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Abstract

We recall some properties of relaxation integral functional in the sense

of the A-quasiconvexity and prove by epiconvergence techniques that

the sequence of the relaxation functionals epiconverges to an integral

functional which depends on the operator A.

1. Introduction

In our opinion the study of homogenization and the A-quasiconvexity
notion of the lower semicontinuity of the integral functional defined for

every (u, v) e LF(Q; R™)x (L9(; R?)N ker A) by

F((u, v); Q) = I e, ulx), o)), 1.1)

where Q is a bounded open subset of RN; 1< p<+mw; 1<q<+0o,

fiOxR™xR? [0, + o[ is a Carathéodory integrand and A is the
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first order linear partial differential operator defined from L9(Q; R?) into

N ) )
W_l’q(Q; Rl) by Av = ZAl 8870 with linear transformations A’ : RY

=1 i
- ]Rl, i =1, .., N, is motivated by the two following assertions: the first

one is that, the lower semicontinuity over a compact space is the
sufficient condition for the existence of the minimum, the second one is

that, the epilim when it exists, it is Isc (lower semicontinuous) and if x

1s the cluster point of the minimizing sequence of the minimizing problem

associated to the sequence F),, which epiconverges to F, then x is the

solution of the minimizing problem associated to F (see Proposition 1).
Recall that, the study of the lsc of the integral functional (1.1), in the

sense of the 1-quasiconvexity; the k-quasiconvexity, £ € N* and in the

sense of the .A-quasiconvexity has been done by Acerbi and Fusco [1];

Braides et al. [4] and Fonseca and Miuller [7]. The goal of this paper is to
study by epiconvergence techniques, the asymptotic behavior when

e > 0 of the sequence of the integral functionals F, defined for every
D € O (O denotes the family of the open subset of Q) and for every
v e (LI(D; RY)Nker A) by

Fe(v; D) = ID f(g, v(x))dx, (1.2)

where 1 < g < +o0; f : RY x R? — [0, + [ is the Carathéodory integrand

which is @-periodic, @ denotes the unit cube in RY centered at the origin,

and there exist C > 0 and L > 0, such that for every (x, y, z) € R™ x

Rded,
iy _ a ).
(Hy) S50 - C < fle, ) < O+ 12,

(Hy) | f(e, )= fle, 2)| < LA+ [y |70+ 2 |77 5 = 2 [jpa,

(H3) A has the constant-rank.
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A has the constant-rank, means that, there exists r € N, such that, for

every w = (wy, ..., Wy ) € SN-1 (the unit sphere in RY),

N
rank[z Aiwi] =T
i=1

We will prove that F, epiconverges towards F hom £51 the weak
topology of LI(Q; R?), where F™™ is defined, for every D e O and for

every v e (L4(D; R?) N ker A) by

Fhom(, D) = ID £80m (1) . (1.3)

For z € Rd,

Fhom () = kienl\f;* kLN inf{ij f(x, z + w(x))dx,

we L4

k—per(RN; R?) N ker A, and Jka(x)dx = 0},

®RY; R?) means that, w € L (RY; R?) and w(k.), k e N*

q
we L Joc

k—per
1s @-periodic. The paper is organized as follows: In Section 2, we give the
definition and the variational properties of epiconvergence. In Section 3,
we recall the definition and some properties of the relaxation function of

(1.1) in the sense of the A-quasiconvexity. In Section 4, we prove our

main result.
2. Variational Properties of Epiconvergence

Let (X, t) be a Banach space, and let {F,, F, n € N} be a family of
functionals mapping X into R U {+}. Let us recall the following notion

of convergence, which is called epiconvergence or in its general setting
I'-convergence. For overview about epiconvergence, we refer the reader to
[2] and [5].
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Definition 1. We say that the sequence (F, )neN T -epilconvergences

to Fat x in X if and only if the following hold:

(1) There exists a sequence (x,, )n oy of X, t-converging to x such that

F(x) > lim sup F,(x,,).

n—+wo

(i) For every sequence (x,,) T-converging to x in X,

neN?

