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Abstract

This paper considers the predictive inference for the future responses

from the multivariate linear models with errors following an elliptically

contoured distribution. First we derive the marginal likelihood function

of unknown covariance parameters. Then we derive the predictive

distribution for known covariance parameters of the model. It is

observed that the predictive distribution of future responses of the

model has a multivariate Student’s t distribution, which is identical to

that obtained under the independently distributed multivariate normal

errors and dependent but uncorrelated t errors. This gives inference

robustness with respect to departures from the independent sampling

from normal and dependent but uncorrelated sampling from Student’s t

to elliptically contoured distribution.

1. Introduction

In recent years, there has been significant interest in the predictive
inference for a linear or multivariate linear models with various error
distributions. The predictive inference for the linear models has been
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considered by various researchers: Goldberger [7] and Hahn [8] used the
classical approach; Geisser [6], Zellner and Chetty [18] and Chib et al. [2]
used the Bayesian approach, Fraser and Haq [4], Haq and Rinco [9], and
Fraser and Ng [5] used the structural approach, while Haq and Kibria
[10], and Kibria and Haq [11] considered the structural relation of the
model for the derivation of the predictive distribution.

Most of the researchers have assumed either normal or Student’s t

distribution for the error variables of the model. The normality and
independency assumption may not be appropriate in many practical
situation, specially when the parent distributions have heavier tails. In

that case, the multivariate t has been emphasized by Zellner [19], Chib et

al. [2], Sutradhar and Ali [17] and recently Kibria and Haq [11] among
others.

Haq and Kibria [10] and Kibria and Haq [11], using the structural
relation of the model derived the predictive distribution for the future

responses under the multivariate normal and multivariate t distribution,

respectively. In both cases, they obtained the predictive distribution as a

multivariate Student’s t distribution with appropriate degrees of

freedoms. Therefore, the distribution of future responses for a
multivariate linear model is unaffected by a change in the error

distribution from normal to Student’s t distribution. The invariance of the

predictive distribution for the future responses suggest that the
predictive distribution would be invariance to a wide class of error
distributions, namely that error terms have an multivariate elliptically
contoured distribution. The elliptically contoured distribution include

various distributions: the multivariate normal, matrix T, multivariate

Student’s t and multivariate Cauchy (see Fang, Kotz and Ng [3] and Ng

[15]).

Elliptically contoured distributions have been discussed extensively
for traditional multivariate regression model by Anderson and Fang [1]
and recently Kubokawa and Srivastava [13] among others. This
distribution has also been considered by Chib et al. [2] for the derivation
of predictive distribution from the linear model and using Bayesian
approach. Kibria and Haq [12] considered this distribution for the linear
model and derived the predictive distribution by using the structural
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relation of the model. Ng [15, 16] considered this distribution and derived
the predictive distributions for simple multivariate linear model under
both Bayesian and classical approaches. He concluded that the Bayesian
analysis using improper prior yields the same predictive distribution as
the classical analysis. However, none of the researchers has considered
the elliptically contoured distribution for the derivation of predictive
distribution from multivariate linear with unknown covariance matrix
and by structural relation approach.

In this paper, we assumed that error terms have a multivariate
elliptically contoured distribution. We considered a general covariance
matrix for the error variables depending on a set of parameters. First, we
derived the marginal likelihood function of unknown covariance
parameters and then derived the predictive distribution of future
responses. We adopted the structural relation of the model approach to
derive the marginal likelihood function as well as the predictive
distribution.

A plan of this paper is as follows. The multivariate linear model and
the covariance parameters estimation have been discussed in the
following section. The predictive distribution of future responses is
derived in Section 3. Some special cases have been discussed in Section 4.
Finally some concluding remarks are added in Section 5.

