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Abstract

We consider a class of Dawson-Li superprocesses with deterministic
immigration, and discuss a convergence problem for the rescaled
processes. When such a superprocess associated with dependent spatial
motion is given, its rescaled process becomes again an immigration
superprocess of the same kind. Then we prove that under a suitable
scaling, the rescaled immigration superprocesses converge to a
superprocess with coalescing spatial motion in the sense of probability
distribution on the space of measure-valued continuous paths.

1. Introduction

Let us consider, first of all, a super-Brownian motion (SBM for short),
which is a typical example of measure-valued processes. Roughly
speaking, starting from a family of branching Brownian motions, via
renormalization procedure (which is also called short time high density
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limit, we refer to it later as HD limif), the super-Brownian motion can be
obtained, indeed, as a measure-valued Markov process, cf. Watanabe
[30]. It is often called a Dawson-Watanabe superprocess, too. Various
kinds of superprocesses have been studied by many researchers, and in
most cases those superprocesses are obtained as a limit of branching
particle systems (BPS) under variety of settings. Recently, a new
discovery has attracted us, that is to say, it is nothing but a new
knowledge that SBM can be also obtained as a limit of distinct sorts of
particle systems. In other words, under a suitable scaling, rescaled
processes converge to an SBM. For example, rescaled contact processes
converge to super-Brownian motion in two or more dimensions, which is
due to Durrett-Perkins [15]. In [1], Cox et al. proved that rescaled voter
models converge to super-Brownian motion, too. According to Hara-Slade
[18], it can be found that a sort of percolation converges to super-
Brownian motion, as a suitable scaling limit, in high-dimensions.
Moreover, even in the theory of measure-valued processes, similar
phenomena can be observed. For instance, a superprocess with dependent
spatial motion (SDSM for short) is obtained by a HD limit from a family
of interactive branching particle systems, whose branching density
depends on its particle location. Such a {a, p, c}-SDSM was first

discussed and constructed by Wang [29]. There is a function c(x), one of

those parameters that play an important role in determining a SDSM.
When ¢(x)(# 0) is bounded, then under a suitable scaling SDSM

converges to super-Brownian motion, see, e.g., Dawson et al. [3]. Here
again it is recognized that SBM does appear universally as a suitable
scaling limit. On the other hand, for the same SDSM the situation has
changed drastically when c(x) = 0. Under the same scaling as in the

above example, SDSMs converge this time to a superprocess with
coalescing spatial motion (SCSM). This remarkable occurrence was
proved by Dawson et al. [4].

Let us consider a little bit complicated model with interaction, in
which a notion of immigration is taken into account. For instance, such
an immigration superprocess associated with SDSM was constructed in
Dawson-Li [2]. The purpose of this paper is to discuss a convergence
problem for rescaled processes of the above type. We observe that when
such an immigration superprocess is given, then its rescaled process
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becomes again an immigration superprocess of the same kind. The
generator of the rescaled immigration superprocesses {Y,%; t > 0}, (6 > 1)

is given by

2
T4F () = £500) [ 5—2 Zf((;))

v(dx)

. d>  8%F(v)
+ E.”RZ po(x — ) dxdy dv(x) 3v(y)

1 82F (v
+3 GGIR Wx()z) v(dx)

v(dx)v(dy)

SF(v)
5v(x) m(dx) for F(v) € Dom(Z), (0)

o]
R

where 0 is a scaling parameter, F(v) is a function defined on the space
of finite measure v on R, p(0) is a positive constant, pg is some
interaction parameter, oy > 0 denotes a branching rate and qg is an

immigration rate (for the details, see Sections 2 and 3 below). Our goal is
to prove that under a suitable scaling, the rescaled immigration
superprocesses associated with SDSM converge to a Dawson-Li-Zhou
superprocess with coalescing spatial motion in the sense of probability
distribution on the space of measure-valued continuous paths.

This paper is organized as follows.

Section 1. Introduction: the running section

Section 2. Notation and Preliminaries
2.1. Superprocess with dependent spatial motion
2.2. Superprocess with coalescing spatial motion
2.3. Immigration superprocess

Section 3. A Limit Theorem
3.1. A class of immigration superprocesses
3.2. Scaling and rescaled processes

3.3. Main results
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Section 4. Tightness Argument
Section 5. Convergence Argument
Section 6. Proof of Key Proposition
6.1. Simple reduction
6.2. Purely atomic representation
6.3. Approximation procedure
6.4. Convergence in law and interchangeability argument
Section 7. Concluding Remarks

In Section 2 we introduce some notation which shall be commonly
used in the succeeding sections. Then we make a quick review of key
superprocesses in this paper, such as superprocess with dependent
spatial motion (SDSM), superprocess with coalescing spatial motion
(SCSM) and immigration superprocess (IMS). Those superprocesses live
in the family of interacting measure-valued Markov processes. The main
result is stated in Section 3. The following three sections are devoted to
the proof of the limit theorem. In particular the key proposition
describing a convergence result of the principal term shall be proved in
Section 6. The proof of the key proposition is of course important, but is
quite longsome as well. So it is divided into four steps, roughly. Each step
will be explained in each subsection. Some concluding remarks are stated
in the last section.

2. Notation and Preliminaries

Let Mp(R) (resp. M,(R)) be the space of all finite (resp. purely-

atomic) measures on R, respectively, and we denote by C(R) the space of

all bounded and continuous functions on R. C(R)" is the totality of
positive members in C(R). We always consider the space M (R) endowed

with the topology of weak convergence. The symbol (f, u) denotes an

integra p of a measurable function f with respect to a measure p.
t 1 | fdp of ble funct f with t t

For h € C*(R) and both A, ' e L*(R), we define
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p) = [y - D)y, xR M

For a given topological space E, let B(E) denote the totality of all
bounded Borel functions on E. We denote by P(E) the space of all
probability measures on E. For F € B(Mp(R)), we define the variational
derivative of F with respect to p € Mp(R) as

if the limit exists. We can define 8°F(u)/8u(x)du(y) in the same way with
F replaced by 8F(u)/3u(y) on the right-hand side of (2). For simplicity, we
put Cp(R,) = C([0, ©), Mp(R)) for the space of finite measure-valued
continuous paths on R,. For the Skorokhod space, we use Dy (R, ) =
D([0, ©), Mp(R)). For the generator A, we say that an Mp(R)-valued
cadlag process X = (X;),5 is a solution of the (A, Dom(A))-martingale
problem, if there is a probability measure P, € P(Dys(R.)) on the space

D([0, ), Mp(R)) such that P, (X, = p) =1 and
F(X,) - F(X,) - I;AF(Xs)ds, t>0 ®)

is a martingale under P, for each F' € Dom(A).

2.1. Superprocess with dependent spatial motion

In this subsection we shall introduce the superprocess with dependent
spatial motion (SDSM) as a purely-atomic measure-valued diffusion. Let
c € C(R)". We denote by D(£) the domain of the generator £, which is
a subset of the space B(Mp(R)) of bounded measurable functions on
Mp(R). More precisely, let D(£) be the union of all functions F(u) on
Mp(R) of the form

F(u) = Fr 0 (0) = f((d1, 1), s (00> 1), 1€ Mp(R) )
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with f e C2(R") and {§;} = C%(R) and all functions of the form
F(H) = Fm,f(“) = <f, “m>’ ne MF(R) 5)

with f e C%(R™), where u™ is a tensor product of measures p®™. For

any F € D(L) we define

1 d* 8F(n) 52F (1)
£F0) = 5 [ P05 Sty w0+ 5 [ o) B ()

” ) 4> 8 ?F(w)

dxdy Su(x)ou(y) p(dx) p(dy). (6)

Here the function p in the second line of (6) expresses interaction, and the
second term in the first line of (6) describes the branching mechanism.
An Mp(R)-valued diffusion process X = (X;) is called a {p(0), p, c}-

superprocess with dependent spatial motion (or {p(0), p, c}-SDSM) if X
solves the (£, D(£))-martingale problem, cf. [3] (see also [29]). Actually it
is proved that X lies in the space M, (R) (see Remark 2 below). Moreover,
based on the results of Dawson et al. [3], we observe: for each p € M (R)

there is a unique Borel probability measure Q, on Cp/(R,) such that,

for each ¢ e C%(R),

Mt((p) = <(\D’ Xt> - <(\D7 l"’> - J.; <@ (P", Xs>ds’ t 2 0’ (7)

1s a continuous martingale under Q, with quadratic variation process

o), = [ o, xas + [Las[_ihte e xa @

Remark 1. The system {Q,; p € Mp(R)} defines a diffusion process

named superprocess with dependent spatial motion. Here p(0) is the

migration rate and o is the branching rate. The only difference between
the SDSM and the SBM in M (R) is the second term on the right-hand

side of (8), which comes from the dependence of the spatial motion.
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Remark 2. Because of the dependent spatial motion, the properties
of SDSM are quite different from those of superprocess with independent
spatial motion. For instance, it is well known (see Konno-Shiga [21]) that
the super-Brownian motion started with an arbitrary initial state enters
immediately the space of absolutely continuous measures and its density
process satisfies a class of stochastic partial differential equations. On

the contrary, the {p(0), p, o}-SDSM lives in the space of purely atomic

measures, cf. Wang [29]. Related to the above observation, the purely
atomic version of the SDSM with a general initial state can only be

constructed not by usual Feller branching diffusions, but by excursions

(cf. [2]).

