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Abstract 

Support Vector Machines (SVMs) are powerful tools for data 

classification. SVMs attempt to separate two given sets in N-dimensional 

real (Euclidean) space Nℜ  by a nonlinear surface, often only implicitly 

defined by a kernel function. We examined the priority of given various 

kernel functions for given data sets which follow particular probability 

distributions. 

1. Introduction 

SVM is an implementation of Vapnik’s Support Vector Machine [8] for 

the problem of pattern recognition, for the problem of regression, and for 

the problem of learning a ranking function. The optimization algorithms 

used in SVM are described in [3] and [4]. The algorithm has scalable 

memory requirements and can handle problems with many thousands of 
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support vectors efficiently. Many researches have been devoted to the 

study of various learning algorithms which allow the extraction of these 

underlying regularities. If the learning has been successful, these 

intrinsic regularities will be captured in the values of some parameters of 

a learning machine; for a polynomial classifier, these parameters will be 

the weights and biases, and for a Gaussian classifier they will be weights 

and centers. In this paper, we study the Support Vector Algorithm with 

different kernel functions. We show that the algorithm allows us to 

construct different classifiers: polynomial classifiers, Gaussian classifiers. 

2. Support Vector Classifier with Kernels 

Let us start with a general notion of the learning problems that we 

consider in this paper. The task of classification is to find a rule, which, 

based on external observations, assigns an object to one of several classes. 

In the simplest case there are only two different classes. For the case of 

two-class pattern recognition, the task of learning from example can be 

formulated in the following way: suppose we are given empirical data 

( ) ( ) ( ) { }.1,...,,,,, 2211 ±×∈ Xyxyxyx mm  (1) 

Here, the domain X is some nonempty set that the patterns ix  are taken 

from; the iy  are called labels or targets. Unless stated otherwise, indices i 

and j will always be understood to run over the training set, i.e., 

....,,1, mji =  Note that we have not made any assumptions on the 

domain X other than it being a set. In order to study the problem of 

learning, we need additional structure and want to be able to generalize 

unseen data points. In the case of pattern recognition, this means that 

given some new pattern ,Xx ∈  we want to predict the corresponding 

{ }.1±∈y  By this we mean, loosely speaking, that we choose y such that 

( )yx,  is in some sense similar to the training examples. To this end, we 

need similarity measures in X. So, we require a similarity measure 

ℜ→× XXk :  

( ) ( ),,, xxkxx ′′  
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i.e., a function that, given two examples x and ,x ′  returns a real number 

characterizing their similarity. For reasons that will become clear later, 

the function k is called a kernel [2]. In this domain, we have not made the 

assumption that the patterns live in a dot product space. In order to be 

able to use a dot product as a similarity measure, we use a map 

,: NFX ℜ⊂→Φ  

.xx  

The space F is called a feature space. For the case of two-class pattern 

recognition, the task of learning from examples can be formulated in the 

following way: given a set of functions 

{ } { }1,1:,: +−→ℜΛ∈α αα
Nff  

and a set of examples 

( ) ( ) ( ) { },1,1,,,...,,,,, 2211 +−∈ℜ∈ i
N

imm yxyxyxyx  

each one generated from an unknown probability distribution ( ),, yxP  

we want to find a function ∗a
f  which provides the smallest possible value 

for the risk 

( ) ( ) ( )∫ −=α α ., yxdPyxfR  

The problem is that ( )αR  is unknown, since ( )yxP ,  is unknown. 

Therefore an induction principle for risk minimization is necessary. The 

straightforward approach to minimize the empirical risk 

( ) ( )∑
=

α −=α
m

i
iiemp yxf

m
R

1

.1  

Turns out to guarantee a small actual risk (i.e., a small error on the 

training set does not imply a small error on a test set), if the number m of 

training examples is limited. To make the most out of a limited amount of 

data, novel statistical techniques have been developed during the last 35 

years. The structural risk minimization principle is such a technique. It is 
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based on the fact that for the above learning problem, for any Λ∈α  with 

a probability of at least ,1 η−  the bound ( ) ( ) ( )






 ηφ+α≤α

mm
hRR emp

log
,  

holds, φ being defined as 

( ) ( )
.

