned, neurocomputing (ANNs) is the 
best established soft computing technique for function approximation in 
the field of pavement deterioration (Flintsch [4], Zadeh [15], Yang et al. 
[14], Felker et al. [3] - interested readers should again refer to Flintsch 
[4] for a more detailed discussion on soft computing techniques along 
with their strengths and weaknesses). 

Interestingly, most of the literature on pavement condition 
assessment has used ANNs (besides, of course, the classical statistical 
approaches) as the sole soft computing technique of choice without 
actually comparing the findings with those of other available techniques. 
In this paper, besides ANNs, we develop HTBR and MARS models and 
compare their findings. HTBR is a tree-structured non-parametric data 
analysis methodology while MARS is based on a divide and conquer 
strategy that partitions the data into separate regions each with its own 
regression line or hyper plane. 

3.2. ANNs 

Much of the attention to the field of Artificial Neural Networks 
(ANNs) came from the desire to produce artificial systems capable of 
sophisticated computations similar to those that the human brain 
constantly performs (Principe et al. [11]). ANN architecture, much like 
the human brain, is composed of simple processors called neurons or 
nodes, and numerous connections between them. A Neural Network 
consists of many processing elements that are usually organized into a 
sequence of layers with full or partial connections between them. 
Usually, an ANN consists of an input layer, where data are presented to 
the network, and an output layer that holds the response of the network 
to a given input. Frequently, to capture potential nonlinearity in the 
data, other intermediate layers, called hidden layers, are included into an 
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ANN. The processing in the neurons is done by an “activation function” 
that controls the output of each node. ANNs essentially “train” or “learn” 
through adaptation of their connection weights, as the hidden neurons 
organize themselves so that different neurons learn to recognize different 
features of the total input space. 

An ANN training is performed iteratively until the average sum 
squared error between the computed and the desired output over all the 
training patterns is minimized. This kind of network derives its outcome 
from the manner that connection weights are adjusted to reduce output 
errors during the learning phase (Principe et al. [11]). Output errors are 
calculated by comparing the desired output with the actual output. The 
output is obtained from forward propagation of the input through the 
network. Next, output errors are propagated back to the hidden and 
input layers, and connection weights in the network are modified to 
minimize a global error function. For back-propagation ANNs, the error 
function is usually the Generalized Delta Rule (a variation of the Least 
Mean Square theory), and a sigmoidal function is used as the activation 
function. Validation of the performance of an ANN is done using a 
separate set of testing data that broadly resembles the training data. 
Once the training and testing phases are found to be successful, the 
neural network model can then be put into practical applications. 

3.3. HTBR 

Hierarchical tree-based regression (HTBR) is a tree-structured non-
parametric data analysis methodology that was first used in the 1970’s in 
the medical and the social sciences (Steinberg and Colla [12]). An 
extensive review of the methods used to estimate the regression trees and 
their applications can be found in Breiman et al. [2]. HTBR is technically 
binary, because parent nodes are always split into exactly two child 
nodes and is recursive because the process can be repeated by treating 
each child node as a parent. In essence, the HTBR algorithm proceeds by 
iteratively asking the following two questions: (i) which of the 
independent variables available should be selected for the model to 
obtain the maximum reduction in the variability of the response 
(dependent variable)? and, (ii) which value of the selected independent 
variable (discrete or continuous) results in the maximum reduction in the 
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variability of the response? These two steps are repeated using a 
numerical search procedure until a desirable end condition is met. 

To formalize the treatment of HTBR, the usual Sum of Squared Error 

(SSE) at a node α can be written as 

( )∑ = ααα µ−=
I

i iySSE
1

2,  (1) 

where 

=αiy observation i of dependent variable y at node 

=µα mean of I observations at node. 

The observations can be split at node α on a value of the independent 

variable ix  resulting in two branches with corresponding nodes β and γ, 

containing J and K observations respectively, where .KJI +=  The 

reduction in the SSE, R, resulting from the split and evaluated over all 

x’s can be written as 

,γβα −−= SSESSESSER xall  (2) 

where αSSE  and βSSE  are defined similar to equation (1). HTBR uses 

numerical search procedures to maximize .xallR  When the data are 

split at an x, where the maximum reduction occurs, the remaining 

observations have a significantly smaller SSE than the original data. 

This maximization process continues iteratively at each node until either 
the node of a tree has met minimum population criteria (from statistical 

sampling theory), or minimum SSE criteria at a node are met. 