Lastly we shall introduce the remarkable result on the explicit
representation of SDSM. Now let us consider a general initial state

ne Mp(R) with (1, p) > 0. Suppose that there is a time-space white
noise W(ds, dy) on [0, ©)x R based on the Lebesgue measure d/ and a
Poisson random measure N(da, dw) on R x W, with intensity p(da)
Q@ (dw) on some complete standard probability space (Q, F, P), where

Q). is the excursion law of the B-branching diffusion, and W, is a subset

of paths w € W = C([0, ), R") such that w(0) = w(t) = 0 for t > 14(w)
with tg(w) = inf{s > 0; w(s) = 0} for w € W. More precisely, @, is a

unique c-finite measure on (W, B(W,)) such that
Qrlw(ty) € dyy, ..., wlty) € dy, |
= Ry (dy1)Qpy—, (01, dy2) @7 4, (Vp1, dyp) ()
for 0 <t; <---<t, and yp, ..., ¥, € (0, ),
where k;(dy) = 4(Bt)_2e72y/ﬁtdy, (t>0,y>0) and Q;(x, -) denotes the

restriction of the measure @,(x, -) to (0, ») satisfying

g _ Xz
-[0 e Q@ (x, dy) = exp{ 15 (8272) (BtZ/Z)}’ t, x,z>0, (cf. [17,p.236]).
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It is well known that
jo - (@) = | hy(dy) | (1 )Qi(. dy) (10)

holds for r, £ > 0 and z > 0. Then we have k.Q; = k,,, and hence (k;),.

is an entrance law for (Q;),.,. For the details, see Section 2 of [2]. We
also assume that {W(ds, dy)} and {N(da, dw)} are independent. For any

a € R, let {x(a, t); ¢ > 0} be a unique solution of the equation

t
x(t)=a+ -[0 J.R My — x(s))W(ds, dy), ¢ >0, (11)

cf. Lemma 1.3 of [29, p. 46] (see also Lemma 3.1 of [3, p. 11]). In addition,
enumeration of the atoms of N(da, dw) into supp(N) is given by a

sequence {(a;, w;); i =1, 2, ..} such that ty(w;,1) < 19(w;) a.s. for all

i >1 and to(w;) > 0 as i — . For a fixed constant B > 0 let
t
v(a, t) = B_IJ. o(x(a, s))ds, t>0,aeR, (12)
0

and we define w(a, t) = w(y(a, t)) for w € W,. Then we have

Theorem 1 (Dawson-Li [2]). Let {X;;t > 0} be defined by X, = p

and
X; = Zwi(ai’ t)ax(ai,t)
=1

- J'R '[ " w(a, 1)3y(q.N(da, dw), ¢ > 0. (13)

Then {X,} relative to (G,),, is an {p(0), p, o}-SDSM, where G, is the

c-algebra generated by all P-null sets and the families of random

variables

{(W([0, s]x B), 0 <s<t, BeBR), {w(a;,s); 0<s<ti=12..5, (14

for t > 0.
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2.2. Superprocess with coalescing spatial motion

An n-dimensional continuous process {(y;(¢), ..., ¥,(¢)); ¢ > 0} is called
an n-system of coalescing Brownian motions (n-SCBM) with speed p > 0
if each {y;(¢); t > 0} is a Brownian motion with speed p and, for i # j,
{|yi(t) = ¥;(); t > 0} is a Brownian motion with speed 2 stopped at the

origin. The formal generator of the superprocess with coalescing spatial
motion (SCSM) is given by

“poy_ L d® 8F(n) = 32 F ()
EF0) = 58] 47 o M) 5 [ o )

2
T2 I J. A didy ijFs(E()y) p(dx)p(dy), (15)

where p is a positive constant, 5 € C(R)" such that inf, &(x) > & for

some ¢ > 0, and A = {(x, x); x € R}.

In what follows we consider a superprocess with coalescing spatial

motion (SCSM) with purely atomic initial state, namely, having a finite
number of atoms, for instance, pg = Z?: { ST just for simplicity. It goes

almost similarly for the SCSM with a general initial state py € Mp(R).

For details, see Section 3 and Theorem 3.5 of Dawson et al. [4, pp. 686-
688]. Let {(&;(¢), ..., £,(¢)); ¢ = 0} be a system of independent standard

Feller branching diffusions with initial state (&, ..., £,) € R}. By setting

t
yi(t) = _[ Oc(yi(S))ds and &7(¢) = & (w7 (), (16)
we define
X, = Y &8y, 20, an
=1

which gives a continuous M (R)-valued process. For a basic standard

complete probability space (Q, F, P), let H, be the c-algebra generated
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by the family of P-null sets in F and the family of random variables
{(1(8)s wes 0 (8), ET(S), oy En(S)); O < s < ¢}. We observe that the process
{X;; t > 0} defined by (17) is a diffusion process relative to the filtration
(H;),5( with state space M,(R), cf. Theorem 3.1 of [4, p. 682].

In order to understand the SCSM well, we consider martingale

characterization of the process X = (X;). Let D(£) be the set of all
functions of the form F, (u) = (f, p™") with p e Mp(R). We have an

easy 1dentity

m
~ 1
LF ) = F, com () + 5 _Zlle,@i,.fm), (18)
1, ]=
i

where G(()m) is the generator of the m-system of coalescing Brownian
motions with speed § and ®;; is the operator from C(R™) to CR™1)
defined by

i—th j—th

D@iif (X1, oes Xpy_1) = S(xp_1) f(x1, -y x,,%,l, .y x,,}r,l, s X)) (19)

Then we have

Proposition 2 (cf. [4, p. 684]). Let {X,; ¢ > 0} be defined by (17).
Then {X,;t > 0} solves the (L, D(L))-martingale problem, namely, for
each F,, ; € D(L),

t~
Fy (X0) = By, 1 (X0) = | EBp, (X, )ds (20

is a (H,)-martingale.

The distribution of the process {X;;t > 0} can be characterized in

terms of a dual process. Now let us consider a non-negative integer-

valued cadlag Markov process {M;;t > 0} with transition intensities
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{g;, j} such that ¢; ;1 = —g;; =i(i —1)/2 and g; ; = 0 for all other pairs
(¢, j)- In other words, this means that the process {M,} only has

downward jumps which occur at rate M;(M; —1)/2. Such a Markov

process is well known as Kingman’s coalescent process, c¢f. Kingman [20].
For 1 <k < My -1, 1, denotes the k-th jump time of {M,; ¢ > 0} with

19 = 0 and tp7, = oo Let {I;}(1 <k < M —1) be a sequence of random

operators from C(R™) to C(R™!), which is conditionally independent
given {M,; ¢t > 0}, satisfying

P, = @y M(, -) = 1} = 1 l<izj<t. @1)

(¢-1)’
Let C* denote the topological union of {C(R™); m =1, 2, ...}, endowed
with pointwise convergence on each C(R™). By making use of the
transition semigroup (Pt(m))tzo of the m-system of coalescing Brownian
motions, another Markov process {Y;; ¢ > 0} taking values from C” is

defined by

(M) p(Mey 1) (M) (M)
Y, = Pt—rkk rkPrk—rkkA Th-1 ”.PT2—T11 rlPTl " Yo, @2)

for 1, <t <7y, 0k < My-1.

Clearly, {(M;, Y;);t > 0} is also a Markov process. We denote by
E;,f the expectation related to the process (M,, Y;) given My = m and
Yy = f € CR™).

By Proposition 2, the process {X,} constructed by (17) is a diffusion
process. Let @;(ng, dv) denote the distribution of X; on Mp(R) given
Xo = pg € M4(R). Then we have

Theorem 3 (Dawson et al. [4]). If {X;; t > 0} is a continuous M p(R)-

valued process such that E[(1, X;)™] is locally bounded in t > 0 for each

m 21 and {X,} solves the (L, D(L))-martingale problem with X, = py,
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then
t
s ¥ @l )= 55, ol & [ ot -y | 2

fort >0, m>1and f € C(R™).

A Markov process on M (R) with transition semigroup (&, ), given

by (23) is called a superprocess with coalescing spatial motion with speed
p and branching rate &(-) and with initial state ng € M,(R), or shortly
a {p, S, ng}-SCSM. Sometimes we use simply {p, 5} -SCSM unless any

confusion occurs. The most important thing is here that the distribution

of the SCSM can be determined uniquely via this formula (23).

Remark 3. It is obvious that {(y;(¢), ..., ¥,(¢)); ¢ > 0} is an n-system

of coalescing Brownian motions with speed p if and only if

(i yj) @) =P -t -t Arty), 1<, j<mn, (24)

where t;; = inf{t > 0; y;(¢) = y;(¢)}. Generally speaking, a branching particle
system is said to have the coalescence property if the particle location
processes are diffusion processes and, for any two particles, either they
never separate or they never meet according as they start off from the

same initial location or not.

Remark 4. The first two terms on the right-hand side of (15) just
correspond to the generator of a usual super-Brownian motion, where the
first term describes the spatial motion and the second term describes the
branching. The last term on the right-hand side of (15) shows that
interactions in the spatial motion only occur between particles located at

the same positions.
Remark 5. The definition (17) means the following: the mass of the
i-th particle is given by {&7(¢); ¢ > 0}, which is obtained from a standard

Feller branching diffusion by a time change depending on the position of
the i-th carrier. In this way a spatially dependent branching mechanism

1s involved with this process.
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Remark 6. The Markov process {Y;} defined by (22) evolves in the

time interval [0, 1;) according to the linear semigroup (Pt(MO)), t>0,

and then it makes a jump given by I at time t;. After that, it evolves in

. . M .
the interval [t;, 19) according to (Pt( Tl)), t >0, and then it makes
another jump given by I's at time 19, and this sort of process is repeated

almost in a similar way, and so on.
2.3. Immigration superprocess

In this subsection we shall consider a class of immigration diffusion
processes associated with SDSM.

SDSM with interactive immigration

We first treat the case with a general interactive immigration rate. A
key point consists in the fact that the construction of such an immigration
process is done by solving a stochastic equation carried by a stochastic
flow and driven by Poisson processes of excursions. The results below are
originally discussed in Section 5 of [2].

Let o be a positive constant, m be a c-finite Borel measure on R (as a
reference measure for immigration), and g be a Borel function on
Mp(R)x R, satisfying the conditions: there is a constant K > 0 such

that

(v, )y, m) < K0 +|v]), veMpR), (25)
and for each R > 0 there is a constant K > 0 such that

(| q(v, )= qly, )|, m) < Kp|v-7v] (26)

for any v, v € Mp(R) satisfying (1, v) < R and (1, y) < R, where |-||
denotes the total variation. This ¢ is a function introduced in connection
with the immigration.

Suppose that there are (i) a white noise W(ds, dy) on [0, ©)x R based
on the Lebesgue measure d/; (i1) a sequence of independent o-branching
diffusions {§;(¢); ¢ = 0} with &;(0) >0 (z =1, 2, ...); (iil) a Poisson random
measure N(ds, da, du, dw) on [0, ©)x R x [0, ©)x W, with intensity
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dsm(da)du@(dw), on a complete standard probability space (Q, F, P).
In addition we assume that Zzl £;(0) < oo and that {W}, {¢;} and {N}

are independent of each other. For ¢ > 0 let at be the c-algebra generated

by all P -null sets and the families of random variables
{W([0, s]x B), E;(s); 0 <s <t BeB[R)i=12, ..}, @
and
{N(J x A), J € B([0, s]x R x [0, ©)), A € B;_s(Wy), 0 <s <t} (28

A stochastic equation with purely atomic initial state is comparatively

tractable. That is, for any sequence {a;} = R, we consider the stochastic

equation
Y, = Z&i(t)Sx(O,ai,t)
1=1

t Q(Ys’a)
+ .[0 IR J.o IWO w(t ~ 8)8y(s,a,0)N(ds, da, du, dw), t>0. (29)

Then it follows that the equation (29) has a unique continuous solution
{Y;; t > 0}, which is a diffusion process relative to (at) Furthermore,

there exists a Borel probability measure Q, on Cp(R,) such that for

each ¢ € C%(R),

M,(9) = {0, Y;) — {0, Yp) - J‘;<@ o, Ys>ds

- It<q(YS, o, myds, ¢ 20, (30)
0

1s a continuous martingale under Q, with respect to the filtration @t )i=0

and its quadratic variation process is given by

(M(o)), = j; (c9?, Ys>ds+j;dsz (Wz -)9, Y;)%dz, t=0. (31)
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Then the generator of the diffusion process {Y;; ¢ > 0} is given by

SF(v)
dv(x)

LE() = LF(V) + jR q(v, x) m(dx), ve Mp(R), (32)

where L is defined by (6) and q(-, -) is the interactive immigration rate.
We call this process {Y;} an immigration superprocess associated with

SDSM or more simply a {p(0), p, o, g, m}-IMS.