4log12log
log

,
m

h
mh

mm
h

η−




 +

=





 ηφ  

The parameter h is called the VC-dimension of a set of functions. It 

describes the capacity of a set of functions implemented by the learning 

machine. For binary classification, h is the maximal number of points k 

which can be separated into two classes in all possible k2  ways by using 

functions of the learning machine, i.e., for each possible separation there 

exists a function which takes the value 1 on one class and -1 on the other 

class. 

 

Figure 1. Linear classifier and margins: a linear classifier is defined by a 

hyperplane’s normal vector h and an offset h, i.e., the decision boundary 

is h (thick line). Each of the two halfspaces defined by this hyperplane 

corresponds to one class, i.e., h. The margin of a linear classifier is the 

minimal distance of any training point to the hyperplane. In this case it 

is the distance between the dotted lines and the thick line. 
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Let us for moment assume that the training sample is separable by a 

hyperplane (see Fig. 1), i.e., we choose functions of the form ( ) =xf  

( ) .bxw +⋅  It was shown that for the class of hyperplanes the                

VC-dimension itself can be bounded in terms of another quantity, the 

margin (also Fig. 1). The margin is defined as the minimal distance of a 

sample to the decision surface. The margin in turn can be measured by 

the length of the weight vector :w  as we assumed that the training 

sample is separable we can rescale w  and b such that the points closest 

to the hyperplane satisfy ( ) 1=+⋅ bxw i  (i.e., obtain the so-called 

canonical representation of the hyperplane). Now consider two samples 

1x  and 2x  from different classes with ( ) 11 =+⋅ bxw  and ( ) bxw +⋅ 2  

,1−=  respectively. Then the margin is given by the distance of these two 

points, measured perpendicular to the hyperplane, i.e., ( )





 −⋅ 21 xx

w
w  

.2
w

=  The result linking the VC-dimension of the class of separating 

hyperplanes to the margin or the length of the weight vector ,w  

respectively is given by the following inequalities: 122 +Λ≤ Rh  and 

,2 Λ≤w  where R is the radius of the smallest ball around the data. 

Thus, if we bound the margin of a function class from below, say by ,2
Λ

 

we can control its VC-dimension. The choice of linear functions seems to 

be very limiting (i.e., instead of being likely to overfit we are now more 

likely to underfit). Fortunately there is a way to have both, linear models 

and a very rich set of nonlinear decision functions. The so-called curse of 

dimensionality from statistics says essentially that the difficulty of an 

estimation problem increases drastically with the dimension N of the 

space, since-in principle-as a function of N one needs exponentially many 

patterns to sample the space properly. This well-known statement 

induces some doubts about whether it is a good idea to go a high-

dimensional feature space for learning. Fortunately, for certain feature 

spaces and corresponding mappings there is a highly effective trick for 

computing scalar products in feature spaces using kernel functions [1], 

[2], [6] and [8]. 
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Now suppose we are given a set of examples ( ) ( ) ...,,,,, 2211 yxyx  

( ) { },1,1,,, +−∈ℜ∈ i
N

imm yxyx  and we want to find a decision function 

of examples bwf ,  with the property ( ) =ibw xf ,  ....,,1, miyi =  

It is based on two facts. First, among all hyperplanes separating the 

data, there exists a unique one yielding the maximum margin of 

separation between the classes, 

{ ( ) }....,,1,9,:minmax
,

mibxwRxxx N
ibw

==+⋅∈−  

Second, the capacity decreases with increasing margin. To construct this 

optimal hyperplane, one solves the following optimization problem: 

