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Abstract

This paper considers the predictive inference for the future responses
from the multivariate linear models with errors following an elliptically
contoured distribution. First we derive the marginal likelihood function
of unknown covariance parameters. Then we derive the predictive
distribution for known covariance parameters of the model. It is
observed that the predictive distribution of future responses of the
model has a multivariate Student’s ¢ distribution, which is identical to
that obtained under the independently distributed multivariate normal
errors and dependent but uncorrelated ¢ errors. This gives inference
robustness with respect to departures from the independent sampling
from normal and dependent but uncorrelated sampling from Student’s ¢

to elliptically contoured distribution.

1. Introduction

In recent years, there has been significant interest in the predictive
inference for a linear or multivariate linear models with various error

distributions. The predictive inference for the linear models has been
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considered by various researchers: Goldberger [7] and Hahn [8] used the
classical approach; Geisser [6], Zellner and Chetty [18] and Chib et al. [2]
used the Bayesian approach, Fraser and Haq [4], Haq and Rinco [9], and
Fraser and Ng [5] used the structural approach, while Haq and Kibria
[10], and Kibria and Haq [11] considered the structural relation of the

model for the derivation of the predictive distribution.

Most of the researchers have assumed either normal or Student’s ¢
distribution for the error variables of the model. The normality and
independency assumption may not be appropriate in many practical
situation, specially when the parent distributions have heavier tails. In
that case, the multivariate ¢ has been emphasized by Zellner [19], Chib et
al. [2], Sutradhar and Ali [17] and recently Kibria and Haq [11] among
others.

Haq and Kibria [10] and Kibria and Haq [11], using the structural
relation of the model derived the predictive distribution for the future
responses under the multivariate normal and multivariate ¢ distribution,
respectively. In both cases, they obtained the predictive distribution as a
multivariate Student’s ¢ distribution with appropriate degrees of
freedoms. Therefore, the distribution of future responses for a
multivariate linear model is unaffected by a change in the error
distribution from normal to Student’s ¢ distribution. The invariance of the
predictive distribution for the future responses suggest that the
predictive distribution would be invariance to a wide class of error
distributions, namely that error terms have an multivariate elliptically
contoured distribution. The elliptically contoured distribution include
various distributions: the multivariate normal, matrix 7T, multivariate

Student’s ¢ and multivariate Cauchy (see Fang, Kotz and Ng [3] and Ng
[15]).

Elliptically contoured distributions have been discussed extensively
for traditional multivariate regression model by Anderson and Fang [1]
and recently Kubokawa and Srivastava [13] among others. This
distribution has also been considered by Chib et al. [2] for the derivation
of predictive distribution from the linear model and using Bayesian
approach. Kibria and Haq [12] considered this distribution for the linear
model and derived the predictive distribution by using the structural
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relation of the model. Ng [15, 16] considered this distribution and derived
the predictive distributions for simple multivariate linear model under
both Bayesian and classical approaches. He concluded that the Bayesian
analysis using improper prior yields the same predictive distribution as
the classical analysis. However, none of the researchers has considered
the elliptically contoured distribution for the derivation of predictive
distribution from multivariate linear with unknown covariance matrix
and by structural relation approach.

In this paper, we assumed that error terms have a multivariate
elliptically contoured distribution. We considered a general covariance
matrix for the error variables depending on a set of parameters. First, we
derived the marginal likelihood function of unknown covariance
parameters and then derived the predictive distribution of future
responses. We adopted the structural relation of the model approach to
derive the marginal likelihood function as well as the predictive
distribution.

A plan of this paper is as follows. The multivariate linear model and
the covariance parameters estimation have been discussed in the
following section. The predictive distribution of future responses is
derived in Section 3. Some special cases have been discussed in Section 4.
Finally some concluding remarks are added in Section 5.

2. The Model and Parameters Estimation

Let us consider n observations for the p characteristics yielding the

following multivariate linear model

Y = XB + cE, 2.1)

where Y is an n x p matrix of observed responses, X is an n x r design
matrix, B is an r x p regression matrix, E is an n x p errors matrix and
c >0 1s a scale parameter. We assume that E has an elliptically

contoured distributions with the probability density function

p(E[A,) =|A, |‘§ gltr(E'AL'E)], (2.2)

which is of the form given in Anderson and Fang [1], g{-} is a non-
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negative function over m x m positive definite matrices such that f(E) is
a density function. The covariance matrix Ay, depends on the parameter

v. The observed data can be used to estimate the covariance parameters.