Remark 7. The Markov property of {Y;} was obtained from the

uniqueness of solution of (29). This application of the stochastic equation
1s essential since the uniqueness of solution of the martingale problem
given by (30) and (31) still remains open (see [27]).

SDSM with deterministic immigration

In particular we consider here some immigration processes by one-
dimensional excursions carried by stochastic flows. The construction of
the process is due to Section 4 in [2]. Suppose that m € M (R) satisfies

(1, m) > 0, g(+, -) = ¢ and o is a positive constant. We define

EF() = LF )+ | K 5815 ((;‘)) m(dx), e Mp(R). 33)

We put D(£) = D(L£). The (£, D(L))-martingale problem has a unique
solution {Y;}. The solution process is a diffusion, and this immigration

SDSM started with any initial state actually lives in the space of
purely atomic measures. Moreover, we have the following martingale
characterization. A continuous M p(R)-valued process {Y;; ¢ >0} is a

solution of the (£, D(£))-martingale problem if and only if for each
¢ € C*(R),

Mil) = (0. ¥,) - (0. Yo) ~clo.mje - [ (P ¥, Jas, ez 0. (30

is a martingale with quadratic variation process

(M(e), = j ; (0%, Y, )ds + j; ds j (e )e v, 35)
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3. A Limit Theorem

3.1. A class of immigration superprocess

First of all we shall begin with introducing our IMS model Y =
{Y;; t > 0}. As for the limit theorem, we treat in this paper only the case

of purely atomic initial state, namely, Yy = p = Zjo:l £;(0)3,, € My(R) for

{a;} = R. Our subject process is a deterministic immigration superprocess

associated with SDSM, see (33)-(35) in Subsection 2.3. Let m be a c-finite

Borel measure on R such that 0 < (1, m) <, g(-,-)=¢ € R, andcis a

positive constant. As to the interaction parameter, let p and h be the

functions just described as in (1) of Section 2. Let us now define

1 d? SF(v) 1 52F(v)
£ = 5p(0) dex_2 S @)+ 5 GIRW v(dx)
1 d?>  §%F(v)
T2 .”RZ plx =) dxdy 8v(x)dv(y) v(d)v(dy), (36)
AF() = q j ] 55 ((;’)) m(dx), (37)
and
IF(v)=LF(v)+ AF(v). (38)

Let D(£) be the same as in Subsection 2.1 with (4) and (5), and we
define Dom(Z) = D(£). Let Y ={Y,;¢ > 0} be a {p(0), p, 5, ¢, m}-IMS,
and this Y solves the (Z, Dom(Z))-martingale problem. Note that for

the function F(v) = f((¢, v)) € Dom(Z) with f e C%(R), ¢ € C*(R) and
v € Mp(R), the generator Z has the form

IF(v) = LF(v)+ AF(v)

= PO F (0 @)+ 5 (0[], =)0 ) () Vi) v(ey)

2 f" (b W V) + - F0, ) (6, m). (39)
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3.2. Scaling and rescaled processes

Let 0 be any positive number such that 0 > 1. The operator Kg on
Mg (R) is given by Kgu(B) = u({6x; x € B}) for any Borel set B in R.
For a function f = f(x) defined on R, we put fy(x)= f(0x) as a scaled

function. Take F(v)= f((¢, v)) € Dom(Z) with f, ¢ € C*(R) and v e M p(R).

Then we have
F o Ky(v) = F(Kgv) = f((0, KgV)) = f(($1/9> V))- (40)

When X =(X,;) is a {p(0), p, o}-SDSM, then by the theory of

transformation of Markov processes, the process {KyX;; ¢ > 0} has
generator £° defined by £2F(v) = L(F o Ky)(Ky/pv). While, note that

d 1.,

L gygola) = L@yl

and

Then we may see that {0 2K,Y;; ¢ > 0} has generator

T9F(v) = ?p(o)f'(@, W) {8, V)
R Al | IR LENCRNCY
+ o of" (6 W) (02, V) + =g - F((8, V) (6, Kgm).  (41)
267 ’ T e S

Suggested by the scaling argument of [3] and the discussion on rescaled

limits of [4], we can easily see that {G_ZKeYegt; t > 0} has the right
generator 0279, Since 02C corresponds to Xegt when the generator of

X; is L, putting Yte = 9_2K9Y92t with V0 > 1, the rescaled process
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{¥?; t > 0} has generator
ToF(v) = 5 pO)f (6, V) (¥, V)

5P ], pole = )08 () v(dx)v(dy)

+ 5 00/, ) (6%, V) + go - F((6, v)) (6, m) (42)

for F(v) = f((¢, v)) € Dom(Zy) = Dom(Z), where {cg}, is a sequence of

positive numbers and {gq }e 1s a sequence of real numbers.

3.3. Main results

In [4], Dawson et al. showed an observation that the SCSM arises
naturally as scaling limit of the purely atomic SDSM. In this paper we
prove that the SCSM is also obtained as the scaling limit of the
immigration superprocess associated with SDSM.

Taking (42) together with (36)-(39) into consideration, we can show
that the rescaled processes {Y?;¢ >0}, 6>1, solve the (£, D(L))-
martingale problem for the {p(0), pg, og}-SDSM with deterministic
immigration gy and the reference measure m. Hence under a proper
scaling the rescaled processes prove to be the same type of immigration
superprocess. Clearly we obtain:

Proposition 4. Let Y = {Y;; t > 0} be a {p(0), p, o, q, m}-IMS. For
0>1, set Y = O_QKOYezt. Then the rescaled processes {Y,; t > 0}y live

in the family of {p(0), pg, o9, q¢, m}-IMSs. Moreover, for each 6 > 1,

(Y2, t > 0} solves the (Iy, Dom(Zy))-martingale problem and this
martingale problem is well-posed.
Recall the stochastic equation (29) for the interactive immigration

superprocess. For purely atomic initial state and non-negative predictable

immigration rate ¢(s, x, ®) which is locally bounded in ¢ >0, by
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Theorem 5.1 of [2] the continuous modification of

Vi = Z‘:i(t)sx(o,ai,t)
=1

i .[(: J‘R J-:(S,G)J‘WO w(t - S)Sx(s,a,t)N(ds, da, du, dw) (43)

satisfies the martingale characterization similar to (30) with (31), which
is equivalent to the IMS-martingale problem. Suppose that g(s, x, ) =

q(x) e L}R, m). Let Dy(y) denote the set
{(s,a, u, w); s>0,aeR,0<uc<q(a)weW}

and set NN )= N Dq(x), namely, Nq(x) is the restriction of the normal

q(x

N to the set Dy (,). Moreover, Nq(x)(ds, da, dw) denotes the image of Ny (y)

under the mapping : (s, a, u, w) = (s, a, w). In other words, ﬁq(x) is a
Poisson measure on [0, ) x R x W, with intensity ds - g(a) - m(da)Qy(dw).

Hence (43) can be rewritten as

o0 t -
Vi = Z &i(t)ax(o,ai,t) + -[0 IR J.WO w(t 3 S)Sx(s,a,t)Nq(x)(ds’ da, dw)- (44)
i=1

While, when we replace p(x) by pg(x), then by the definition (1) of p, the

function A should be replaced by the scaled function x/ghe. On this

account, the stochastic equation (11) which determines the interacting

Brownian motion is changed into
t
%) =a +I J. Vohg(y — x%(s)W(ds, dy), ¢ > 0. (45)
0J R

So that, the interacting Brownian flow is changed simultaneously into
{(x°(0, aie, t)} for a sequence {aie}e of real numbers for each i € N. Under
our previously adopted scaling, clearly {p(0), pg, g, g9, m}-IMS has the

following atomic representation.
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Proposition 5. Under the same scaling stated in Proposition 4, for
each 0 > 1,

0 ._ G
Zy = lefiie(t)f)xe(o’a?’t)
1=

t ~
+ IO J.R -[WO w(t - S)Sxe(&ae’t)qu (ds, da, dw), t >0, (46)

is a {p(0), pg, o9} -SDSM with deterministic immigration rate qq

accompanied by the reference measure m, and for each ¢ € c? (R),
0 t ”
M) = (0. 28) - (0. 28) - avlo. mye =20 [ g7, 28)as, 120 @)

is a continuous martingale relative to the filtration (@,Jt20 with quadratic

variation process

0 L9 0 t 012
(M), = [ (o00®, Z)as+0 [ as[ (ho(e= e 20)dz @9
0 0 R

where £7°(t) = &;(ogt) for each i e N and G, is the c-algebra generated
by all P-null sets and the families of random variables {W([0, s]x B)},

{€;(s)} and {N% (J x A)} of the forms (27) and (28) in Subsection 2.3.
The purpose of this paper is to know what is the rescaled limit of
immigration superprocesses. Our goal is to prove a limit theorem that
under a suitable scaling, the rescaled SDSMs with deterministic

immigration rate converge to SCSM in the distribution sense on a proper

path space. Suppose that

(A1) p(x) > 0 (as |x| > );
(A.2) For a sequence {og}4s; © RT, 09 > (I)og € RT (as 6 — o);
(A.3) For a sequence {gg}o,; = R", g9 — 0 (as 6 — ©);

(A.4) For the initial state
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o = Y Ei(0)8 o € M,(R) (49)
i=1 !

with a sequence {aie}e c R (for each i € N), there exists a sequence

{bi} c R,

Mo > 1o = Y &i(0)8), € Mq(R) (50)
=1

(as © — o) (cf. (iv) in Section 7).

Remark 8. Usually we assume the boundedness of (1, u) for the
initial state p of the process {Y;; ¢ > 0}. In fact, here (1, pg) is uniformly
bounded in 0, which yields from the finiteness of {£;(0)} (see the
assumption imposed in Subsection 2.3).

Now we are in a position to state the main theorem on rescaled limits
in this paper.