Minimize ( ) 2
2
1 ww =τ  

Subject to ( )( ) ....,,1,1 mibxwy ii =≥+⋅  

This constrained optimization problem is dealt with by introducing 

Lagrange multipliers 0≥αi  and a Lagrangian 

( ) ( )( )( )∑
=

−+⋅α−=α
m

i
iii bwxywbwL

1

2 .1
2
1,,  

The Lagrangian L has to be minimized with respect to the primal 

variables w  and b has to be maximized with respect to the dual variables 

.iα  The solution vector ∑
=
α=

m

i
iii xyw

1
 with ∑

=
=α

m

i
ii y

1
0  thus has an 

expansion in terms of a subset of the training patterns, namely those 

patterns whose iα  is non-zero, called Support Vectors [3]. By substituting 

the solution into L with kernel function, one eliminates the primal 

variables and arrives at the Wolfe dual of the optimization problem: find 

multipliers iα  which 

Maximize ( ) ( )∑ ∑
= =

αα−α=α
m

i

m

ji
jijijii xxkyyW

1 1,

,
2
1  
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Subject to mii ...,,1,0 =≥α  and ∑
=

=α
m

i
ii y

1

.0  

Then the hyperplane decision function can be written as 

( ) ( ) ( )( ) ( ) .,sgnsgn
11














+α=













+Φ⋅Φ⋅α= ∑∑

==

m

i
iii

m

i
iii bxxkybxxyxf  

3. Experimental Results 

Case 1. Random variables are normally distributed. 

Let PX  and NX  be the random variables for positive and negative 

data, respectively and normally distributed by 






















ρ

ρ











1

1
,

0

0
~ NXP  and .

1

1
,

0
~ 





















ρ

ρ









 N
N

C
NX  

In real-world application, we usually normalize each feature of data to 

have unit variance so our assumption is not too artificial. Table 1 shows 

the simulation results according to the distance NC  between the means 

of positive and negative training data and correlation ρ of data features. 

We also compared the performances of the homogeneous polynomial and 

Gaussian kernels. In this example SVM with polynomial of degree 3 

empirically outperforms that of other degree. 

The more correlated the features and the farther the distance 

between means, the better SVM classifies. SVM with Gaussian kernel 

usually outperforms that of polynomial kernel but their performances are 

not significantly different. SVM is known as one of best classifiers but the 

distance between means can be not long enough its classification 

performance will be poor. Hence, it would be better for researchers to 

select good features to make sure the mean of clusters’ centers are far 

enough in training phase. The statistical T test shows that the variability 

in ρ and NC  are both significant with level 0.01. 



w
w

w
.p

ph
m

j.c
om

TAE-SOO KIM and JUNG-HO AHN 214

Table 1. The SVM performance according to the distance NC  between 

positive and negative means and the correlation ρ of data features. P and 
G indicate the SVM with the polynomial kernel of degree 3 and that with 
Gaussian kernel of parameter 1, respectively 

NC

ρ
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

P 0.5537 0.5420 0.5470 0.5447 0.5570 0.5543 0.5583 0.5780 0.5887 0.6270 
0.5 

G 0.5397 0.5250 0.5627 0.5627 0.5607 0.5787 0.5700 0.5753 0.5990 0.6643 

P 0.6467 0.6443 0.6313 0.6440 0.6620 0.6617 0.6723 0.7030 0.7327 0.7937 
1 

G 0.6430 0.6637 0.6583 0.6663 0.6677 0.6780 0.6900 0.7210 0.7517 0.8350 

P 0.7330 0.7227 0.7237 0.7403 0.7457 0.7737 0.7867 0.8163 0.8633 0.9127 
1.5 

G 0.7477 0.7453 0.7393 0.7513 0.7540 0.7870 0.7953 0.8250 0.8733 0.9287 

P 0.8110 0.8100 0.8023 0.8297 0.8330 0.8487 0.8757 0.8920 0.9247 0.9740 
2 

G 0.8183 0.8310 0.8243 0.8280 0.8390 0.8530 0.8727 0.8923 0.9297 0.9763 

P 0.8573 0.8743 0.8740 0.8757 0.8913 0.8937 0.9187 0.9377 0.9647 0.9813 
2.5 

G 0.8690 0.8757 0.8827 0.8747 0.9010 0.9070 0.9220 0.9367 0.9717 0.9890 

P 0.9150 0.9097 0.9207 0.9190 0.9227 0.9340 0.9543 0.9620 0.9757 0.9907 
3 

G 0.9187 0.9170 0.9220 0.9290 0.9297 0.9447 0.9607 0.9700 0.9830 0.9957 

Case 2. Random variables are distributed by Gaussian Mixture 

Model (GMM). 