2. The Model and Parameters Estimation

Let us consider n observations for the p characteristics yielding the

following multivariate linear model

,EXBY σ+= (2.1)

where Y is an pn ×  matrix of observed responses, X is an rn ×  design

matrix, B is an pr ×  regression matrix, E is an pn ×  errors matrix and

0>σ  is a scale parameter. We assume that E has an elliptically

contoured distributions with the probability density function

( ) [ ( )],1
2 EEE −− ′=| γγγ ∆∆∆ trp
p

g (2.2)

which is of the form given in Anderson and Fang [1], { }⋅g  is a non-
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negative function over mm ×  positive definite matrices such that ( )Ef  is

a density function. The covariance matrix ,γ∆  depends on the parameter

.γ  The observed data can be used to estimate the covariance parameters.

Since the predictive distribution depends on the covariance parameters,
first we will discuss about the estimation technique of covariance
parameters through the marginal likelihood function.

The marginal likelihood function of γ∆

Consider EB̂  as the regression matrix of E on X, 2
Es  as the sum of

squared residual and EZ  as the standardized residual matrix, then

( ) ,ˆ 1 EXXXBE ′′= −

( )∑ ∑
= =

−=
p

i

n

j
ijijes

1 1

22 ,eE bx   and

{ }.ˆ1
EEE BXEZ −= −s (2.3)

The corresponding expressions for the response matrix Y will be denoted

by 2,ˆ
YYB s  and ,YZ  respectively. From (2.1) and (2.3), it follows that

E

Y

s
s

=σ

,ˆˆ
E

E

Y
Y BBB

s
s

−=   and

.EY ZZ = (2.4)

Then the relationship between the volume elements of E in terms of the

new variables EEB s,ˆ  and EZ  is

( ) ,ˆ1
2 EEEE ZBXXE ddsdsd rnp
p

−−′= (2.5)

where npR  has been expressed as the direct sum of the subspace ( )XL

and its orthogonal component ( )XO  and EZd  is the volume element on
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the unit sphere in ( ).XO  Using (2.3), the quadratic expression in (2.2)

leads to

( ) ( )EEEEEE ZBXZBXEE ss +′+=′ −− ˆˆ 11
γγ ∆∆

( ) ( ) ,ˆˆ 211
EEEEEEE ZZRABARAB γΣ′++′′+′= −− sss

where ,, 11
EZXRXXA −− ′=′= γγ ∆∆  and

( ) .11111 −−−−− ′′−= γγγγγ ∆∆∆∆Σ XXXX

Note that,

( ) ( ) ( ) ∑∑
==

−−− ′++′+=′
p

i
ii

p

i
iiii ssstr

1

2

1

111 ,eeEeeee zzrAbArAbEE γγ Σ∆

where ,1
ii ezXr −′= γ∆  is the ith column vector of the matrix R, ieb  is the

ith column vector of the matrix EB̂  and iez  is the ith column vector of the

matrix .EZ

Then the joint density function of EEB s,ˆ  and EZ  conditioned on γ∆

becomes

( ) ( )




 ′+∝| ∑
=

−−−−
p

i
ii

p
prnp sssp

1

1
2

1,,ˆ rAbZB eeEEEE gγγ ∆∆

( ) ( ) .
1

21






′++× ∑

=

−
p

i
iiii ss eeEee zzrAbA γΣ (2.6)

The marginal probability element of EZ  can easily be obtained by

integrating (2.6) with respect to the variables EB̂  and Es  as

( ) ( )∫ ∫
∞ ∞

∞−
|=|

0
.ˆ,,ˆ

EEEEEE BZBZ dsdspp γγ ∆∆ (2.7)
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To evaluate (2.7), we consider the following transformation:

( ) pis iii ...,,1,12
1

==+ − urAbA Ee

.
1

vs
p

i
ii =












′∑

=
Eee zz γΣ

The Jacobian of the transformation ( )vsJ ii ,, ub ee →  is equal to

.2
1

1
2
1 −

=
−







 ′∑p

i ii ee zzA γΣ  Then using (2.6) and (2.7), and taking into

account the Jacobian, the marginal likelihood function of EZ  for given

γ∆  is obtained as

( )