Since the predictive distribution depends on the covariance parameters,
first we will discuss about the estimation technique of covariance

parameters through the marginal likelihood function.

The marginal likelihood function of A,

Consider Bg as the regression matrix of E on X 3123 as the sum of

squared residual and Zyg as the standardized residual matrix, then

B = (X'X)'X'E,

D
%=

=1 j=

n
(eij - ijei )2, and
1
Zg = sg {E - XBg!. (2.3)

The corresponding expressions for the response matrix Y will be denoted

by ﬁy, 352( and Zvy, respectively. From (2.1) and (2.3), it follows that

Sy
SE

G =
A SY A
B = BY ——BE, and
SE
Zy = 7g. (2.49)
Then the relationship between the volume elements of E in terms of the

new variables By, sg and Zg is

p ~
dE = | X'X [5s2" " \qBy dsg dZy, (2.5)

where R™ has been expressed as the direct sum of the subspace £(X)

and its orthogonal component O(X) and dZg is the volume element on
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the unit sphere in O(X). Using (2.3), the quadratic expression in (2.2)
leads to

E'A;IE = (XBE + SEZE)/A;I(XIA;E + SEZE)
— (B + sgA 'R) A(Bf + sgA"'R) + s3Z X, Z,
where A = X'A;'X, R = X'A;'Zy, and
-1 -1 ra—1 —1~rra—1
T, = Ayt - ATTX(XALTX)TTXALL
Note that,
D , D
tr(E’A;lE) = Z (bei + seAflri) A(bei + seAflri) + S}%Z z'ei)lyzei,
i=1 i=1
where 1; = X’A;lzei, is the ith column vector of the matrix R, by; is the

ith column vector of the matrix By and z,; is the ith column vector of the

matrix Zyg.

Then the joint density function of BE, sg and Zg conditioned on A,

becomes

~ 1 _p P 1 '
pBr, s, Zis 18y) o 527, 50 Y (b + 5A ™)
=1

p

x Albe; +5eA™'r;) + 5§ ) (z’eizyzei)]. (2.6)
=1

The marginal probability element of Zg can easily be obtained by

integrating (2.6) with respect to the variables BE and sg as

p(Zg |Ay) = jo I_ p(Bg, s, Zg | A, )dBgdsg. 2.7)
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To evaluate (2.7), we consider the following transformation:

1
Ag(bei + SEAill'i) = u;, i = 1, ..., p

D
ZZ’eiZYZei Sg = U.

i=1

The Jacobian of the transformation J(bg;, e — u;, v) is equal to

1
|A|_§(Z?1zgiﬁyzeij % Then using (2.6) and (2.7), and taking into
1=

account the Jacobian, the marginal likelihood function of Zg for given

A, is obtained as

p(n-r)

_L a1 -2 S ' BE
P(Zg |Ay) o |A,|72|XA X[ Zzeizyzei
=1

P iwaw [P
1o 2 |, p(n-r)-1 4
x HJ.O J_w g{; uiu; +v ]v du;dv, (2.8)

where

-1 -1 A=y \-lyrra—1
T, = A7 - ATIX(XAIX) XA

Then using the polar transformations and following Mathai et al. [14,
p- 91], (2.8) leads to

_pln-r)
p 2

Z Zoi Ly Zei]

i=1

PP
P(Zg |Ay) o |A, |72 |X'AL X7y

The density function of Zg depends on A, and X, where the elements of
A, are unknown. It follows from (2.4) that the pdf of Zy can easily be
obtained from the pdf of Zg. Thus the marginal likelihood function of Ay

conditioned on Zy is obtained as
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_p(n-r)
D 2

R [ - .
L(Ay 1 Zy) o [A,[T2|XAYX[ 5] ) 242, 2y, : (2.9)
=1

It 1s observed from the likelihood function (2.9) that a closed form
estimate of A, may not be available. However, for a particular set of

observed responses Y and for a given design matrix, the maximum
likelihood estimates of the parameters are obtainable from (2.9). Note
that the result in (2.9) is identical to that obtained under the assumption
of independently distributed multivariate normal errors (see, Haq and
Kibria [10]) and dependent but uncorrelated multivariate Student’s ¢

error (see, Kibria and Haq [11]).