In face recognition, it has been observed that the variability in an 
image due to pose and illumination is often greater than that due to a 
change in the person’s identity [5]. 

Therefore, researchers on face recognition usually assume that it is 
more likely that face images can be clustered in some Euclidean space 
according to the variations of pose and illumination. This experiment 
reflects such situation. 

Let PX  and NX  be positive and negative random variables and be 

distributed by 

( ) ( )PPPP
P CmNpCmNpX 222111 ,,~ +  



w
w

w
.p

ph
m

j.c
om

SUPPORT VECTOR MACHINE WITH KERNEL METHODS … 215

and 

( ) ( ),,,~ 222111
NNNN

N CmNpCmNpX +  

where .5.021 == pp  Pm1  and Nm1  are generated in a ball with center 

( )0,0  and radius R. Pm2  and Nm2  are generated in a ball with center 

( )0,C  and radius R. The covariance matrices are NNPP CCCC 2121 ===  

,
1

1







ρ

ρ
=  where .10=ρ  The larger C, the longer the distance between 

two clusters. As R is smaller, the clusters are smaller, i.e., some GMM 
components from different classes are closer. Table 2 shows the SVM 
performance according to the parameters of R and C. The statistical T 
test shows that SVM performance is affected by the radius of cluster, R, 
significantly with level 0.01, but not significantly by the variability in the 
distance C between two clusters. 

Table 2. The SVM performance according to the radius of cluster, R, and 

distance C between two clusters. P and G indicate the SVM with the 

polynomial of degree 3 and that with Gaussian kernels of parameter 1, 
respectively 

C

R
 1 1.5 2 2.5 3 

P 0.5767 0.6447 0.6760 0.7303 0.7787 
1 

G 0.6023 0.6800 0.7027 0.7753 0.8173 

P 0.5887 0.6413 0.6897 0.7253 0.7573 
1.5 

G 0.6110 0.6630 0.7283 0.7590 0.8043 

P 0.5837 0.6273 0.7067 0.7393 0.7887 
2 

G 0.6127 0.6613 0.7437 0.7870 0.8207 

P 0.5937 0.6677 0.6877 0.7260 0.7817 
2.5 

G 0.6173 0.6957 0.7547 0.7590 0.8230 

P 0.5877 0.6713 0.7010 0.7247 0.7817 
3 

G 0.6100 0.7013 0.7367 0.7830 0.8283 



w
w

w
.p

ph
m

j.c
om

TAE-SOO KIM and JUNG-HO AHN 216

References 

 [1] M. Aizerman, E. Braverman and L. Rozonoer, Theoretical foundations of the 

potential function method in pattern recognition learning, Autom. Remote Control 

25 (1964), 821-837. 

 [2] B. E. Boser, I. M. Guyon and V. N. Vapnik, A training algorithm for optimal margin 

classifiers, Proceedings of the 5th Annul ACM Workshop on Computational Learning 

Theory, D. Haussler, ed., 1992, pp. 144-152. 

 [3] T. Joachims, Making large-scale SVM learning practical, Advances in Kernel 

Methods - Support Vector Learning, B. Schölkopf, C. Burges and A. Smola, eds., MIT 

Press, 1999. 

 [4] Thorsten Joachims, Learning to classify text using support vector machines, 

Dissertation, Kluwer, 2002. 

 [5] Y. Moses, Y. Adini and S. Ullman, Face recognition: The problem of compensating for 

changes in illumination direction, European Conference on Computer Vision, 1994, 

pp. 286-296. 

 [6] S. Saitoh, Theory of Reproducing Kernels and its Applications, Harlow, Longman, U. 

K., 1988. 

 [7] Bernhard Scholkopf, Statistical Learning and Kernel Methods, Microsoft Research 

Limited, February, 2000,  

  http://research.microsoft.com/~bsc 

 [8] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New 

York, 1995. 

g 