( )
2

1

2
1

2

rnp
p

i
ii

pp
p

−
−

=

−−−












′′∝| ∑ eeE zzXXZ γγγγ Σ∆∆∆

( )∏ ∫ ∫ ∑
=

∞ ∞

∞−

−−

=













+′×

p

i
i

rnp
p

i
ii dvdvv

1
0

1

1

2 ,uuug (2.8)

where

( ) .11111 −−−−− ′′−= γγγγγ ∆∆∆∆Σ XXXX

Then using the polar transformations and following Mathai et al. [14,

p. 91], (2.8) leads to

( )

( )

.
2

1

2
1

2

rnp
p

i
ii

pp
p

−
−

=

−−−












′′∝| ∑ eeE zzXXZ γγγγ Σ∆∆∆

The density function of EZ  depends on γ∆  and X, where the elements of

γ∆  are unknown. It follows from (2.4) that the pdf of YZ  can easily be

obtained from the pdf of .EZ  Thus the marginal likelihood function of γ∆

conditioned on YZ  is obtained as
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( )

( )

.
2

1

2
1

2

rnp
p

i
ii

pp
L

−
−

=

−−−












′′∝| ∑ yyY zzXXZ γγγγ Σ∆∆∆ (2.9)

It is observed from the likelihood function (2.9) that a closed form

estimate of γ∆  may not be available. However, for a particular set of

observed responses Y and for a given design matrix, the maximum

likelihood estimates of the parameters are obtainable from (2.9). Note

that the result in (2.9) is identical to that obtained under the assumption

of independently distributed multivariate normal errors (see, Haq and

Kibria [10]) and dependent but uncorrelated multivariate Student’s t

error (see, Kibria and Haq [11]).

3. The Predictive Distribution

Consider a set of fn  future responses from model (2.1) as

,fff EBXY σ+= (3.10)

where fY  and fE  are the pnf ×  matrices of future responses and future

errors respectively and fX  is an rnf ×  matrix of future regressors.

To derive the joint distribution of E and ,fE  we combine the observed

and future error matrices as, ( ) ,, ′′′=∗′
fEEE  where ∗E  is an ( ) pnn f ×+

matrix. Let the covariance matrix of each column of E be an ( )fnn +

( )fnn +×  matrix .γΨ  Then the covariance matrix of E is ,γΨ⊗pI

where

,
2221

1211








=

γγ

γγ
γ ΨΨ

ΨΨ
Ψ

also 11γΨ  is an nn ×  covariance matrix of ,ie  2112 γγ ΨΨ =′  is an fnn ×

matrix of covariances between the components of ie  and fie  and 22γΨ  is

the ff nn ×  covariance matrix of .fie  Then the inverse of γΨ  is
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,2221

1211
1












=−

γγ

γγ
γ ΨΨ

ΨΨ
Ψ

where

[ ( ) ] 1
21

1
221211

11 −−−= γγγγγ ΨΨΨΨΨ

( ) ( ) 122
12

1
11

12 −−−= γγγγ ΨΨΨΨ

( ) ( ) 111
21

1
22

21 −−−= γγγγ ΨΨΨΨ

[ ( ) ] .1
12

1
112122

22 −−−= γγγγγ ΨΨΨΨΨ

We further assume that the present and future errors have an elliptically

contoured distribution with the following pdf:

( )γΨ|fp EE,

{ [ ]}.22211211
2 ffff

p
tr EEEEEEEE γγγγγ ΨΨΨΨΨ ′+′+′+′∝ − g (3.11)

Then using (2.3), and (3.11), and taking into account the Jacobian (2.5),

the joint density function of ,ˆ
EB  Es  and fE  for given YZ  and γΨ  is

obtained as

( )γΨ,,,ˆ
YEE ZEB |fsp

( ) { [ YEEEE ZXBBXXB 11111
2 ˆ2ˆˆ

γγγ ΨΨΨ ′′+′′∝ −−− strs rnp
p

g

]}.ˆ22 222112112
ffffss EEEXBEZZZ EYEYYE γγγγ ΨΨΨΨ ′+′′+′+′+ (3.12)

Consider the following transformations:

( )










=

=

−= −

.