Theorem 6 (Scaling Limit Theorem). Let 0 < (1, m) < . Assume
(A.1)-(A.4). For {p(0), p, o, q, m}-immigration superprocess (IMS) Y =
{Y,;t > 0} defined in Subsection 3.1, put Y := 9_2K9Y92t for 6 >1.
Then the conditional distribution of {p(0), pg, cg, qg, M} -immigration
superprocess (IMS) vy = {Yte; t >0} given Yéa = pg (defined by (49))
converges as 0 — o to that of {p(0), 6o} -superprocess with coalescing
spatial motion (SCSM) X = {X;; t > 0} with initial state p defined by
(50).

The proof of the principal result (Theorem 6) will be given below all
through the succeeding three sections (Sections 4, 5 and 6). It is
interesting to note that the processes {Yte; t >0}, 0>1, constructed in
Propositions 4 and 5 are M,(R)-valued diffusion processes (cf. [2, p. 56)),
and also that the limiting process X = {X,; ¢ > 0}, SCSM with speed
p(0), constant branching rate o and initial state pg is an M, (R)-valued

diffusion process as well (cf. [4, p. 686]).
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Next we shall give a brief description of the limiting SCSM X =
{X;;t > 0}. According to the discussion in Subsection 2.2, the limiting

{p(0), 5} -SCSM has generator

2 2
e = p [ O ) [ A S e

1 d’> _*F(n)
T2 J‘J‘A p(0) dxdy du(x)dp(y) p(dx)p(dy) (51)

for F(u) e Dom(L,) = D(£). Especially when F(u)= f((¢, n)) with f,

¢ € C%(R), (51) can be rewritten into a simpler one and indeed has the

form

L) = 176, w) {008, 1) + = pO)F (b 1) (@', 1)
1 RV
+ 5 0 w) [ PO @A), 52

Moreover, {X;; ¢t > 0} satisfies the local boundedness of E[(1, X;)"] in
t > 0 for each m > 1, and {X;, t > 0} solves the (L., Dom(L,))-martingale

problem relative to (H,),,,, and for each ¢ € C?(R),

M) = (0 %)~ (0 Xo)- B[ (o Xpds, e20 69

is a continuous martingale with respect to the filtration (H,),,, with

quadratic variation process

14
0

(M), = [ (oot? X)ds + [ as[[ pOFHHIX, (@0 X, (). 69

4. Tightness Argument

The proof of the main result (Theorem 6) begins at this section. The
purpose of this section is to show the tightness of the rescaled processes.
As a matter of fact, we can prove the following assertion.
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Proposition 7. The family {Yte; t >0}, 0>1 1is tight in the continuous
path space Cyr (R, ) = C([0, ), My (R)).

Before we state the proof of Proposition 7, we need the following

lemma for a simple estimate of the total mass process (1, Yte>.

Lemma 8. For any n given, for each T > 0, we have the estimate

P( sup <1, Yte> > n) < CO{<17 m> + <1’ H9>} < oo, (55)
0<t<T n

where Cy is some positive constant depending only on T and the

parameter Gg.

Proof. By the discussion similar to Lemma 4.1 of Dawson-Li [2, p. 50],
when we denote by N (ds, dw) the image of N'q (ds, da, dw) under the
mapping : (s, @, w) - (s, w), then Ng(ds,dw) is a Poisson random
measure on [0, ) x Wy with intensity (1, m)ds@;,(dw) and is independent
of Feller branching diffusions {£;(¢); ¢ > 0}, i € N. We may employ the

pathwise expression (46) in Proposition 5 to obtain
o0
e (59 ¢ %
1LY =Y 00+ JO IWO w(t = )N}, (ds, dw), > 0. (56)
i=1

Moreover, by Theorem 4.1 of Pitman-Yor [26, p. 442], {(1, Yte>; t >0} isa

diffusion process with generator

d* d
For simplicity, put Ute = (1, Yte> By the standard theory of diffusion

processes [19], Ute satisfies a stochastic differential equation (SDE)

corresponding to the generator (57), 1.e.,

AU = JouUPdB, + (1, m)dt
U§ = (1, Yg) = (1, no) <

(58)
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with pg € M,(R) (see Remark 8), where B; is a one-dimensional standard

Brownian motion. The theory of SDEs [19] guarantees that the stochastic
equation (58) has a unique solution, so that, let us derive an estimate of

the solution {UtG; t > 0}. Let 1 be any positive number given. For each

n
>J

2
, (59

T > 0, we can easily get

P( sup |UY| > n) < P(sup|U8 + (1, m)t| > %) + P(sup
t t

t 0
j soU%dB,
0<t<T 0

T
< %E[SltlplUg +(1, m>t|]+i2E‘ J.O coUdB,
n

where we made use of Markov’s inequality (resp., Doob’s martingale
inequality with the case of p = 2) for the first term (resp., the second

term) on the right-hand side of (59), respectively. Furthermore, the first
term of (59) can be estimated majorantly by

%«1, m)T + (1, ). (60)

By It0’s isometry for stochastic integrals, the second term of (59) can be

T
rewritten as (4c4/n%)E -[0 U%ds. Here we need to make an estimate of

the integral term E j Use ds. Substituting the integral form of SDE (58) for

U se , it is easy to see that

T o T2
JEI USds < (1, o) T+~ (1, m), (61)
0

where we employed the Fubini theorem and some properties in
elementary stochastic calculus for the stochastic integral term.
Consequently, we may combine (60) and (61) together with (59) to obtain
the required result (55).

Now let us go back to the proof of Proposition 7 and prove the
tightness of the rescaled processes.

Proof of Proposition 7. To prove the tightness of the family {Yte Yoo

we shall adopt the ordinary reduction program. So that, we resort to an
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orthodox tightness criterion. Note that Mg (R) is a complete separable
metric space by a metric that induces the weak topology. For instance, by
Theorem 9.1 of Ethier-Kurtz [16, p. 142], if {Y?; ¢ > 0} satisfies the
compact containment condition, i.e., for n > 0 and T > 0, there exists a

compact set I' = T, 7 ¢ Mp(R) such that

irelf]P’(Yte elypfor0<t<T)>1-n,

then the relative compactness of distributions of {Yte}e is attributed to

that of {F oY} }o as a family of processes with sample paths in C([0, »), R)
for each F in the dense subset H of C(M (R)) in the topology of uniform
convergence on compact sets. Usually, instead of direct check of the
criterion by {Y?}, it is attributed to an easier check of the compact
containment condition by {(1, Yte>}e. However, we encounter the problem,
namely, the set of the type {ue Mp(R), (1, u) < K} is not compact
because of the non-compactness of R. To avoid this difficulty we take
advantage of the one-point compactification like R=RU {0}, and we
shall check its convergence in a wider space Mg (R) Recall the estimate

(55) in Lemma 8. It is easy to see from (55) that for n > 0, for each
T >0,

inf P{ sup (1, Y2 < n > 1- S0 4(1, my + (1, o)} (62)
0 0<t<T n

holds. Hence the tightness of distributions of {Y;;¢> 0} in C([0, «),

Mp(R)) has been attributed to that of {F oY?}. Next, according to
Theorem 9.4 of Ethier-Kurtz [16, p. 145], in order to verify the tightness
of {F o Y?}, we have only to verify that there exists (X%, Z%) such that

t
X7 - I o Z¢ds is a (F{)-martingale for the parameter o and

sup E{ sup | X - F o Y|} <&
o 0<t<T
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Take F(v) = Fy (4.1(v) € Dom(Zg) with f € C%(R™) and {¢;} = C%(R)

(see (4) in Subsection 2.1). Paying attention to simple computation

%(x)Fﬂ{d)i}(v) = Zﬁ(((bl, V), ooy (s V) - ()
i1

and

8 Fy 1y (v) _ ¢

SNG) Zf/( Vs e (s V) - 0105,

i=1 j=
we readily obtain

ToFy, 19;3(v)

S i e 00

#2131 Ve o W) [, ol = 2)0 )8 () v(dx)v(dy)

i,j=1

£ 203 by, V) s (00 ) (307, V)

i, j=1

0 ) {81, V) o (0ns V) (i m). (63)
i=1

On the other hand, with It6 process

. 1) = {ED 6, ¥0) + gl m e + am? @) 4

an application of Itd’s formula to the function F(Y;) = Fy, {¢i}(Yte) =
f(@1, ¥,), ooy (0, i) allows us to have

t
Frot (%) = Fr, (o) + [ ToFy, g (V) ds

Z [ fon Y0 o 00 YODAML 0, ©9)
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where we employed the relation

d(M(9;), M(6;)),
= (cod;d;, Yﬁ)dt + OU.R (hg(z — )95, Yﬁ) (ho(z =)0, Yf)dzjdt. (66)
This implies immediately that

0 0 t 0
Fy o (00) = Fp, 10, (08) = | Toly ) (7 )ds

is a (G,)-martingale under the probability measure P, for which the

martingale characterization (47) and (48) of {p(0), pg, c¢}-SDSM is valid

with deterministic immigration qg and reference measure m. Therefore
it follows from Ethier-Kurtz’ criterion that {F o Ye}e = {Ff,{q)i}(Yte Mo 1is

relatively compact for each Fy (. € Dom(Zy). After all, the tightness of
(Y2t >0} in C([0, ), M (R)) is derived. Let Qg denote the distribution

of {¥9} on C([0, ), Mp(R)). By the same discussion of Theorem 4.1 of

Dawson et al. [3], it can be shown that

Qof sup Y ({0}) > 8} < e, (67)

0<t<u

hence Qq(Y2({0})=0,Vt[0,u])=1 holds for u > 0. Clearly this implies
that any limit point of Qg is supported by the space C([0, ), M (R)).
Thus we attain that {Qg} is tight as a probability measure on
C([0, ©), Mp(R)), and equivalently it proves to be that {Y,?} is tight in
C([0, ©), M (R)). This completes the proof of Proposition 7.

5. Convergence Argument

The purpose of this section is to prove the main theorem (Theorem 6).
We have already proved that the family of rescaled processes {Yte; t > 0}y
is tight in Cp; (R, ) = C([0, ©), M (R)) (see Proposition 7). Then we can
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extract a convergent subsequence of distributions of {Yte} Choose any
sequence {0y}, < {6 21} such that the distributions of {Ytek; t >0},
converge as k — o to some probability measure Quo on the continuous
path space, namely, Q,, € P(Cy(R,)). We shall show that the above
limit measure Q,, is a solution of the (L., Dom(L,))-martingale

problem of the target process SCSM. As a matter of fact, as explained in
Subsection 2.2, the distribution of the SCSM is uniquely determined by
the transition semigroup Q(ug, dv) via the duality method (see Theorem

3). Therefore the distribution of {Yte; t > 0} itself actually converges to
@Ho as 6 —» . Roughly speaking, this completes the proof. In the level

of convergence discussion we need to employ the useful and important
key proposition (Proposition 12), which guarantees the convergence of the

principal term of the generator Zy. As described before in Section 1, the

proof of key proposition is quite longsome, so that we suppress here the
proof of the key proposition. We would rather admit the result and dare
to prove the main theorem on ahead in this section. The full proof of key

proposition will be given in the succeeding section.