The HTBR methodology has several attractive technical properties: it 
is non-parametric and does not require specification of a functional form; 
it does not require variables to be selected in advance, since it uses a 
stepwise method to determine optimal splitting rules; its results are 
invariant with respect to monotone transformations of the independent 
variables; it can handle data sets with complex (nonhomogeneous) 
structure; it is extremely robust to the effects of outliers; it can use any 
combination of categorical and qualitative (discrete) variables; and, it is 
not affected by multicollinearity between the independent variables. 
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3.4. MARS 

MARS is best described by (Friedman and Roosen [6]) as a flexible 
procedure which models relationships that are nearly additive or involve 
interactions with a small number of variables. The procedure is 
motivated by the recursive partitioning technique governing HTBR as 
well as generalized additive modeling (Hastie and Tibshirani [7]), 
resulting in a model that is continuous with continuous derivatives (for a 
detailed explanation of the model fitting process see Friedman [5]). 

In general, MARS was introduced by Friedman [5] as an approach of 
using smoothing splines to fit the relationship between a set of predictors 
and a dependent variable. A smoothing spline is similar to a cubic spline 
in which a cubic regression is fit to several preselected subsets of data (in 
a cubic regression between a predictor x and a dependent variable y, the 
regressors would include a constant, the level of x, the square of x and the 
cube of x). By requiring the curve segments to be continuous (so that the 
first and second derivatives are non-zero), one obtains a very smooth line 
that can capture ‘shifts’ in the relationship between variables. These 
shifts occur at locations designated as ‘knots’ and provide for a smooth 
transition between ‘regimes’. The MARS algorithm searches over all 
possible knot locations, as well as across all variables and all interactions 
among all variables. It does so through the use of combinations of 
variables called ‘basis functions’, which are similar to variable 
combinations created when using principal component analysis. Once 
MARS determines the optimal number of basis functions and knot 
locations, a final least-squares regression provides estimates of the fitted 
model on the selected basis functions. 

In modeling the relationship between a single predictor tx  and the 

dependent variable ,ty  a general model can take the form 

( )∑
=

ε+=
M

k
ttkkt xBay

1

,  (3) 

where ( )tk xB  is the kth basis function of .tx  Basis functions can be 

highly nonlinear transformations of ,tx  but ty  is a linear-in-the-

parameters function of the basis functions. Estimates of the parameters 

ka  are 
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chosen by minimizing the sum of squares residuals from equation (3). 
The advantage of the MARS approach is in its ability to estimate the 
basis functions so that both the additive and the interactive effects of the 
predictors are allowed to determining the response variable. The MARS 
algorithm identifies the ‘knot’ locations that most reduce the sum of 
squared residuals. Overall, MARS excels at finding optimal variable 
transformations and interactions, as well as the complex data structure 
that often hides in high-dimensional data. 

4. Model Development and Empirical Findings 

As was previously mentioned, the number of cases (total sections) 
available to train, test and validate the network was approximately 900. 
To ensure the best possible performance of the models developed, the 
data set was divided into two groups. The training set (approximately 
75% of the data) and the validation set (25% of the data) which, as can be 
seen from Table 1, was comprised of sections from different countries 
than the training set; in this way, not only are the models tested in out-
of-sample conditions, but their transferability to completely different 
external conditions are investigated. It should be noted here that the type 
of cracking predicted in the present study is the propagation of the 
wheel-path cracking in the pavement surface. 

In the case of ANN development, the training and validation sets 
were used to define the network topology by using the “hold out” method 
(Bishop [1]). This method trains various networks by minimizing the 
error function with respect to the training set. The networks are then 
compared by evaluating the error function using the validation set and 
the network having the smallest error with respect to the validation set 
that is selected. The network selected as the “best” is then made to 
“forget” its previous training and is retrained using the “early stopping 
method”. With this method of training the network learns using the 
training set. Then, the validation set is used to assess the generalization 
error. It is crucial that the test set has not been used while training, so 
that the capacity of the network to produce results in unknown cases 
(generalization) can be evaluated. It must also be noted that an 
additional issue with neural networks is the pre-processing of inputs. In 
many cases 
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standardization and/or normalization of the input data is needed before 
the network is trained. This is done to increase the performance of the 
network and decrease the training time; the input database used in this 
paper was constructed in such a way as to ensure that each input value 
was evenly distributed in the range [min, max]. The only preprocessing 
done to the data was to normalize them in the range ( ]1,0  by dividing 

with the maximum value. This “trick” is well known to reduce the 
training time of a neural network and enhance its performance (Principe 
et al. [11], Bishop [1]). 

