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Abstract

This paper analyzes the influence of the shift of the error variance on the

unit root test, the cointegration test. The main findings can be

summarized as follows: (1) Heteroskedasticity affects the size of the unit

root test; (2) The unit root test based on GLS is affected by the nuisance

parameter and thus cannot solve the problem. Data transformation is a

good procedure to solve this problem. Monte Carlo experiments support

this assertion; (3) The ideas can be applied to the residual-based

cointegration test. Monte Carlo experiments show that the

null hypothesis of no-cointegration tends to be over-rejected. The

size-distortion tends to be improved when data transformation is carried

out.

1. Introduction

The unit root test created by Dickey and Fuller [3] and the
cointegration test proposed by Engle and Granger [5] have had a great
influence on today’s econometric analysis. As a result, performing the
unit root test and the cointegration test are becoming general practices in
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current econometric analyses that use time series data. McKenzie [13]
examined the impact of the theoretical literature relating to unit roots
and cointegration on empirical analyses, and found the importance of
these tests in the empirical literature.

If variables are determined to have unit roots, standard asymptotic
theory used for regression analysis cannot be applied, and there are
various problems associated with statistical inference. To address such
problems, a variety of estimation techniques and testing methods have
been developed. (See, for examples, Dickey and Fuller [4], Said and
Dickey [15], Phillips and Perron [14], Cochran [1], Hylleberg et al. [10],
and Kwiatkowski et al. [12].)

The difference method is often employed when economic variables are
non-stationary (have unit roots). However, some variables may not be
mutually independent, even though they are non-stationary. In such
cases, specification-error may arise in models based on differences. This
relationship between non-stationary variables is defined as cointegration,
or as a cointegrating relationship. From a statistical standpoint, when a
linear combination of non-stationary variables is stationary, then the

relation is called cointegrating (Engle and Granger [5]). Since the

cointegrating relationship implies a long-run equilibrium among
economic variables, the economic theory under investigation (e.g., the
stability of the money demand function) is often tested based on the
cointegration relationship (see, for examples, Friedman and Kuttner [7],
Feldstein and Stock [6]).

The present study analyzes the influence of the heteroskedasticity on
the unit root test and the cointegration test. Conventional wisdom
regarding the unit root test claims that while serial correlation is
important, heteroskedasticity in the variance structure is not important.
For example, Phillips and Perron [14] derive the mixing condition to
satisfy the functional central limit theorem. They show that a
z-transformation of a t-type test statistic is invariant to some form of
heteroskedasticity. Davidson [2], however, shows that there is
nonstandard Brownian motion in the presence of general
heteroskedasticity. The following study reanalyzes this problem by
taking into consideration a simple form of heteroskedasticity.
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The purpose of this article is twofold. The first is to examine the
influence of the shift of the error variance on the unit root test (Dickey
and Fuller [3]) and the residual-based cointegration test (Engle and
Granger [5]). The second is to present a test method when the variance
shift exists. The following two conclusions will be confirmed. First, if the
variance shift exists, a serious size-distortion occurs in each of the tests.
Second, the size-distortion can be corrected by performing an appropriate
transformation of the data.

2. Unit Root Test under Heteroskedasticity

Consider the following data generating process (DGP):

,...,,2,1, TtDUy tttt =η+ε=∆  (1)

where

( )


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,otherwise,0
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and { }tε  and { }tη  are independent of each other, and both of them have

finite fourth moments. We estimate the model using the following

regression equation:
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Let us derive the limiting distributions of the test statistics, (5). First,

from the functional central limit theorem, we have

[ ]

( ),1
1

1 rB
T

L

rT

t t
 →

σ

ε∑ = (6)

and
[ ]

( ),2
2

1 rB
T

L

rT

t t
 →

σ

η∑ = (7)

where ( )•1B  and ( )•2B  are independent standard Brownian Motions.