When the distribution of {Ytek; t 2 0} converges as k —> » to Q€
P(Cps(R,)) on some complete standard probability space (Q, F,P), then
by virtue of Skorokhod’s representation theorem (e.g., see Theorem 1.4 of
[14, p. 274]), we can construct processes {Yt(k); t > 0} and {Yt(o); t >0} on
a new proper probability space (Q, F, P) in such a way that (i) {Ytek } and
{Yt(k )} are identically distributed, that is, E({Ytek; t>0})= E({Yt(k )it > 0})
holds, where the symbol £(X) means the law of random variable X; (ii)
the new limiting process {Yt(o); ¢t > 0} has the distribution Qy,; and (iii)
{Yt(k); t > 0} converges almost surely (a.s.) as k& — o to {Yt(o); t >0}
in the space C([0,©), Mr(R)). Notice that {Ytek; t >0} is a {p(0), py, ,

Goy,» qo;,» mf-IMS, and is a solution of the (Zg,, Dom(Z§, ))-martingale
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problem. It is known that this martingale problem is permitted to possess

a unique solution. Since {Ytek} has the same distribution as {Yt(k)},
clearly {Yt(k); t >0} solves the (Zg,, Dom(Zg, ))-martingale problem.

Consequently, for each £,

t
PP - Py - '[ X o, FY®)ds, >0 (68)

is a continuous martingale relative to (G;),s¢-

Our main concern here is to show, roughly speaking, that the

generator Zg, of the form (42) in Subsection 3.2 converges as k — o

to the generator L. of the form (52) in Subsection 3.3 under the
setting described in Theorem 6. In other words, for F(u) = f({(¢, n)) with

feC*R), ¢eC?*R) and pe Mp(R), we are interested in the

convergence of the generator

Zo, 700 = 2 o, w) - (97, )
+ % (o, u))I J. o2 P, (6 = )¢ ()¢ ()u(dx)u(dy)

# 0, ) (62 ) + g, (0 W) (b m). (69)

Of course, the generator of the limiting process {Yt(o); ¢t > 0} should have

the form

2760 = PO pio, w0, w)

w5 0w [[pO0 @)

+ 670 f"(<¢’ “>) : <¢2’ M> (70)
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By Skorokhod’s representation, for ¢ e c? (R) and for each T > 0,
(6. Y®) — (o, YOO,

= sup |(9, Yt(k)> — (9, Yt(o)>| — 0 as. (as k > o). (71)
0<t<T

Hence it is obvious that
FYM) 5 FY®) as. (as k > ) (72)
uniformly in ¢ on compact sets for any F € Dom(Zg) = Dom(Z). Similarly,
FOYW) 5 FY?) as. (as k - ). (73)

Lemma 9. For any t > 0, we have
t
. ' k
JLim J , Elao, f((4: Y{)- (¢, m)|ds = 0. (74)

Proof. Paying attention to a simple inequality |[(¢, m)| <| ¢ |-
|(1, m)| < o together with the assumption: 0 < (1, m) < o (see Section 3),

we may apply the Lebesgue bounded convergence theorem to obtain

J 0 Elqo, (0 Y)) - (9, m)|ds
< jot Elgo, ({6, Y) - £((6 YO} - (6, m)]ds

[ Blan, 1o, YO - (0, mlas
< {qo, | - |6 m)|- B|F (0, Y)) — £((o, YO,

t
16, m)l-lao, | | B, ¥S)as

— 0 (as k - o),

where we made use of (71), (72) and the assumption (A.3): qg, > 0 (as

k — o).
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Lemma 10. For any t > 0, we have

t
lim E‘% Gy, fﬂ(<¢’ Ys(k)>) . <¢2’ Ys(k)>

k—w J o

— 5 00/, Y- (0%, Y| ds = 0. (75)

Proof. The constant % is disinfluential for estimation, so we discuss
the matter omitting it. We readily get
|60, 70, YN (02, Y1) = a0, YO (07, YO
50,170 Y 0%, Yy = (0, YN (9%, Y]
+|og, — ool |77 YY) (92, Y|
o0, 1770, X)) — £((0, YO - [(02, v M|
+ 60, 770, YOI [(02, Y = (07, Y|
+|og, = ool - |F(0. Y1) (92, Y|

= A; + Ay + A3 (« we, put this way).

IA

IN

As to the first term, because of almost sure convergence of Yt(k) towards

Yt(o), we can deduce from (71), (72) and continuity of the function that

[ Blads = 1o, 311, YO - £, YODI, 162 Y}

>0 (ask > o)

by employing the Fubini theorem and the Lebesgue convergence theorem.
As for the second and third terms, it goes almost similarly by the same
reasons. Indeed, by the Fubini theorem and the Lebesgue theorem we can
get easily

t
[ Blasids < tog,| 1] 86>, Y - YO), >0 (as & - o)
and
t
[ Bldsas < oo, —ool | 771 El{e” YU, >0 (as k> ).

Summing up, we finally obtain the required result (75).
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Proposition 11. For t > 0 we have

i 5[5 770 ) [[ oy s - 07 @7 P

k—o©

-2 oo, YO [ 66 (YO @0y |as = 0. (76
A

If the above-mentioned proposition is proved, then by combining

t
Lemmas 9 and 10 we are able to show that .[0 Ty, F(Ys(k))ds converges to

t
IO ,CCF(YS(O))ds. If that is the case, we can step forward and it is possible

to assert from (72) and (73) that the martingale term (68) can be
rewritten into

FYO) - Fy(©) - '[ ;LCF(YS(O))ds, t>0 77

when k tends to infinity. In fact, instead of (76), equivalently it suffices to
prove the following key proposition.

Proposition 12 (Key proposition). For t > 0 we have

lim E‘ [ 0 asf (6. Y [, po, (6 = )0 ) ()Y () ¥ (ay)

- [ asro, YO [[ 000 (Y Oax) ¥ Oan | = 0. @9
0 A

We shall postpone giving the proof of Proposition 12 until we move to
Section 6. Here we admit the result of key proposition for a while, and we
concentrate our attention on the limiting subject of rescaled processes
and first proceed with the proof of the main result namely Theorem 6.

Lemma 13. For t > 0,

lim | "B 7o, FOU) - £ F(O)|ds = 0. (79)
k—wo Jo

Proof. The assertion (79) yields directly from Lemmas 9 and 10 and
Propositions 11 and 12.
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Proposition 14. For F € Dom(L,.)
t
F(Yt(O))_ F(YO(O))_J. ECF(YS(O))ds, t>0 (80)
0

is a martingale.

Proof. By approximation procedure we may assume without loss of

generality that F(u) = f((9, p)) with f € C%(R) and ¢ € C(R). Suppose
that a collection of functions {®;};; forms a subset of C(Mp(R)). Let

A = {t},}, be a partition of times such that 0 <, <ty < -+ <t, <ty

Then by using the Fubini theorem and the Lebesgue theorem it is easy to
see from (72), (73) and (77) together with Lemma 13 that

O y_ pr©y_ [ 2 my©yas ). TTa.v©®
E{[F(Ytnﬂ) PO [ coras| X )}
: E{F(Y;"jl 1 cb,-(Yf”)} - E{F(YP)) I1 cDi(Y;.O))}
i=1 i=1

n

tn+l L
_ (0)y . (y(0)
L E{LCF(YS ) |i:1| ®;(¥] )}ds

- O AT T o v @ 1 ENTT o (70

koo g,

tn+ n
“lim [ E{IOkF(YS(k))- | | cpi(iftﬁk))}ds
i=1

tn+ n
fim, E{(F(Yti’?l - PO [ s @;-(Yff’)}

i=1
=0, (81)
because {Yt(k); t >0} is a {p(0), pg,, Sg,, 90, m}-IMS and solves the

(Zg,,» Dom(Zy, )) -martingale problem. Moreover, by means of repetition



178 ISAMU DOKU

of similar discussions, it follows from (81) that for any collection of

{®;}7, with any n e N, and for any time partition A,
©) Oy_ [ 2 pyas |- TTo,x©
ol P00 - ) [ £ Oas | [T <0, e
n i=1

That is to say, this obviously implies that F (Yt(o)) -F (Yéo)) - jé L.F (YS(O))ds
is a martingale for ¢ > 0.

Recall that the operator £, is definitely given by (70) here. Clearly

it turns out to be that this {Yt(o); t > 0} becomes a solution of the
(L., Dom(L,))-martingale problem for the SCSM. Under the purely
atomic initial state py € M,(R), the distribution of SCSM is unique in

the sense of duality formalism. By virtue of the above mentioned

discussion on the rescaled limit of {p(0), pgy, og, qg, m}-IMS itself with
initial state pg, the (Zg, Dom(Zg))-martingale problem induces the
(L., Dom(L,))-martingale problem (cf. Proposition 14), which is nothing
but the {p(0), 5g}-SCSM martingale problem with the initial state

YO(O) = pg. Furthermore, this also indicates that the limiting process

Yt(O) = ZEJ?O (t)5yi(0,bi’t)
=1

is a {p(0), 5o} -SCSM. In other words, the limit Q, of distributions of

(¥} is a solution of the martingale problem of the {p(0), 5¢}-SCSM.

Thus we attain that the distribution of (Zg, Dom(Z))-IMS with Y
= pg defined by (49) converges as 0 — o to that of the (L., Dom(L,))-

SCSM with Yéo) = pg defined by (50). We finally realize that {p(0), o} -
SCSM naturally arises in the rescaled limits of {p(0), p, o, ¢, m}-IMS

under the setting (A.1)-(A.4) with the scaling Yte = 6_2K9Y92t, 6 > 1. This

completes the proof of Theorem 6 which is the main result in this paper.
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6. Proof of Key Proposition
The aim of this section is to prove the key proposition (Proposition
12), the proof of which was postponed in the previous section because of
its lengthy story. To avoid trivial notational redundancy and also for

brevity’s sake, in what follows we shall not hesitate to use some

abbreviated signs and symbols occasionally as far as no confusion occurs.
6.1. Simple reduction

A simple triangular inequality gives

‘ [ asr o N [, poy (6 - 20 Y @) ¥ P(a)
- [l asr . YO ] p0rsp 0 Oann )
0 A

<

L: dsf"[Ysk] _” pplx — y)¢'(x)¢'(y)dedY;‘*

_L@gqu.%u—wwuwwmmm%

+

J;dsfqyf]jjpk(x-—y)¢Tx)¢Ty)dedyf

| ; as 1371 | PO (Y Yy

= J,[83] + J,[83], (83)
where we put pj = pg,, Yy = Y™, v = (e, YY) and Ay =

Y7 (dx) = Y*)(dx) with * = & or 0. Moreover,

J1[83] < |70, YY) = £7(o, YO,
t
o[ pate - prariare |as

— 0 (as k- ), (84)
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because Yt(k) converges a.s. to Yt(o), hence f"[Ytk] converges a.s. to

fI¥°] uniformly in ¢ on compact sets as k approaches to infinity.