,ˆ
,ˆ1

E

E

EE

BV

BXEU

sw

s ff
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The Jacobian of the transformation, {( ) ( )}UVEB EE ,,,,ˆ wsJ f →  is equal

to .fpn
w  The quadratic expression in (3.12) can be expressed as

( ) ( ) ( ),1211 KDKAKDVDKDV −−− ′−++′+ γwww

where

 ,22211211 VVZVVZZZA YYYY γγγγγ ΨΨΨΨ ′+′+′+′=

2212
2

2111
121 ,; γγγγ ΨΨΨΨ ff XXPXXPVPZPK Y ′+′=′+′=+=  and

.22211211
ffff XXXXXXXXD γγγγ ΨΨΨΨ ′+′+′+′=

Thus the joint density function of V, w and U for given YZ  and γΨ

becomes

( ) { [( ) ( )KDVDKDVZUV Y
11

2,,, −−− +′+∝| wwtrwp
p

gγγ ΨΨ

( )]} ( ) 112 −−+−′−+ rnnp fww KDKAγ

( ) ( )






+′+∝ ∑
=

−−−
p

i
iiii

p
ww

1

11
2 kDVDkDvgγΨ

( ) ( )
.

112 −−+−







′−+ rnnp fwtrw KDKAγ (3.13)

Integrating (3.13) with respect to V and w, we have the marginal pdf of U
for given YZ  and γΨ  as

( ) [ { }]
( )

,, 2
1

22
fnrnppp

trp
+−

−−−− ′−∝| KDKADZU Y γγγ ΨΨ

where

( ) ( );2
1

332
1

3
1

YYYY ZTTUTZQTUZTZKDKA ′+′′++′=′− −−∗−
γ

also 2
1

2
22

32
1

1
12

21
1

1
11

1 ,, PUPTPDPTPDPT −−− ′−=′−=′−= γγγ ΨΨΨ  and

( ).2
1

321 TTTTT ′−= −∗
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It is readily seen from (2.1), (2.3), and (3.10) that

{ } { } .ˆˆ 11 UBXEBXY EEYY =−=− −−
ffff ss

Finally the predictive density of fY  for given Y and γΨ  is obtained as

( )γΨ,YY |fp

[ { [ ( ) ] 32
1

3
1 ˆ TZTTBXYZTZ YYYYY

′′+−+′∝ −−∗
ffstr

[ ( ) ]}]
( )

22
1

3
1 ˆ

rnnp

ff
f

s
−+

−−− ′+−× YYY ZTTBXY

( )
( ) ( )

( )

,
1

1
2

1
1

fpnrnp
p

i
ifiifirnp

+−
−

=











−′−

−
+= ∑ γγγ ηΦηξ yy (3.14)

where 

( )

( )[ ] ( )






 −

Γ−π








 +−
Γ

=

2

2

2

2

1
rnp

rn

nrnp

fpn

pf
γΦ

ξ  is a normalizing constant, =iγη

iif yy zSSbX 2
1

3 ′− −  and

( )
.3

1

1

2
TzTz yy

Y

−

=

∗


























′

−
= ∑

p

i
iirnp

s
γΦ

It is observed from (3.14) that for known γ  and given Y and X, the future

responses fY  has a fpn  dimensional multivariate Student t-distribution

with ( )rnp −  degrees of freedom. It is also observed that each column of

fY  has an fn  dimensional multivariate Student t-distribution with

( )rn −  degrees of freedom. The location parameter vector is ,iγη

pi ...,,2,1=  and the scale parameter matrix is .1−
γΦ  However, for

unknown ,γ  one may approximate the predictive density (3.14) by its

estimates ,γ̂  obtained from the marginal likelihood function (2.9). The

marginal probability density function of a single future response or a set
of future responses are obtainable from (3.14). The probability density
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function in (3.14) is identical to that obtained under the assumption of
independently distributed multivariate normal errors (see, Haq and
Kibria [10]) and dependent but uncorrelated multivariate Student’s t
error (see, Kibria and Haq [11]).