F(x) < lim inf F,(x,).
n—>+wo

When this property holds for every x in X, F,, is said to be t-convergent to

Fin X, and we write F' = 1t —epi lim F),.

We state now the variational properties of epiconvergence, see, for

instance [2].

Proposition 1. Assume that (F,, )t -epiconverges to F, and let H be a

t-continuous functional from X into R. Then
() Fis Isc and t-epilim(F, + H) = F + H.

(i) If now, (x,), .y is a sequence in (X, 1) such that F,(x,) < F,(x)
+&,, where g, >0, and if furthermore (x,),_y is t-relatively compact,
then any cluster point X of (xn)neN is a minimizer of F and

lim inf{F,(x);, x € X} = min{F(x); x € X} = F(x).
n—>+w
3. The Isc of the A-quasiconvex Integral Functionals

In order to prove that the .A-quasiconvexity is the necessary and
sufficient condition of the lsc of the integral functional (1.1). We will

assume in addition that there exists K > 0, such that for every

(v, z2) e R™ xR,
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OSf(x,y,z)SK(1+||y||£m+||z||?Rd); my -p-px € Q, (3.1)
f is A-quasiconvex, (3.2)
A 1is the constant-rank, (3.3)

f is A-quasiconvex, i.e., for every w e Cf'iper(RN; R Nker A with

IQ w(y)dy = 0, we have

ID f, w(x), v(x))dx < .[D IQ fx, u(x), v(x) + w(y))dydx.

Following Braides et al. [4], the relaxation formula of the integral

functional (1.1) in the sense of the A-quasiconvexity is given for every

D e O and for every (u, v) € L¥(D; R™)x (L4(D; R%) N ker A);
F((u, v); D) = inf{lim inf F((x,, v, ); D);
(w,, v,) € LY (D; R™)x LY (D; RY);
u, > u in P (D; R™), v, — v in LY(D; R%) and
Av, > 0 in WH9(D; R

Or, in its equivalent form:

F((w, v); D)
= inf{lim ian. g(x, v, (x))dx; (v,) = LI(D; RY)Nker A,
n—+0 Jp
(v,) is g-equiintegrable, v, — v in LI(D; R%) and J. v,dx = I vdx},
D D

where g is the Carathéodory function defined by g(x, v) = f(x, u(x), v).

Also, F((u, v); -) is the trace of a Radon measure absolutely continuous
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with respect to mpy over Q and its Radon-Nikodym derivative is given by

W(m) = Q 4f(xq, ulxg), v(xg)); mpy ae. xy € Q,
N

where for each fixed (x, y) € Q x R™, the function Q 4f(x, y, ) is the

A-quasiconvexification of f(x, y, -), defined, for every z € RY by

O uf(x, y, 2) = inf{jQ f(x, v, z + w(t))dt;

w e Cﬁper(RN; Rd) N ker A, J-Qw(t)dt = 0}.

Hence F((u, v); D) admits the following integral representation: for every

D € O and for every (u, v) € L¥(D; R™) x (L9(D; R?) N ker A);
F((w, v), D) = J.D O 4 f(x, u(x), v(x))dx.
Theorem 1. Under the assumptions (3.1)-(3.3); the functional (1.1) is
LP(D; R™) x (L4(D; R?) N ker A)-weak) Isc.

Proof. Let (1, v, ) be a sequence in L' (D; R™)x (L4(D; R%)Nker A)
such that u, — u in L¥(D; R™), v, — v in LI(D; R?), and Av, — 0

in Wh4(D; R!). Using the definition of F((u, v); -), we have
lim inf F((u,, v,); D) = F((u, v); D).
n—>+ow
Since fis A-quasiconvex,
F((u, v); D) > F((u, v); D).