Combining (83) with (84), in order to prove Proposition 12 it is sufficient
to show that lim,_, ., E{J9[83]}=0. In addition, thanks to an easy

estimate

t
Jofss] <[ 1] ‘ [ asf] , prte - Mo w)avtay)

- [ as[ s @ arary | (85)

it suffices indeed to verify the following:
Lemma 15. For ¢t > 0

lim E

ko

[Cas[ , po, (e~ eV @)y Piay)
0 R

- [ asf[ oY OO <o @)
0 A

6.2. Purely atomic representation

Recall a useful representation of the superprocess in terms of
excursions, which has been derived recently in Dawson-Li [2]. Since we

have [,(Y,(k)) = £(Y%) and {Ytek} is a unique solution of deterministic
IMS-martingale problem, we may reconstruct Ytek on the probability

space (§~2, F , IF’) if necessary. In fact we have an explicit representation

(46). We can realize

2 t
0 S0y, AT
zZ0 = El g5 0% (t)sxek(o,a?k,t) + .[0 J.R IWO w(t - S)Sx(s,a,t)quk (ds, da, dw)
1=

= 7% 4 72 % (87)
in the same way as above as deterministic {p(0), Poy > O0p> 90y > m}-IMS.
Then by Proposition 5 Zte * solves the (Zg,, Dom(Zg, ))-martingale

problem relative to P (see Section 7), while Yt(k) 1s also a solution of the
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same type of martingale problem. By the uniqueness we may regard Zte k

of (87) as purely atomic representation of Yt(k). Since 0, — © and

qg;, —> 0, too, as k — o by the assumption (A.3), notice that

2’6}3 a t B ~
Z2% - I i j i IWO w(t = 8)3y(s,0,0Nqq, (A5, da, dw) (- 0)  (89)

vanishes P-a.s. as k tends towards infinity. On the other hand, from

(A.1), (A.2) and (A.4) (see also Section 7) it is expected that Zt9 k converges

almost surely as k& — o to some limit process Z;° = zzl g0 (#)84,(0,6;, 1)
where {y;(0, b;, t)} denotes the coalescing Brownian flow. So that, by the

almost sure convergence of {Yt(k)} and the uniqueness of limit, it should

be that
YO =3 620800 (89)
=1

Anyway let us consider the first term of (86) in Lemma 15. From (87) we
have

; ds ,”Rz Poy (= 3)9'(x) () Y§H (dx) YM) (dy)

et
= [ as [, pog (e = WG ONES " + 22 0)@x) - (21 + 25 ()

= [ as [[ore - 308022 % @) 22 % @)
0

ot

o[ as _'j ok (x = 3)0'(x)0'(v) 22 % (dx) 21O (dy)

ot

Hl® j pr(x = 2)8'(*)§'() Zs % (dx) 25 %% (dy)

ot

+ [ s [[ pute - 0023 O ax) 23 % (@)

= 1,[90] + I,[90] + I3[90] + I,[90]. (90)
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Since Z?’ek (B) > 0, P-as. (as k — ) for B e B(R), it is not hard to
see that

lim E{I,[90]} = 0, lim E{I5[90]} = 0,

k—o k—o

and
lim E{I,[90]} = 0. (91)
k—o©
Therefore, (86) of Lemma 15 can be reduced into a simpler form, and
what really we have to show is now as follows.

Proposition 16. For ¢t > 0

lim E

k—o©

[Pas [, pog (e - 6021 % @) 22 % ay)
0 R

- [ as [[ p0s@ee 0@y Ow)| <o @
0 A

Now we are going to discuss the expression (89). Recall that {§;(¢)} is

a one-dimensional standard Feller branching diffusion. Hence it is
obvious that for each i € N, &?Gk (t) converges a.s. to £7°(t) as k — o if
cg = Og (as B —> ), see (A.2). According to Theorem 2.3 of Dawson et
al. [4], under the assumption (A.1), for any N € N given, if a?k - b;
(B = o) for each i =1, 2, ..., N (see also Section 7 (iv)), then the law of
N-system of interacting Brownian motions {x;(0, a?k, t)} with initial
state {a?k} converges to that of N-system of coalescing Brownian motions
{9;(0, b;, t)} with speed p(0) starting from {b;}, where {x;(¢)} is a unique

solution of the stochastic equation of the type (45). Therefore, by virtue of
the similar method described in the proof of Theorem 4.2 of [4], it is easy

to show that Zt1 Ok = Zi §?ek (¢)8 ,t >0 converges in distribution
x;

(O,G? k1)
to Zia?05yi(0,bi’t)' By Skorokhod’s representation a selection of proper

version provides with almost sure convergence of {x;(0, aiek, t)} towards
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{3:(0, b;, t)}, whereby guaranteed is the P -a.s. convergence
1,0 _ Oop, c -
Zy ko= Zél k (t)afi(o,a?k,t) - Z&io(t)ayi(o,bi,t)- (93)
1 l

While, by taking a.s. convergence of Yt(k) = Zt1 Ok o Yt(o) into account,

we can deduce that
(k) 1 Ok, Y( ), as. (94)

on a version basis (if necessary), and also that the identity
A Z&?O (t)85.(0.5.1) (95)

holds. After that, let us write it simply as Y Z§ 0(t)8y,(0,6:,1) bY
notational abuse.
Lemma 17. For any t > 0, we have

lim E

k—o©

[Las[] . oo - 362 M @nzZh % @) = 0. 96

Proof. For simplicity we put F(x, y) = pg, (x — ¥)¢'(x)¢'(y). Noting
that ¢ e C*(R) and ¢'eC}(R), it follows that Fj(x,y) vanishes as
k- for (x,y) e D := R2\A, because po;, (x* =) > 0 (k > ») on D
(where x # y) by assumption (A.1). From the aforementioned discussion
(93)-(95), Z"*F converges a.s. to Yt(o). Set Z[ (dx x dy) = Z"% (dx) % (dy)

and Zlo(dx x dy) = Yt(o)(dx)yt(o)(dy). Then Ztk - Zto a.s. Consider
' ' 1,6p 1,0,
‘ HRZ\A P, (x = 2)¢'(x)¢'(y) Z5 ™ (dx) Zs (dy)‘

_ ‘ [ a2t dy)‘

<

ID Fy(x, y)Z§ (dx x dy) - ID Fy(x, ¥) 2] (dx x dy)‘

+

JD F(x, y)Zg (dx dy)‘

= J1[97]+ J4[97]. 97)
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The ordinary Lebesgue type convergence theorem is applicable to J5[97],

and

lim J F,dz0 = J' {lim F,}dZ° = 0
k—w J D D ko
holds for each s > 0 and ®. Hence it follows immediately that

lim E{ I ; ds I | Bl )29 (dx dy)} — 0. 98)

k—o0

In other words, for ¢ > 0, 3N € N such thatif £ > N,

J,[97] = ‘ j | Rz

< %, P-a.s. (99)

uniformly in s € [0, t]. Since F, € C(D), Fj can be approximated by
simple functions. In fact, there exists a family {(pgk) }; of simple functions

such that

lim ¢{(x, 3) = Fy(x, 3), ae-(x, y) (100)
—>00

with (pgk)(x, y):Zf\:fik’l)agk)’llA(k),l(x, y). For each [, for ¢ > 0, 3N; e N

i

such that if £ > N;, we have

N(k,1)
‘ | oiazy - 7)) < Z a1 128 - 29 < £ (101)

because of convergence Ztk - Zto a.s. Similarly, from (100), for each k&,

for ¢ > 0, 3Ny € N such thatif [ > Ny, we get

], - offhacz - 22)

) k k €
< l%nZ|Fk — oM zk - 20| < 5. 02
J

Then combining (101) and (102), we readily obtain

1[97] = ‘ [ Bl vzt -z9)

2

< + <?8, a.s. (103)

[ -z} - z9)

[ olazt-z0)
D
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uniformly in se[0,¢], for sufficiently large k, {> N'=max{N;, Ny}. In
consequence, we can deduce from (97), (99) and (103) that for ¢ > 0,
IN* = max{N, N'} such thatif £ > N*, then

< € a.s.

‘ J.J.RZ\A Poy (x — ¥)0'(x)9'(y) 2} % (dx) Z3 O (dy)

uniformly in se[0,¢]. That is why the Lebesgue type convergence

theorem for the integral with respect to ds x dP over [0, t]x QO leads to

the assertion (96) immediately.
Dividing the integral region into two parts -”.RQ = ”RZ\A+”A , we

have from (92) in Proposition 16

E‘ [ as [, o, x - 002 (@) 21 @)

- [} as [ 0@
0 A

IA

E

j ; ds ”R2\A Poy, (x — 3)0'(x)0'(v) Z5 % (dx) Zy ** (dy) ‘

w8 [ s [[ o028 % @) 21 k(@)

- s [] O @emYOianyOa)
0 A

. J[104] + J4[104]. (104)

Then limj,_,, ;[104] = 0 yields immediately from Lemma 17. Therefore,

in order to finish the proof of key proposition we have only to show the
following.

Lemma 18. For t > 0

Jim E‘ [ as ] oo 2% @)z @)

- j ds jj p(0)9'(x) /() YV (dx) Y{O(dy) | = 0. (105)
0 A



186 ISAMU DOKU

6.3. Approximation procedure

This subsection is devoted to an establishment of another explicit
representation for the principal terms in question in connection with the
proof of the key proposition. We shall first pick up the second term of
(105) in Lemma 18 and begin with rewriting it into another useful form.
When we try to do the same thing for the first term of (105), we encounter
a difficulty on a sudden. To overcome it we need some approximation

technique.

Let us consider now the second term of (105) in Lemma 18. We put
t (0)(@x) Y(©)
1y = { s [ p(O9 @)oY () ¥ @), (106)

where A = {(x, x); x € R}.