4. Some Special Cases

In this section we will discuss some special cases of the predictive
distribution in (3.14).

Case I: Linear model

For ,1=p  the results obtained in this paper coincides with that of

Kibria and Haq [12], where they considered the elliptical linear model for
the derivation of predictive distribution.

Case II: Uncorrelated error

If we consider that ( ),fnn+= IγΨ  and ,1=p  then we observed from

(3.14) that the predictive distribution of fy  for given y is a multivariate

Student t-distribution with ( )rn −  degrees of freedom, the location

parameter vector is ybX f  and precision matrix is { +
fn

s
I

y
2
1

[ ] } .11 −− ′′ ff XXXX  This result agrees with that of Zellner and Chetty [18],

where they used the Bayesian approach with the Gaussian independence
error.

Case III: MA(1) error

Let

,

1000

1

001

0001

2

2

2

2

























θ+θ−

θ+θ−

θ−θ+θ−

θ−θ+

=

L

LLLLLL

LLLL

L

L

γΨ

where ,θ=γ  be the covariance matrix for the observed and future error

variables of the MA(1) model. Then the result obtained coincides with
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that Haq and Kibria [10], in which they have considered the multivariate
linear model with a Gaussian MA(1) error processes.

Case IV: Intraclass correlation

Consider

,

1

1
1























ρρρ

ρρρ
ρρρ

=

L

LLLLLL

LLLLLL

L

L

γΨ (4.15)

where ,ρ=γ  be the covariance matrix for the observed and future error

variables of the intraclass correlation model. Then the result agrees with

that Kibria and Haq [11], in which they have considered the multivariate

linear model with Student t and intraclass error processes.

Case V: Pearson type III error

Consider 1=p  in model (2.1), then as a special case of elliptical

distribution, we will consider the Pearson type VII distribution for the

error variables e as follows:

( ) .0,
2

,1
1

>ν>












ν
′

+∝|

−−
nNp

N
ee

e γ
γ

∆
∆ (4.16)

This distribution can be viewed as a special case of multivariate Student t

distribution with nN −=ν 2  degrees of freedom. Then following similar

steps as before, we obtain the predictive distribution of fy  for given y

and γΨ  as

( ) ( ) ( ) ( )
( )

,11, 2
2

fnrn

fff rn
p

+−
−





 −′−

−
+=| γγγγ ηΦηξΨ yyyy (4.17)

where 

( )

( )[ ] 




 −Γ−π








 +−
Γ

=

2

2

2

2
1

2
rnrn

nrn

fn

f
γΦ

ξ  is the normalizing constant, =γη
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yyy zTTbX 2
1

3 ′− −sf  and ( ) { } .3

12

TzTz yy
y

−
∗












′

−
=

rn
s

γΦ  The result in (4.17)

coincides with that of (3.14) for ,1=p  which is the predictive

distribution for the elliptical linear model.

5. Concluding Remarks

The marginal likelihood function and the predictive distribution

under the multivariate linear models with elliptically contoured

distribution have been discussed in this paper. It is observed that for

known covariance matrix, the predictive distribution of future responses

follows a multivariate Student t-distribution with ( )rnp −  degrees of

freedom. It is interesting to note that the degrees of freedom of the

predictive distribution does not depend on the degrees of freedom of the

original distribution (follows from 4.17 and also from Kibria and Haq

[11]). It is noted that the predictive distribution of future responses under

the multivariate elliptically contoured errors assumption are identical to

those obtained under independent normal errors or Student’s t errors.

This gives inference robustness with respect to departure from the

reference case of independent sampling from the multivariate normal or

dependent but uncorrelated sampling from Student’s distributions. It is

also noted that the results of Zellner [19], Chib et al. [2], Haq and Kibria

[10], and Kibria and Haq [11, 12] follow as a special case of this paper.

Furthermore, this paper is a generalization in the sense that it lead to

results under the class of elliptically contoured distribution, such as

normal, Student t, Cauchy. This paper considered the multivariate linear

model, which does cover the linear model for .1=p
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