Therefore

lim inf F((u,, v,); D) > F((u, v);, D).
n—>+owo
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4. The Main Result

Theorem 2. Under the hypotheses (Hyp)-(Hs), F. epiconverges

towards F™™ for the weak topology of LI(; R?).

Proof. It remains to verify by steps the assertions (i) and (ii) in

Definition 1 of the epiconvergence.

Verification of (i)

Step 1. Let D € O and u € LY(D; R%) N ker A be an affine functional.
Setting

() = ) + e £,

where w, is the solution of the local minimizing problem (1.3), i.e.,

fhom(z) _ kLN JkQ flx, z + wy(x))dx;

with
w, € L%_per(RN; R%)N ker A and J-kQ w,(x)dx = 0.
Then
u, — u in LY(D; RY), and Ay, — 0 in W H9(D; R?).
So

h
Fe(ug; D) ajoF " (u; D).

Step 2. Let u be a piecewise affine and continuous function. Then we

define

1 .
ud {(1 - 05)ug + Q5w in Dy,
o=
9 .
(1 - o@s)us + @su in Dy.
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Here ug; j =1, 2 has the same form as u, in Step 1 and ¢5 € D (D; [0, 1])
is such that

Qs = 1, in 25,
Qs = O, in D\Z25,
0 < @5 <1 if not.

Hence, there exists a sequence 4, = us(a) satisfying
4, — u in LY(D; R?) and A4, — 0 in W H9(D; RY).
Therefore, there exists (u, ) e LY(D; R%)N ker A which is g-equiintegrable
u, — u in LY(D; RY),
and

lim sup F, (u,; D) < FP™(y; D).

e—0

Step 3. For any u e LI(D; R%) N ker A, there exists a sequence of

piecewise affine and continuous functions ug € LI(D; R%) N ker A, such

that
us — u in LI(D; RY).
Setting

() = ) + e £,

Using the classical diagonalization argument, there exists @, =

Ug 5(z) such that
4, — u in LY(D; R?) and Ad, — 0 in W H9(D; RY),
hence, there exists (u.) € LY(D; R%) N ker A which is g-equiintegrable

u, — u in LY(D; RY),
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and

lim sup f(ﬁ, ug(x))dx < lim infj f(f, ng(x)jdx.
D € e—0 D

g0 €

Since by Step 2,

lim supj f(%, da(x))dx < Fhom(y: D),
D

e—>0

lim sup 7, (u,; D) < FP(u; D).

e—>0
Verification of (ii)

The idea is to minor Fg(u.; D) by F.(d.; D) whenever u, =
Us + uy —u, here 0, is a sequence of piecewise affine and continuous

functions.

Step 1. Let u be a piecewise affine and continuous function. Consider

o = {(1 — @5)v; + @50 in Dy
£,8 ~ .
(1- q)é;)vg2 + @50 in Dy.

Then we have
F™(v; D) < lim inf F (v, 5; D),
£—>0 ’
and

FP™(y; D) < lim inf lim inf 7, (v, 5; D).
550 &0 ’

Using again the diagonalization argument, there exists an application
¢ > 8(¢) such that lim 8(¢) = 0 and
e—>0

lim inf lim inf F, (v, 5; D) < lim inf F,(0;; D),
3—0 e—>0 ’ £—0

whenever

Vg = Ug §(g)
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then

Fhom(v; D) < lim inf F,(0,4; D).
£—0

Step 2. For u e LI(D; R¥)Nker A and u, e LI(D; R?) N ker A,
u, — u in LI(D; R?).

There exists vs € LY(D; Rd) a sequence of piecewise affine and

continuous functions such that
in TA(D Y
vs — u in LY(D; R?).
Letting
ug =vs + Ug — U,
using the lsc of the function FP™ and the diagonalization argument we
get a sequence U, = ug(g) satisfying
FP™(y; D) < liminf 7, (4,; D).
e—>0
By (H3), we have

Follss D) < Fyltgs D)+ L+ i |77 + g |7 o - g |,
then

Fom(y: D) < lim inf F, (u, ).
e—>0
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