Therefore, the following equation is derived from equations, (6) and (7),

( )
[ ]

( ) ( ) ( )[ ] ( ) ( ),22211
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It also holds that
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Let ( )rV  be defined as ( ) ( ).1 rGrV −σ≡  Then, ( ){ }1 0=rrV  is a normal

random variable with mean zero and covariance ( ) ( )[ ] { ( ),min rCsVrVE =

( )},sC  where ( ) ( ) ( ).
2

2
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1 rdurrrC λ−
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
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σ
σ
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




σ
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=  Since ( )•C  is continuous

on ( )λ,0  and ( )1,λ  and monotonically increasing on ( ),1,0  and mapped

from [ ]1,0  to [ ] ( )rV,1,0  can be expressed as ( ) ( )( ),rCBrV =  where

( ){ }1 0=rrB  is a standard Brownian Motion. Here, ( ){ }1 0=rrV  is called as the

variance-transformed Brownian Motion (Davidson [2]).

Note that any increment of ( ) ( )rBrθ  is not independent, where

[ ] ℜ→θ 1,0:  is any continuous deterministic function (Davidson [2]). On
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the other hand, any increment of 
( )[ ]

T

DU
rT

t ttt∑ =
η+ε

1  is asymptotically

independent and any increment with respect to r of ( )( )rCB  is

independent. Thus, the asymptotic distribution of 
( )[ ]

T

DU
rT

t ttt

σ

η+ε∑ =1  is

not equal to ( ) ( ).2121 rBrCr−  Note that the explanation of the limiting

distribution in Hamori and Tokihisa [9] is not appropriate.

For the test statistic, it holds that
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It is clear that ( ) ( )11 BV =  since ( ) .11 =C  To rewrite ( ){ } drrV∫
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0
2  in

equation (11), we use the change of variable technique. Since ( )•C  is

differentiable on ( )λ,0  and ( ),1,λ  the inverse function of C denoted D
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λ

λ
=+

0

1 22 drrBdrrB

( ){ }∫
1

0
2drrB  and (13), the right hand side of (12) is equal to

( ){ } ( ) ( ){ } ( ){ }∫ ∫ ∫
λ

λδ+

δ
λ−δλ−+

1

0 0

1 2
2

2
222 .

1
1 drrBdrrBdrrB (14)

Thus, when an upward shift in variance occurs, the test statistic is
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affected by the nuisance parameters (δ and λ), which causes the

size-distortion. However, judging from the limiting distributions given by
(11), it is not clear whether the upward shift in variance causes
over-rejection or under-rejection of the unit root hypothesis. The case of
downward shift in variance is similarly analyzed.

To evaluate the effect of heteroskedasticity on the size of the unit root
test, we perform Monte Carlo experiments with 5,000 replications in each
experiment where the disturbance term is generated from normal
random variables. Each experiment is performed under the following
settings:

DGP Tty tt ...,,2,1,: =ε=∆

[ ] [ ]




λ>σ
=λλ≤σ=ε=ε

.for
,,for,0 2

2

2
12

Tt

TTBTtVarE tt

,250,100=T

( ) ( ) ( ) ( ) ( ) ( ) ( ),1,10,1,5,1,2,10,1,5,1,2,1, 2
2

2
1 =σσ

.7.0,6.0,5.0,4.0,3.0=λ

Table 1 shows the empirical test size of the t-type test of the unit root

based on the raw data series. As is clear from Table 1, the size-distortion
becomes larger as the shift in variance becomes larger. In Table 1, for

example, when 100=T  and 7.0=λ  at a nominal size of 5% and the

combination of variance changes from ( )0.2,0.1  to ( )0.5,0.1  and

( ),0.10,0.1  then the empirical test size also increases, going from 6.08 to

14.94 and 21.72. In Table 1, when 100=T  and 3.0=λ  at a nominal

size of 5% and the combination of variance changes from ( )0.1,0.2  to

( )0.1,0.5  and ( ),0.1,0.10  then the empirical test size also increases,

going from 6.06 to 9.56 and 11.60. Similar patterns are observed in other
cases. It is interesting to note that the size-distortion tends to be larger

for a large value of λ when an upward shift in variance occurs. On the

other hand, the size-distortion tends to be larger for a small value of λ
when a downward-shift in variance occurs. As is clear from the table, the
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size-distortion is more serious for the upward shift in variance than it is
for the downward shift in variance.

3. GLS Estimation and Unit Root Test

One may consider the generalized least square (GLS) estimation as

one method of dealing with heteroskedasticity. However, if the

explanatory variables are non-stationary random variables, the result is

not necessarily the same as in the case with stationary explanatory

variables. When considering the variance shift at a certain point of time,

the t-type unit root test that uses the GLS estimation is influenced by the

nuisance parameter.