Using the same transformations for the inputs, the HTBR and MARS 

models were also developed (while HTBR and MARS do not require or 

necessitate any transformations for the variables included in the models, 

we used the transformed variables in developing these models so that 

results among approaches could be directly compared). HTBR partitions 

the data into relatively homogeneous (low standard deviation) terminal 

nodes, and it takes the mean value observed in each node as its predicted 

value. In general, HTBR models can be fairly complex and detailed and 

therefore difficult to illustrate mathematically; nevertheless, the 

methodology lends itself to graphical “tree-like” representations, as 

shown in Figure 1. 

Interpreting the tree model in Figure 1 is rather straightforward. The 
top of the tree, or tree root, shows that the maximum reduction in the 
variability in the dependent variable (Longitudinal Cracking 
Propagation in the Wheel-Path) occurs when the data are divided on the 
independent variable DVEH (Number of vehicles per day in direction of 
test section) at the value of 42,405 vehicles per day. Because this is a 
continuous variable, the entire sample was divided into two groups; one 
group, where 405,42<=DVEH  and one, where .405,42>DVEH  At the 

second decision node ‘travelling’ to the left, RAIN (average yearly 
rainfall) best explains the remaining variability for sections with 

405,42<=DVEH  (optimal split for the rain variable occurs at 791 

mm/year). It should be noted that, the farther away from the root of the 
tree one travels, the higher is the order of interaction. For instance, the 
third node ‘travelling’ down to the left of the tree is an interaction 
between the variables, DVEH, RAIN, TH_BIT 
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(thickness of the bituminous layer). When completing the tree to the left -
after following these three nodes - a terminal node, or leaf of the tree, is 
formed (Terminal node 1). For this category of pavement sections, the 
mean expected value for longitudinal cracking is 13.5 cm. 

In contrast to the CART process with its graphical representation, 
the MARS model gives a fairly detailed and elaborate prediction equation 
(actually a set of spline equations) which, in the case of pavement 
cracking, was formulated as follows: 

4857.43027.22188.01024.0536.1 BFBFBFBFy ∗−∗−∗−∗+=  

 ,7074.06016.05174.3 BFBFBF ∗+∗+∗+  

where BF are Basis Functions and 

( );_000.177,0max1 BITTHBF −=  

( );745.4_,0max2 −= DAYTBF  

( );_745.4,0max3 DAYTBF −=  

( );000.270_,0max4 −= BITTHBF  

( );000.321_,0max5 −= BITTHBF  

( ) ( );000.4,0max000.15850,0max6 −∗−= PAVAGEDVEHBF  

( ).000.2,0max7 −= PAVAGEBF  

The basis functions have effects on pavement cracking only when 

they are positive and are zero otherwise; ( )000.3,0max −PAVAGE  is 

interpreted as the maximum value of the two elements: 0 and 

( ).000.3−PAVAGE  Essentially, MARS takes ,_,_ DAYTBITTH  

DVEH and PAVAGE and attempts to fit the best model for longitudinal 

pavement cracking by placing knots and choosing additive and 
interactive effects to minimize the sum of squared errors. The basis 
functions are interpreted as the additive and interactive effects of the 
variables relative to their knot locations; for example, the first basis 

function contains the ( ),_000.177,0max BITTH−  while the sixth 

involves two variables and is nonlinear. 
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Further, in the case on the ANN development, we used a feedforward 

neural network with one hidden layer consisting of 15 neurons 

(tanh-sigmoidal node transfer function) and training was terminated 

after 6000 epochs. Finally, for strictly comparative purposes, we present 

the prediction results from the regression model originally developed in 

the PARIS project (PARIS [10]). 

The results, as reported in Table 6, are rather interesting; as 

expected, all three soft computing models show fairly good performance 

in predicting in-sample (training set) cracking propagation with Absolute 

Percent Error (APE) values ranging from 9-13%. In the validation process 

the range of the APE values is markedly different, with the ANN model 

having an APE of 12% and outperforming both the HTBR and the MARS 

models (APE of 14% and 21%, respectively). Because the difference in 

results between the ANN and the HTBR models is rather small, it is 

feasible to use the two approaches interchangeably depending on the 

application and the familiarity of the analyst. 