3. The Predictive Distribution

Consider a set of ny future responses from model (2.1) as
Yf = XfB+6Ef, (310)

where Y/ and E f are the ny x p matrices of future responses and future

errors respectively and X is an ny x r matrix of future regressors.

To derive the joint distribution of E and E/, we combine the observed

and future error matrices as, E* = (E/, E} ),, where E is an (n +ns) x p
matrix. Let the covariance matrix of each column of E be an (n +ny)
x (n +ng) matrix ¥,. Then the covariance matrix of E is I, ® ¥,
where

b 4 b 4
‘Py _ |: v1ll 712:|,
Wyo1  Wyoo

also ¥, 1s an n x n covariance matrix of e;, ¥y19 = ¥y9; 1s an nxny
matrix of covariances between the components of e; and ey and ¥,g9 1s

the n; x ny covariance matrix of eg. Then the inverse of ¥, 1s
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11 12
v - [T “’}
‘II'Y lPY

where

11 1 -1
Y, = [y — Yy2(Pyoe) Yyoil

"EH
[\]
|

1 22\-1

y = _(‘Pyll) ll13(12(“’3( )
-1 -1

vil = —~(¥y22) ‘I’yzl(‘l'%(l)

22 -1 -1
¥," = [‘Py22 - TyZl(‘Pyll) ‘Py12] .

We further assume that the present and future errors have an elliptically

contoured distribution with the following pdf:

p(E, Ef|¥,)

*B ’ ! ’ !
< |¥, [ 29{tr[EY}'E + EY’E, + EyY2'E + Ey¥7°E/]. (3.11)

Then using (2.3), and (3.11), and taking into account the Jacobian (2.5),

the joint density function of EE, sg and E; for given Zy and ¥, is

obtained as

p(Bg, sg, Ef|Zy, ¥,)
p ~ ~ ~
« |W, 25”0 [BEX WL XBy, + 255 BEX WL Zy
+ SRLY YL Zy + 2spZyYY R, + 2BEX'Y2'E, + EfYEE[]. (3.12)

Consider the following transformations:

U= S}_L‘l(Ef _XfEE)r
V = Bg,

w = Sg.
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The Jacobian of the transformation, J{(Bg, sg, E f) = (V,w, U)} is equal

to w?™" . The quadratic expression in (3.12) can be expressed as

(V +wD'K) D(V + wD'K) + w?(A, - KD 'K),

where
A, = INY Zy + ZYYPV + VYT Ly + VP2V,
K = PZy + BV P = X'¥ |+ Xp¥70 Py = X974 X979 and
npll nyl2 ' 21 ' 22
D = X'V, X + X'V," X + X{W, X + X W "X,

Thus the joint density function of V, w and U for given Zy and ¥,

becomes
p '
p(V, w, U|Zy, ¥,) < |¥, | 2 g{tr[(V + wD'K) D(V + wD'K)

+w(A, - KDK)Lw

1

p |& /
< |¥, 2 g{ (v; + wD'k;) D(V; + wD'k;)
=1

+w’tr(A, - K'D—lK)}w”(”*”f -1 (3.13)

Integrating (3.13) with respect to V and w, we have the marginal pdf of U
for given Zy and ¥, as

b D s
p(U|Zy, ¥,) = |¥, 5D 2[tr(A, - KD K] 2,

where
A, -K'D'K = ZyT'Zy + (U + T3'QpZy) T3 (U + T3 ' TyZy );
also Ty =¥} ~-PD'P,, T, = ¥}> —~P[D'P,, T; = ¥* -P,U"'P, and

T* = (T - T,T5'Ty).
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It is readily seen from (2.1), (2.3), and (3.10) that
sy {Y; - X/By} = sg'{E; - X/Bg} = U.
Finally the predictive density of Y, for given Y and v, is obtained as

p(Yf Y, T’y)

o irZyT'Zy + [s7' (Y, - XBy) + T3 ' TyZy | T

) . ) 7p(n+nf—r)
x[sy (Yr - XfBy)+ T3 TsZy }] 2

_p(n—r)+pnf
1 , 2
=& 1+p(n——r)§(yﬁ ~MNyi) @y (Y5 —Myi) ) (3.14)

p(n—r+ng) P
g o

= 2 1 2220))

where &; = 1s a normalizing constant, n,; =

X/by; — S3'Shz,; and

2 p -1
SY ’ *
o, =|—— E Tz, Ts.