For the process, given by

[ ] ,1,for,...,,2,1, 2
1

2 TTBTBtETty ttt <<≤σ=ε=ε=∆

,for2
2 TBt >σ= (15)

where { }tε  is a random variable with mean 0 and independent, we can

apply the following GLS regression

....,,1,ˆˆ 1 Ttyy ttglst =ε+ρ= − (16)

Then, the t-type test statistic given by
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has the following asymptotic distribution:
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( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )
,

1112
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1
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1 222

1

0

∫ ∫
∫

λ
λλ−−δ+λ−δ+

λ−λ−δ+

BdrrBBdrB

BBBBdB
(18)

where λ=
T

TB
 and 

2

1
σ
σ

=δ  [see Appendix].

When the variance shift does not occur in the estimation period

[ ],1,0,1 =λ=δ  each of the second terms of the numerator and the

denominator become zero and thus the distribution (16), is equal to the

τ-distribution of Dickey and Fuller [3]. Generally speaking, however, the

distribution is influenced by the parameter δ. Thus, it is not advisable to

apply the GLS regression to perform the unit root test in the presence of
the variance shift.

4. Alternative Approach

We present a unit root test that does not depend on the variance of

the error term. If series { }ty  is a random walk process, its differenced

series can be considered to be a random error with mean 0. If the error
has a finite variance, the series obtained by the following transformation
is the same as the random walk process generated from the random
variable with a variance of unity:

,...,,2,1,1 Tt
y

yy
t

t
tt =

σ
∆

+= ∗
−

∗ (19)

where

( ).var tt y∆=σ

Following Dickey and Fuller [3], we regard 0y  as fixed and .00 yy =∗  It is

necessary to replace the unknown parameter tσ  by its consistent

estimator to perform a feasible transformation of the data. For instance,

if the variance shifts only at a certain point in time and that point in time

is already known, then the estimator of the variance from OLS regression

for each period before and after the change can be used.
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Let { }tε  be an independent process with mean 0 and variance ,2
tσ

and let { }tν  be an independent process with mean 0 and variance 1. If

the data generating process (DGP) is given by:

,tty ε=∆ (20)

then we can transform the data as follows:

.tty ν=∆ ∗ (21)

Thus, the t-type test can be applied for the following regression:

.1 ttt yy ν+ρ= ∗
−

∗ (22)

Thus, the null hypothesis and its alternative hypothesis are given as
follows:

1:0 =ρH (23)

and

.1: <ρAH (24)

To evaluate the effectiveness of this procedure, we performed Monte
Carlo experiments with 5,000 replications in each experiment where the
disturbance term was generated from normal random variables. Each
experiment are performed under the following settings:

,...,,2,1,:DGP Tty tt =ε=∆

[ ] [ ]




λ>σ
=λλ≤σ=ε=ε

.for
,,for,0 2

2

2
12

Tt

TTBTtVarE tt

,250,100=T

( ) ( ) ( ) ( ) ( ) ( ) ( ),1,10,1,5,1,2,10,1,5,1,2,1, 2
2

2
1 =σσ

.7.0,6.0,5.0,4.0,3.0=λ

Table 2 shows the empirical test size of the t-type test of a unit root using
the transformed data. As is clear from Table 2, the empirical test size is
improved when the data is transformed. For example, take the case
where 100=T  and 7.0=λ  at a nominal size of 5% and the combination
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of variance changes from ( )0.2,0.1  to ( )0.5,0.1  and ( ).0.10,0.1  Then the

corresponding empirical test size is equal to 6.08, 14.94 and 21.72 in
Table 1, whereas the corresponding empirical test size is equal to 5.80,
4.86, and 5.48 in Table 2. Similarly, take the case where 100=T  and

3.0=λ  at a nominal size of 5% and the combination of variance changes

from ( )0.1,0.2  to ( )0.1,0.5  and ( ).0.1,0.10  Then, the corresponding

empirical test size is equal to 6.06, 9.56, and 11.60 in Table 1, whereas
the corresponding empirical test size is equal to 5.12, 5.24, and 5.42 in
Table 2. Similar patterns are observed in other cases.