Of course, it is of interest to note the APE differences between the 

soft computing model approaches and the linear regression model 

developed which has an APE value (in the validation data set) of 37% 

(PARIS [10]). This APE value is quite high, especially when significantly 

lower values can be achieved by using other tested and accepted 

techniques (ANN, etc.). It must be noted here that this finding, i.e., that 

soft computing approaches seem to out-perform linear regression, is 

simply indicative and certainly not definitive. Linear regression models, 

for years a powerful deterioration modeling tool, have many advantages 

over soft computing methods as, for example, that it straightforwardly 

captures the cause-effect relationship between pavement deterioration 

and external factors and that it is easily understood and a standard 

option in all statistical packages. Further, in recent years, many 

extensions to the classical linear regression models have been developed 

to overcome many of the earlier limitations (normality of the dependent 

variable, and so on) especially when working with extended data sets. 

However, in this application, non-parametric approaches have performed 

very satisfactorily compared to classical linear regression, most probably 

because the data modeled display nonlinear characteristics. 
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Finally, it should be noted that, although the training times for the 
different models are very different they are not further considered, since 
they are not a constraining factor in this investigation; but, it is worth 
mentioning that the linear regression and ANN models developed 
required significantly higher “development” times and a large number of 
alternative runs before the “best” model was reached, while for the HTBR 
and MARS approaches this time was significantly lower. Interestingly, 
three graphs (Figures 2-4) were produced depicting actual versus 
predicted cracking values (in centimetres) for the three soft computing 
methods employed. As expected, Figure 2 which depicts actual versus 
predicted values from the ANN model estimated shows the lowest 
variance around the 45° line, with the HTBR and MARS results being 
graphically inferior, particularly for higher cracking values. It does 
appear from these figures that the variance of the error is larger for 
larger cracking propagation values. This apparent heteroskedasticity 
does, undoubtedly, affect prediction accuracy, particularly as it applied to 
larger cracking values. This is clearly an area of possible future work and 
model refinement. 

Another interesting aspect of this analysis pertains to the selection of 
the “most important” variables (or variable importance factors) as 
reported by the three separate methodologies (Table 7 - details on the 
approach used for the process of variable evaluation can be found in 
Principe et al. [11] for ANN, Steinberg and Colla [12] for HTBR and 
Friedman [5] for MARS). This variable importance essentially reflects the 
ranking of the variables from the most to the least important with 
respect to cracking propagation. This implies that, based on the ANN, the 
thickness of the bituminous layers (TH_BIT) is the most important 
variable in predicting cracking propagation. Variable importance refers 
to the relative ranking of variables, with 1 indicating the most important 
variable in pavement cracking propagation, 2 the second most important 
and so on (top 10 indicated here; variables not ranked are below 10th in 
the importance list and their impact on pavement cracking propagation 
considered as low). 

Interestingly, the most important variable according to the HTBR 
and MARS methodologies is the percentage of trucks crossing the test 
section. Overall, the difference in the rankings is notable. Overall, it can 
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be inferred that the ANN approach evaluates the construction and 
rehabilitation variables as being the most important, while the traffic 
variables play the most important role in the HTBR model. This 
difference in findings may be attributed to the diverse ways with which 
these approaches select the variables to be included in the models and 
with which they reach the “best” final specification. Nevertheless, it must 
be mentioned that, although these results are quite robust (the same 
variables were important throughout the model development phase), they 
are mostly indicative and should be complemented by additional runs, 
model refinement and theoretical underpinnings. 

5. Conclusions 

Significant research in the past few years has concentrated on 
deterioration modeling of infrastructure facilities with a particular 
interest in pavements. And, although, most of the literature has worked 
within the extended linear regression framework many authors have 
worked with the so-called soft computing approaches in an effort to 
develop more accurate, in terms of prediction error, models, with ANNs 
being the models of choice. Interestingly the area of soft computing offers 
a number of other promising approaches that should be tested against 
both the traditional linear regression models and ANNs to establish their 
potential advantages and shortcomings. In this paper we tested three 
very powerful and promising soft computing techniques, ANNs, HTBR 
and MARS, and compared the findings and implications based on a large 
European database with data with over 900 sections from 15 (European) 
countries. 