Lemma 19. For t > 0 we have the following identity

1y = [ as [[ 0@ )Y@ ¥O@)

L et
= D | dse e ()pO)0(i(0, b ) (350, by, 8. (107)
i, j=1" "

Proof. By using (89) in Subsection 6.2 we may rewrite (106) as

1 = [ as [ w0)) {le £ (s>8yi<o,bi,s)<dx)}
{Z &7’ (S)Syj(o,bj,s)(dy)}
i1

_ J; as | L p(0)¢'(x)¢'(y){z i?(S)Syi(s)(dx)} {Z a?<s)6y,-<s>(dy)}, (108)
1=1 j=1

where we used some abbreviated notations for the time being, namely,

&?(s) = £7%(s) and 84,(s) = 8y,(0,;,5) By the characterization (24) of the
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coalescing Brownian motions described in Remark 3 in Subsection 2.2, we

have
(v, yj>t = p(O)-(t—t/\‘Eij) (109)

for 1 <i, j <m and for each m € N given, where t;; is a stopping time

called the first hitting time between two coalescing Brownian particles
yi(t) and y;(t), that is,

vy = infft > 0 (1) = ;). (110)

Paying attention to this coalescing property we may make use of (109)
and (110) to obtain

o 0

108)= 33" [ asel()2206) [ pOIH3)5,,(@0)5,, (@)

=1 j=1

~.

't” dst ()& (s)p(0) j_'A ') 9'()8,(5)(dx)8 ) (dy)

™M M

[ 4se02600) [, #H0)80)@)5, (@)

62600 605,000 405,00

Tjj

2

~.

- Z I tu dsg (5)€9(s)p(0)4'(3; (5)) /(7 (s)- (111)

i,j "
This finishes the proof of Lemma 19.

Next let us consider the first term of (105) in Lemma 18. We put
L=[a 0)4'(x)¢'(v) Z2 %% (dx) 220k (d 112
1= ds Ap( )0 (x)0'(y) Zg 7k (dox) Z>™F (dy). (112)

By the approach similar to discussions in the proof of Lemma 19, we are

going to rewrite I; into another explicit representation. In so doing, the

expression that we have to prove can be converted into a more tractable
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one. As a matter of fact, as we have seen in another explicit
representation (107) of Lemma 19, the mathematical structure of the

subject integral form I5 is certainly changed into a much simpler one in

the convergence topological sense, because purely atomic measure terms

disappear and are replaced by functions superficially.

Lemma 20. There exists a family {Dl}l of monotone proper sets such
that D; o A, D; o Dy, (V1) and D; - A as | — », and for t > 0, we

have the following identity

1= [ s [ @) 2% @) 23 @)

= Z J.; ds&?ek (s)g?ek (s)p(0) {lli)rg 1p, (xlek (s), x?k (s))}

i1
x ¢’(xi9k (0, a?k, s))d)'(x?k (0, a]e-k, s)). (113)

Proof. Recall the purely atomic representation of Ztl Ok (see (87) in

Subsection 6.2):

1,0 Goy,
Zr% = Zgi i’(t)Sxek(Oy QO 1y (114)
i=1 v

As the first step to the expression (113), let us consider, for instance,
the following setting. For the set A ={(x, x); x € R}, we first define a

sequence of inclusively approximate subsets as
D, = {(x’, y')e R%;  inf [ (, x) = (x', ¥)| < l}, for [ > 1, (115)
(x', y')eR2 l
where ||| denotes the Euclidean norm in E? = R%. Then we observe
that D; o A, D; > D;,; and D; - A as | — « as set inclusion order.
Clearly 1p, (x, y) = 1a(x, y) a.e. (as I — =) with respect to /% (dx x dy)

=(/® ¢)(dx, dy). So that, application of the Lebesgue type convergence
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theorem gives an observation that

'A 0/(x)0()54 (dx) 5, (dy)

=[] 1 6@ 03 )3 0)

= [, im 10, 90000 (2)534 (dx)55(d)

o

= Jim [, 10, (e 200 (3)84(02)84 (@) (116

Note that the discussion of the integral in (116) does not depend on the
choice of approximate sequence as far as it keeps monotone property and

a kind of uniformity in convergence.
As the second step to this approximation procedure, we shall think of
choosing an appropriate approximate sequence of more specific form. For

each [ > 1 given, we define DZ[E(M ) as follows. Let M > 0 be a positive

integer, i.e., M € Z*, and let Sq[M, [] denote a square with a length of
side (V2MI)™, called the unit square. The unit strip of DZ[S(M J along the

X-axis in the Euclidean XY-plane R? is given as follows. This unit strip
just corresponds to a neighborhood of level 0 (meaning x = 0 with
(x, x) € A). The horizontal strip form of neighborhood along the X-axis
consists of (8M + 2) pieces of squares in such a way that just (4M +1)
pieces of unit squares Sq[M, I] are laid exactly on the strip region

{ 242 «/5(4M+1)}{ \/5}

I’ 2M1 0. 2M1

and simultaneously other (4M + 1) pieces of unit squares Sq[M, I] are
laid exactly on the other strip region

{@(4M+1) 2@}{ J2 0}
oMl 1 oMl |
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Likewise, for each level x = 2k/Ml with k € Z(x = 2k/ ML, (x, x) € A), we

repeat the same procedure of laying the similar type of strip region of the

same area (which is transferred from level 0 in a parallel way) with

&(M)] ;

(8M + 2) pieces of unit squares Sq[M, [] similarly arranged. Dl[ is an

aggregate of squares Sq[M, ], which is obtained by laying the whole

region

U {level x region}

2k

=M, keZ

X

with a collection of the bulk of squares for the unit strip. Clearly this

&(M)]

construction of Dl[ gives an observation that, for each / and M,

1
2M1

D, c DZ[S(M)] and 0 < {dist(x, DZ[S(M)]); x e Dy} < at most;

moreover,

lim DF™) = Dy and lim(lim DF®) = 4

M —o —00 M -0

in a monotone way, where dist(x, A) is a distance from a point x to a set

A. On this account, we can approximate the indicator 1, by using this

sequence {DZ[S(M )]} ;- Furthermore we can verify with ease that there
exists a collection of disjoint intervals {I,}, = {I ;,W ! p in x-direction and

a collection of disjoint intervals {/,}, = {J ;,W ! p iny-direction such that

DI = | )1, %7, with mutually disjoint {1, x J,},,
i=1

and for (x, y) e DI[S(M)], 3p € N such that I, xJ, 5 (x, y). In addition,
it follows that

Ia(x, y) = zlir?o%iinwlDl[s(M)] (x, ¥)), (117)

1 ple)] (x, y) = Zl{szJp}(x, y) (118)
p=1
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and
L wa,y (6 3) =17 () x 15 (). (119)

After all, by the independence of the choice of approximating sequences,

the diagonal method and renumbering procedure, we may rewrite it

simply as {D;} anew, instead of {DZ[S(M )]} 1> from the begining.

Based upon the above-mentioned approximation argument, by
employing the Fubini theorem and the Lebesgue theorem we can deduce

with an easy computation that

1= [ s [ @) 2% @) 23 @)

= [Cas [, 1 206021 @) 2E % @)
0 R

= [ aspl) [[_, thim 1, v, @802 % @) 2% (@)
0 R —>00

t 0
- [ dsp(O){}g{}O Il {IZ; Ly (& y>}¢'<x)¢'(y>zi*9k (@o)zh ™ <dy)}

[ asp(0)jim g[jkl,;, @azE% ([ 1, 006zt | a0

As is well known, the indicator can be approximated by C*-functions.
Hence for each [, p, there exist {y,,}, = (WhPy < CF(R) and My

= {ni;f n < Cg(R) such that vy, (x) > llé (x) pointwise as m — oo, and
M (y) > 1 Jl (y) pointwise as m’' — . Therefore, an easy computation
p

with application of the Fubini theorem and the Lebesgue theorem
together with the representation (114) yields to the assertion that
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I

= [as [[ o0 @) 22 O @) 22 % @)
0 A
- i; [ aszt@Eh [ O 0)8 g @18 1 (09

Y] s @500 [[ (i 1, IR (@013, @)

0 t 0
= Y[ dstfel(0) Jim pzl L g e OIS 1, (@13 ()

1,j=1
> J! dsafa?p(o)nlm;{ [ 140, (dx)} { RETE (dy)}, (121)

where we used some notational abuse: E_,f (s) = é’;?ek (s) and xl}’ (s) =
x% (0, aiek, s) and so on. Here consider the integral .[lll LR (dx). Under
p%

the same setting as in (121) and with the same mathematical tools, it is
easy to see that

[ 1 @6 @3, (@)
= lim [ VRS 4 (@) = Tim v (F @06 a22)
m—o JR i m—oo
For the integral Il S ¢'8 1 (dy), the same thing. In fact, we have
p %
| REACLIELICY

= lim IR ny.F OIS k(y(dy) = Lim npy (@FE)r (). (23)
J
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Therefore we may combine (122) and (123) with (121) to obtain

59) [ ascleto(o)tim 3 v
i G 6DH )

- J' ; dsfefp(0)lim 3 {11 (e ) () 1,1 (& ()0 ()
l,] D

> [ asel 61251000 n;n{zl{,wé}(xf, £ )6 ()
i,j p

Z J. ; dsef (s)€% (s)p(0) {lim1p, (xF(s), N GF ()9 (] (). (124)

i,7=1

Finally we obtain the assertion (113). This completes the proof of
Lemma 20.

6.4. Convergence in law and interchangeability argument

According to the discussion in Subsection 6.2, in order to prove the
key proposition (Proposition 12), we have only to show Lemma 18.
However, if we take the results obtained in Subsection 6.3, then Lemma
18 is even attributed to another assertion besides. In fact, from Lemmas
19 and 20 we recognize immediately that, to verify Lemma 18 it suffices
to prove the following.

Lemma 21. For t > 0,

lim E
k—o©

.le(: dSE_,?ek (s)};;ek (s)p(0) {llggJ 1Dl (x?k (s), x?k ()}
i,j=

$§'(* (0, a*, )4 (0, af, 5))

=3[ s )2 (o0 (40, b1, )30, b5, )| 0. (125)

i,j=1""
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On the other hand, for each ® and i, j we have

[ &) 6)p(0) tim 108 4] s

- [ P00 )6 (3, )ds
0

<

[ et 012600 tim 1 )0l o)
0

- [ E06)00(0) i 1, ot Yot s
0

+

[ £06)005)0(0) Gim 1 ol o s
0

- [ )00 )6 (3, )ds
0

= J,[126] + J5[126]. (126)

As to J[126], we can get easily

7,126] = ‘ [ 012k 6) - 20 i1 L

t
< jo (60 (5) - ) ()87 ()] - [lim 1p, - ()0’ ds.  (127)

Recall that {&;(¢)} is a standard Feller branching diffusion, and also that

&?Gk (s) converges a.s. as k — o to &7°(s) uniformly in s € [0, ¢]. Hence

it follows that

t
(127) < j ) SUp 57 (925 () = &) (5)(6)] - [tim 1, - ¢ )0 ()] ds
t
<Jefel - el im0 o lds

t
<18 - e + 1 LIS ~ 23 [ i1, - 6o las

— 0 a.s. (as k —> ). (128)
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Consequently, from (126)-(128), to show (125) it suffices to prove the

following lemma. For brevity’s sake we put xlk(s) = xlek (0, a?k, s).