5. Cointegration Test

This section analyzes the effect of heteroskedasticity on the
cointegration test developed by Engle and Granger [5]. The data
transformation presented in Section 4 can also be applied to the test of a
multivariate cointegration process. However, if cross correlation among
error terms exists, a distortion results in the test for the transformation
of individual variables like (19). Therefore, a more applicable method is
used for the transformed data:

TtyCyy tttt ...,,1,1
1 =∆+= −∗
−

∗ (25)

00 yy =∗ (26)

where { }tn
tty εℜ∈ε=∆ ,  is an independent process with mean 0 and

finite nonsingular variance-covariance matrix, and tC  denotes the

Cholesky factor of the variance-covariance matrix of tε  at each point t.

{ }tt yC ∆−1  is a process that is independent across time and has mean zero

and an identity variance-covariance matrix. The residual-based
cointegration test presented by Engle and Granger [5] can be applied to
the data transformed as in expressions (25) and (26).

To evaluate the effectiveness of this procedure, we performed Monte

Carlo experiments using 5,000 replications in each experiment, where

the disturbance term was generated from normal random variables. Each

experiment is performed under the following settings:
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2
22

2
212

2
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( ) ,0, 21 =εε ttE

,250,100=T

( ) ( ) ( ),1,5,5,1, 2
12

2
11 =σσ   ( ) ( ) ( ),1,5,5,1, 2

22
2
21 =σσ

.7.0,6.0,5.0,4.0,3.0=λ

Regression: ttt zyy +β= 21

.1 ttt ezz +ρ= −

Tables 9 and 10, respectively, show the empirical size of the test

when the DGP is given by (23). Table 9 shows the results using the raw

data and Table 10 shows the results using the transformed data. As is

clear from Table 9, the null hypothesis of spurious regression in the sense

of Granger and Newbold [8] tends to be over-rejected. The size-distortion

tends to be improved when data transformation is carried out.

6. Conclusion

This paper analyzes the effects of heteroskedasticity on the unit root

test and the cointegration test. The main findings can be summarized as

follows:

(1) Heteroskedasticity affects the size of the standard unit root test.

The size-distortion tends to be larger for a large value of λ when an

upward shift in variance occurs. The size-distortion tends to be larger for

a small value of λ when a downward-shift in variance occurs. The

size-distortion is more serious for the upward shift in variance than for

the downward shift in variance.

(2) The unit root test based on GLS is affected by the nuisance
parameter and thus cannot solve the problem. Data transformation is a
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good procedure to solve this problem. Monte Carlo experiments support
this assertion.

(3) The ideas above can be applied to the residual-based
cointegration test. Monte Carlo experiments show that the null
hypothesis of spurious regression in the sense of Granger and Newbold
[8] tends to be over-rejected. The size-distortion tends to be improved
when data transformation is carried out.

Appendix

The Asymptotic Properties of the Unit Root Test based on the
GLS

Let ty∆  be as follows:

[ ] 2
1

2, σ=εε=∆ ttt Ey   for  ( ),1, TTBTBt <<≤

 ,for2
2 TBt >σ=

where { }tε  is a random variable with mean 0 and independent. Then, the
asymptotic distribution of the t-test statistic becomes as follows:
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(Proof)

Using the random variable { }tν  which is independent process with

mean 0 and variance 1, we can write as follows:

tt νσ=ε 1   for  ,TBt ≤

tνσ= 2   for  .TBt >

Thus, it holds that
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Also, we have:

 ( ) ( )∑ ∑
= +=

−
−−

−
−− ρ−σ+ρ−σ=σ

TB

t

T

TBt
tglsttglst yyTyyT

1 1

2
1

12
2

2
1

12
1

2 ˆˆˆ

( )∑ ∑ ∑
= += =

−−−−−− εσ=+∆σ+∆σ=
TB

t

T

TBt

TB

t
tptt ToyTyT

1 1 1

212
1

212
2

212
1 1

    ( )∑
+=

−− +εσ+
T

TBt
pt oT

1

212
2 1

( )∑ ∑
= +=

−− +ν+ν=
TB

t

T

TBt
ptt oTT

1 1

2121 1

( ) ( )∑
=

− =ν →+ν=
T

t
t

p
pt EoT

1

221 .11

Thus, we have the above-mentioned limiting distribution.
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Table 1. Empirical size of the unit root test

,:DGP tty ε=∆

where

[ ] [ ]