The results were interesting. All three approaches showed quite good 
performance in predicting cracking propagation in a separate validation 
data set, with APE values being 12% for ANN and 14% and 21% for 
HTBR and MARS. Finally, the three approaches evaluated differently 
the effect of independent (exogenous) factors on the dependent variable. 
From the results reported it can be inferred that the ANN approach 
evaluates the construction and rehabilitation variables as being the most 
important, while the traffic variables play the most important role in the 
HTBR model. 
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Finally, it is important to note that, similar to what has been 
reported in many other places in the literature, soft computing 
techniques are both very flexible in terms of a lack of model functional 
form constraints and their ability to model highly nonlinear data. They 
thus hold much promise in terms of prediction success. But, we are 
clearly of the opinion that, at least as a first stage in model development, 
results from soft computing approaches must be compared to those 
obtained from other methodologies; finally, publicly available and 
commonly accepted test bed data sets must be established that will 
permit different methodologies to be tested and compared based on the 
same data. 
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Table 1. Number of RLT test sections per country 

(a) Data for model development 

Country Flexible Semi-rigid Total 

Finland 33 0 33 

Sweden 296 0 296 

Denmark 7 0 7 

Netherlands 168 37 205 

United Kingdom 15 13 28 

France 12 10 22 

Switzerland 31 5 36 

Austria 12 0 12 

Spain 3 7 10 

Hungary 28 33 61 

Greece 10 0 10 

Total 615 105 720 

(b) Data for model validation 

Country Flexible Semi-rigid Total 

Belgium 41 25 66 

Ireland 25 0 25 

Portugal 45 6 51 

Slovenia 54 0 54 

Total 165 31 196 
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Table 2. Inventory information collected 

Variable name   Variable description 

Country Country in which test section is located 

Constr Type of construction of test section 

Lanes Number of lanes on test site in both directions 

Width Width of the lane on which the test section is located 

In Serv Test section still in service (yes/no) 

Date out Date test section out of service 

Table 3. Construction data collected 

Variable name Variable description 

Pave Type of pavement construction 

Surf Type of surface layer 

Th_Bit Total thickness of bituminous layers 

Th_Rig Total thickness of rigid layers 

Th_Gra Total thickness of granular base layer(s) 

Th_Sub Total thickness of sub-base layer(s) 

Subgrade Type of subgrade 

Rig_Type Type of rigid layer 

Y_Const Year of construction 

Y_Overl Year of latest overlay 

Y_Surf Year of latest surface layer 
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Table 4. Traffic data collected 

Variable Name Variable Description 

Year Year of survey 

Dveh Number of vehicles per day in direction of test section 

D% Tru Percentage of trucks in direction of test section 

Lveh Number of vehicles per day on test section 

L% Tru Percentage of trucks on test section 

Esal Number of 10 tonnes ESAL’s per year on test section 

Table 5. Climate data collected 

Variable name Variable description 

T_Day Average yearly day temperature 

W_Day Number of days per year with a maximum 
temperature above 25°C 

C_Day Number of days per year with a minimum 
temperature below 0°C 

Freez Freezing index 

Rain Average yearly rainfall 

Table 6. Performance comparison between different methodological 
approaches (pavement cracking propagation) 

 Absolute Percent Error (APE)  

Method Training set Validation set Training time (sec) 

Regression 31 37 <3 

ANN 9 12 205 

HTBR 10 14 11 

MARS 13 21 23 
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Table 7. Variable importance assessment 

  Methodology1  

Variable name ANN HTBR MARS 

Construction and rehabilitation variables 

Pave 10   

Surf   10 

Th_Bit 1 3 2 

Th_Rig    

Th_Gra 2 6 3 

Th_Sub  4 6 

Subgrade    

Rig_Type    

Y_Const (Age) 7 7 5 

Y_Overl 8 10  

Y_Surf    

Traffic variables 

Dveh  8  

D% Tru 3 1 1 

Lveh    

L% Tru 5  8 

Esal  2  

Climate variables 

T_Day 4 9 4 

W_Day 6  7 

C_Day    

Freez 9  9 

Rain  5  

1Variable importance refers to the relative ranking of variables, with 1 indicating
the most important variable in pavement cracking propagation, 2 the second most
important and so on (top 10 indicated here). 
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Figure 2. Actual versus predicted values for the ANN model developed. 

 

Figure 3. Actual versus predicted values for the HTBR model developed. 
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Figure 4. Actual versus predicted values for the MARS model developed. 
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