1=1
It is observed from (3.14) that for known y and given Y and X, the future
responses Y; has a pny dimensional multivariate Student ¢-distribution
with p(n —r) degrees of freedom. It is also observed that each column of
Y; has an n; dimensional multivariate Student ¢-distribution with

(n —r) degrees of freedom. The location parameter vector is Nyis

i=1,2 .. p and the scale parameter matrix is (I);l. However, for
unknown y, one may approximate the predictive density (3.14) by its
estimates ¥, obtained from the marginal likelihood function (2.9). The

marginal probability density function of a single future response or a set
of future responses are obtainable from (3.14). The probability density
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function in (3.14) is identical to that obtained under the assumption of
independently distributed multivariate normal errors (see, Haq and
Kibria [10]) and dependent but uncorrelated multivariate Student’s ¢
error (see, Kibria and Haq [11]).

4. Some Special Cases
In this section we will discuss some special cases of the predictive
distribution in (3.14).
Case I: Linear model

For p =1, the results obtained in this paper coincides with that of

Kibria and Haq [12], where they considered the elliptical linear model for
the derivation of predictive distribution.

Case II: Uncorrelated error
If we consider that ¥, = I(,an), and p =1, then we observed from

(3.14) that the predictive distribution of y f for given y is a multivariate

Student ¢-distribution with (n —r) degrees of freedom, the location

. o o 1
parameter vector is X by and precision matrix is —2{Inf +
s
y

Xf[X’XT1 XY 1. This result agrees with that of Zellner and Chetty [18],

where they used the Bayesian approach with the Gaussian independence

error.

Case III: MA(1) error

Let
1+ 02 -0 0 0 0
-0 1+6° -9 - 0 0
Y, = .. -0 1402 ... ... ,
0 0 0 o -0 14062

where y = 0, be the covariance matrix for the observed and future error

variables of the MA(1) model. Then the result obtained coincides with
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that Haq and Kibria [10], in which they have considered the multivariate
linear model with a Gaussian MA(1) error processes.

Case IV: Intraclass correlation

Consider
1 p p p
p 1 p p
W, = e e e , (4.15)
pp p 1

where y = p, be the covariance matrix for the observed and future error

variables of the intraclass correlation model. Then the result agrees with
that Kibria and Haq [11], in which they have considered the multivariate

linear model with Student ¢ and intraclass error processes.
Case V: Pearson type III error

Consider p =1 in model (2.1), then as a special case of elliptical

distribution, we will consider the Pearson type VII distribution for the

error variables e as follows:

-N
e'A;le n
ple[A,) |1+ " , N>§, v > 0. (4.16)
This distribution can be viewed as a special case of multivariate Student ¢
distribution with v = 2N —n degrees of freedom. Then following similar

steps as before, we obtain the predictive distribution of y; for given y

and ¥, as
(n-r+ny)
1 ' 2
p(ysly, ¥y) = @2[1 + W(Yf - ny) @, (ys - le)} , (4.17)
—r+ 1
r(—(n r2 nf)jlcby B
where &g = 1s the normalizing constant, n, =

[n(n - r)]%l"(n ; rj
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2 _].
—1rpv _ Sy 1o :
bey — SyT3 T2Zy and (I),Y = [m {ZyT Zy }:I T3. The result in (417)

coincides with that of (3.14) for p =1, which is the predictive

distribution for the elliptical linear model.
5. Concluding Remarks

The marginal likelihood function and the predictive distribution
under the multivariate linear models with elliptically contoured
distribution have been discussed in this paper. It is observed that for
known covariance matrix, the predictive distribution of future responses

follows a multivariate Student ¢-distribution with p(n —r) degrees of

freedom. It is interesting to note that the degrees of freedom of the
predictive distribution does not depend on the degrees of freedom of the
original distribution (follows from 4.17 and also from Kibria and Haq
[11]). It is noted that the predictive distribution of future responses under
the multivariate elliptically contoured errors assumption are identical to
those obtained under independent normal errors or Student’s ¢ errors.
This gives inference robustness with respect to departure from the
reference case of independent sampling from the multivariate normal or
dependent but uncorrelated sampling from Student’s distributions. It is
also noted that the results of Zellner [19], Chib et al. [2], Haq and Kibria
[10], and Kibria and Haq [11, 12] follow as a special case of this paper.
Furthermore, this paper is a generalization in the sense that it lead to
results under the class of elliptically contoured distribution, such as
normal, Student #, Cauchy. This paper considered the multivariate linear

model, which does cover the linear model for p = 1.
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