λ>σ
λ≤σ=ε=ε

.for
,for,0 2

2

2
12

Tt

TtVarE tt

Regression: ttt yy ν+ρ= −1

Size Sample 2
1σ

2
2σ 3.0=λ 4.0=λ 5.0=λ 6.0=λ 7.0=λ

5% 100 1.0 2.0 6.38 6.30 6.44 6.50 6.08

1.0 5.0 8.92 9.24 12.42 12.84 14.94

1.0 10.0 8.78 12.30 14.40 17.16 21.72

2.0 1.0 6.06 5.98 6.16 6.62 5.78

5.0 1.0 9.56 8.94 7.60 6.12 6.14

10.0 1.0 11.60 9.60 7.96 7.12 6.86

250 1.0 2.0 6.48 6.86 6.52 6.90 6.32

1.0 5.0 7.78 9.00 11.80 12.24 12.58

1.0 10.0 9.20 12.18 14.54 17.88 21.94

2.0 1.0 5.24 6.38 6.16 5.38 5.28

5.0 1.0 6.38 8.42 7.24 6.90 5.62

10.0 1.0 11.74 9.78 7.94 7.16 5.66

10% 100 1.0 2.0 12.52 12.22 12.38 11.94 12.72

1.0 5.0 15.38 16.12 19.84 20.96 22.84

1.0 10.0 15.66 19.50 21.48 25.28 30.04

2.0 1.0 11.48 10.90 11.18 12.08 10.88

5.0 1.0 15.20 14.08 13.18 11.10 12.04

10.0 1.0 17.46 14.38 13.92 11.98 11.58

250 1.0 2.0 12.30 12.62 11.78 13.22 12.46

1.0 5.0 14.82 15.86 18.54 20.24 19.70

1.0 10.0 15.62 19.04 22.32 26.06 29.62

2.0 1.0 10.84 11.70 11.36 10.82 10.66

5.0 1.0 14.82 13.84 12.64 12.34 10.86

10.0 1.0 16.66 15.54 13.26 12.60 10.86

The number of replication is 5000.

{ }tε  is drawn from a normal distribution.
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Table 2. Empirical size of the unit root test with data
transformation

,...,,2,1,:DGP Tty tt =ε=∆

where

[ ] [ ]




λ>σ
λ≤σ=ε=ε

.for
,for,0 2

2

2
12

Tt

TtVarE tt

Regression: .1 ttt yy ν+ρ= ∗
−

∗

Size Sample 2
1σ

2
2σ 3.0=λ 4.0=λ 5.0=λ 6.0=λ 7.0=λ

5% 100 1.0 2.0 5.52 5.76 5.10 5.42 5.80

1.0 5.0 5.22 4.74 4.82 5.20 4.86

1.0 10.0 5.48 5.40 5.56 4.72 5.48

2.0 1.0 5.12 5.12 4.78 5.12 4.76

5.0 1.0 5.24 5.00 5.58 4.86 4.18

10.0 1.0 5.42 5.78 5.16 5.58 5.30

250 1.0 2.0 4.28 5.14 4.64 4.98 4.82

1.0 5.0 5.16 4.92 4.68 5.10 4.78

1.0 10.0 4.94 4.62 4.60 4.72 4.90

2.0 1.0 4.78 4.86 5.60 4.76 5.24

5.0 1.0 5.28 4.90 4.98 4.98 4.54

10.0 1.0 5.18 5.52 4.88 4.72 5.12

10% 100 1.0 2.0 10.76 10.92 10.78 10.88 10.58

1.0 5.0 10.70 10.22 10.08 11.00 10.10

1.0 10.0 10.42 11.10 11.48 9.90 10.96

2.0 1.0 10.44 10.06 10.58 10.24 9.56

5.0 1.0 10.40 10.38 10.44 10.08 9.14

10.0 1.0 10.70 11.64 10.96 11.02 10.64

250 1.0 2.0 9.48 10.64 9.84 10.48 9.80

1.0 5.0 10.46 10.00 9.28 10.54 9.92

1.0 10.0 9.72 9.88 10.04 10.22 10.64

2.0 1.0 10.00 9.72 10.68 10.18 9.94

5.0 1.0 10.72 9.90 10.28 10.22 10.74

10.0 1.0 10.48 10.06 10.10 9.70 10.76

 The number of replication is 5000.

{ }tε  is drawn from a normal distribution.



w
w

w
.p

ph
m

j.c
om

UNIT ROOT AND COINTEGRATION TESTS … 129

Table 3. Empirical size of the cointegration test

,:DGP
2

1

2

1






ε
ε

=





∆
∆

t

t

t

t

y

y

where

( ) ( )






λ>σ

λ≤σ
=ε







λ>σ

λ≤σ
=ε

.for

,for

.for

,for

2
22

2
212

22
12

2
112

1
Tt

Tt
E

Tt

Tt
E tt

( ) ( ) ( ) .0,0 2121 =ε=ε=εε tttt EEE

Regression: ttt zyy +β= 21

ttt ezz +ρ= −1

Size Sample 2
1σ

2
2σ 3.0=λ 4.0=λ 5.0=λ 6.0=λ 7.0=λ

2
11σ 2

12σ 2
21σ 2

22σ

5% 100 1 5 1 5 6.76 7.58 8.18 7.66 7.90

5 1 5 1 11.12 10.26 10.42 9.32 7.96

1 5 5 1 5.76 6.64 6.86 6.18 6.46

5 1 1 5 6.28 5.54 5.68 5.80 5.40

250 1 5 1 5 7.06 7.70 7.56 7.36 7.76

5 1 5 1 10.28 10.60 9.20 8.12 7.30

1 5 5 1 5.98 5.54 5.70 6.30 5.92

5 1 1 5 5.60 5.54 5.26 5.02 5.64

10% 100 1 5 1 5 13.32 14.44 14.26 13.78 13.58

5 1 5 1 17.56 18.30 16.50 17.16 15.24

1 5 5 1 12.20 12.08 11.98 12.44 11.92

5 1 1 5 10.52 11.08 10.40 10.98 10.84

250 1 5 1 5 13.52 13.76 13.84 14.42 13.78

5 1 5 1 17.90 17.48 16.46 15.14 14.78

1 5 5 1 11.54 12.08 10.60 11.82 12.28

5 1 1 5 10.24 9.82 10.24 10.32 10.40

The number of replication is 5000.

{ }t1ε  and { }t2ε  are drawn from a normal distribution.
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Table 4. Empirical size of the cointegration test with
data transformation

,:DGP
2

1

2

1






ε
ε

=





∆
∆

t

t

t

t

y

y

where

( ) ( )






λ>σ

λ≤σ
=ε







λ>σ

λ≤σ
=ε

.for

,for

.for

,for

2
22

2
212

22
12

2
112

1
Tt

Tt
E

Tt

Tt
E tt

( ) ( ) ( ) 0,0 2121 =ε=ε=εε tttt EEE

Regression ttt zyy +β= ∗∗
21:

ttt ezz +ρ= −1

Size Sample ty1 ty2 3.0=λ 4.0=λ 5.0=λ 6.0=λ 7.0=λ

2
11σ 2

12σ 2
21σ 2

22σ

5% 100 1 5 1 5 6.36 6.40 6.20 6.84 6.90

5 1 5 1 6.60 6.94 6.78 7.08 6.14

1 5 5 1 7.76 6.92 6.76 6.40 5.98

5 1 1 5 4.68 4.62 4.34 3.88 3.88

250 1 5 1 5 5.92 6.02 5.34 5.52 5.72

5 1 5 1 6.10 6.16 6.68 6.74 6.18

1 5 5 1 6.50 5.90 6.18 5.60 5.32

5 1 1 5 4.50 4.68 4.08 4.08 3.44

10% 100 1 5 1 5 12.04 11.74 11.58 12.16 10.92

5 1 5 1 13.42 14.36 14.30 14.28 12.40

1 5 5 1 13.72 13.00 12.88 13.16 12.30

5 1 1 5 9.82 8.98 8.50 8.68 7.86

250 1 5 1 5 11.76 11.42 11.18 11.00 11.50

5 1 5 1 11.54 13.04 12.08 12.42 12.18

1 5 5 1 12.92 12.42 12.64 11.22 10.80

5 1 1 5 8.86 7.62 7.62 7.24 7.32

The number of replication is 5000.

{ }t1ε  and { }t2ε  are drawn from a normal distribution.
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