Lemma 22. For t > 0

fim B ZI ds&;0 (s)€5° (s)p(0) {lim 1p (xf(s), %% ()0 (xf ()9 (x" ()
1,j=1
- Z . dséGO(S)éGO(S)p(OM(yL(O bi» $))¢'(y;(0, bj, s))| = 0. (129)
i,j=1""u

Next we will think of a prestep to another reduction of (129) into a
simpler one.

Lemma 23. For any s € [0, t] we have

hm E

Z& (5)&9(5)p(0)1 p, (] (5), T ()0} ()0 (T (s))

i,j=1

= > e)(8)E9()p(0) 1, (vi(s), 3(s)'(vi()9'(;(5)) | = 0, (130)
i =1
where we put é? =£70, xlk(s) = xfek (0, aiek, s) and y;(s) = (0, b;, s)
for brevity’s sake.
Proof. First of all we assume that
S Bl (5)£26)p(0) Ly (4 (5), xF )OO A6 < (13D)
i j=1
By the standard theory of integration this is nothing but the criterion for

interchangeability between summation and integration. That is to say,
under (131) we have the identity

{Za ()25 (5)P(0)1 p, ¢'(xf () o' (x (s»}

1

= D BEN)E)(s)p(0)1 p, ¢'(xf () (xF (5)}- (132)

i, j=1
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This interchangeability proves to be trivially correct. In fact, the
boundedness of the test functions yields to an easy estimate

the left-hand side of (131) < p(0)| ¢’ ||2 Z E|§? (s)&? (s)]- (133)
o1
Since {g;(t)}; are mutually independent Feller branching diffusions, for

each i € N the process &;(¢) satisfies a stochastic equation

(0 = 50)+ [ JFEGIAB,. 14

Hence for some constant K > 0, the inequality

(183) < p(0)[ ' D BIE)(s)} - BIE (s}

i j=1

" 2
< K[Z E{é?(O)}J < o (135)
=1

follows from (134) and the condition for the initial state of {;(¢)} imposed

in Subsection 2.3, where we made use of independence and the property

of E{martingale} = 0.

Then the establishment of this interchangeable equality (132) enables
us to approximate the infinite sum by a finite sum simply through the

limiting procedure limp_,., namely,

E{ g9 (5)&9(s)p(0)1 p, ¢'(f (S))(I)'(xf(S))}
i,j=1

N
i, Jj=

&i;nwE{ 1@?(s>a9<s>p<0)1pz¢'<xf<s>>¢'<xf(s»}

N
lim E{ z o [xF, xk; g]}, (136)

N> -
1,j=1
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where for later citation we employed a simple sign in the last line that is

equal to the previous line up.

By virtue of Theorem 2.3 of [4] we know that under the assumption
(A.1), for each N e N, the law L({x?k()}) of N-system of interacting
Brownian motions (N-SIBM) with interaction parameter P, converges

as k —> o to the law L({y;(-)}) of N-system of coalescing Brownian

motions (N-SCBM) with speed p(0), if the initial state {a?k} converges to
the starting points {b;}. Hence for each ¢ fixed, for {x?k (t) e RY and

{7;(t)} € RY, the same convergence assertion for those laws as probability
measures (¢ P(RY )) on RY is also valid. Let us now consider random
variables X* = (Xf, ., X%) e RY and Y° = (¥, .., Y\) e RY, and let

QZ]%, QY P(RYN) denote the laws of X% and Y°, respectively. Since

we have a trivial identity

B(X)) = [ f(X(@)PEo) = [ f)@ e X7)(a) (137

for any R”-valued random variable X and any bounded continuous

function f on R”, we note that the weak convergence Q]k{; = QR] as
measure € P(RN ) is equivalent to the convergence in law of X ko YO,
Hence, for any bounded continuous H e C(RN ), the convergence

E{H(X*)} > E{H(X°)} yields from the convergence
[ v H@K @) > [ HEQR (@) (138)

Therefore, when for H € C(RY x RY) we define

N
H({x?k (s i=1,.. N} {x?k (s);j=1,.., N}) = @fj[xlk, xj-a; E] (139)
=

by using the function (ij in (136), then the above-mentioned convergence

of N-SIBM to N-SCBM provides with the convergence: ]E[H({xlk(s)},
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{x%(s))] > B[H({yi(s)}, {;(s))], namely,

3 [xf, 3 a]} - E{

Notice that there happens no problem in the above convergence because

N
J= i

%[y ¥ é]}- (140)

N
lim E
k—o© R -
s J=

1

1 1

we may approximate 1 Dy by a smooth function in the same way as done

in Subsection 6.3. For the details, we shall leave it to the reader as an

easy exercise. Therefore, paying attention to the identity

1

N
L Jj=

N
o [xf, xF; FJH = lim E{‘ >, Pl vy é]}, (141)

lim< lim E
k—w | N—>ow . N> A
s J=

we can easily verify from (136) and (140) that

li,glE{ £0()20(s)p(0)L p (e s, xf(s>>¢'<xf<s>>¢'<xf<s>>}
2

2

l

N
i,

The assertion (130) follows immediately from (142).

N
>, Pl v &]}- (142)
»J=

1

Lemma 24. For t > 0 we have

[ 260000 i 1, (cF, 2R )0t s

lim E
k—o -
1,j=1

= 3 [ EL600) i 1, 51, ) Gi(DE () ds | = 0. (143

i, j=1
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Note that we used the same abbreviated notations as in Lemma 23.

Proof. We shall use the same notations as in the proof of Lemma 23.

We have proved

nénE{z £0(5)20(s)p(0)1 p, ¢'<x£3<s))¢'<xf(s»}

29
o0

. @5l afs é]} = E{Z % [yi ¥j E,]} (144)
l’]

= limE{
k -
]

By employing the same approximation procedure in Subsection 6.3 we
can replace 1p, by a smooth function A, = Ay (x, y) for each [ e N,
namely, we may put A,, = zp vP (x)nP (y) for instance. Let d)fj[xi, X
€, A, ] denote the function CI)f].[xi, xj; &] with 1p, replaced by A,,. Then

the integral of CI);.[xi, Xj; & Ap] with respect to ds over [0, ¢] can be

approximated by a finite sum
N
T,
Z (Dqu [xlr x_]» g, }"m]Aqu
q=1

where a partition A : sy = 0 < s; < --- < sy = ¢ of the time interval [0, ¢]
is given, we put As, =s, —s,; (1 <q < N’'), 1, is a point arbitrarily
taken from the subinterval [sq_l, sq] for each g, and |Z| = max, Asg,

because the integrand is continuous in this occasion. Hence from (144) we

have

N/
. gtk k.
hlgnlE{ E E D £ x5 €, Xm]Asq}
L q

v
= {Z D oy, v & xm]Asq} (145)
q

i,J
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Moreover, by virtue of the condition (131), we can deduce at once with
passage to the limit N’ — o« or equivalently | A| - O together with the

reverse operation of approximation procedure for 1 Dy that

h;inE{;J.;q’fj[xi j dS}—E{ZI®[yl,y,, d} (146)

By virtue of (131) again, the Lebesgue type convergence theorem will
take care of the interchange between integration and limit [ — « in
(146). On this account we finally establish

h,gna{z [ &6)86Ip0) i1, ot 5} >}¢'(x?(s>>¢'(x§(s>)ds}
LJ

- E{Z [ (62061000 tim 11, i, 3} (s))¢’(y,-(s))ds} (147)
LJ

The assertion (143) yields immediately from (147).

Proof of Lemma 22. By a triangular inequality we get

> [ ase20)06)pl0) i 1, £ 8e)
i,J

- Z _[ Tt dse ] (s)€) (s)p(0)¢'(y:)¢'(; )
1, ] Y

S| X J, S @600 g 1 sF. R0
LJ

-3 [ ase2 )60 i 1, 1, 3 ) )
L]

#3452 6)206)p00) i 1, 35, 304000 )
L, J

- Z .Lt ds&?(s)ag(S)P(O)d)'(yi)¢'(yj)
1] Y

= J1[148] + J[148]. (148)
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Since an application of (143) in Lemma 24 verifies lim;, E{J;[148]} = 0,

the assertion of Lemma 22 is attributed to showing that

Jim B{J5[148]} = 0. (149)

However, the term /5[148] is free from the parameter k-dependence, so

that, what really we have to show is

E

> [ = )i 1, i 34D 5
iJ

t
-D | = P s(s)as| = o, (150)
i,j i
= _ 0 0 . .. . .
where we put zfj(i, p)i=§; (s)éj (s)p(0) for simplicity. Recall the discussion

on the approximation procedure in Subsection 6.3. Since we have
lim; 1p, (x, y) = 15(x, ), ((dx) ® ((dy)-a.e. from (117), it is obvious that

Jim 15, (35(5), 35(6) = Las) 35(6), Pas (a5

Therefore it follows that the first term in (150) becomes

> [ 256 p1a0i(6) 7D OHDH ;). (152)

i1
Clearly 15(y;, ¥j) becomes 1 when (y;, y;) € A and its value becomes

null if (y;, y;) € A° In other words the case of (y;, y;) € A° has no

contribution to the integral (152) in its value. Then what is the situation

in the integral (152) if (y;, yj) € A? For each i e N, the coalescing
Brownian path y;(0, b;, ¢) starts at the point b;, and generally speaking,
b; # b; for distinct pair (i, j), i # j. In addition, by the coalescing
property of particles, during the time interval [0, ¢], the phenomenon
(¥i» ¥j) € A can be observed only in [t;;, t], where t;; is the first hitting

time when y;(s) = y;(s) for s > 0. Under this consideration the expression
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(152) is reasonably rewritten as

oo}

Z J t,, EL(E p)La(i(s) 2j())9'(3i(5))9'(v;(s))ds, (153)

implying that (150) proves to be true. This completes the proof of Lemma
22.

The discussion through Subsections 6.1-6.4 completes the proof of the

key proposition, namely Proposition 12.
7. Concluding Remarks

(1) In the preliminaries of Section 2 we made a quick review of
several superprocesses as prerequisite knowledge to read this paper. The
content of Subsection 2.1 is partly due to Dawson et al. [3] and also partly
due to the path wise construction of SDSM in Dawson-Li [2], and the
content of Subsection 2.2 is chiefly due to Dawson et al. [4]. While the
content of Subsection 2.3 is mainly based upon Dawson-Li [2].

(11) In [26], Pitman-Yor constructed a certain class of one-dimensional
immigration diffusion processes as sums of excursions selected by Poisson
point processes. Similar types of constructions under infinite-dimensional
setting can be found, for example, in Fu-Li [17], Li [22], Li-Shiga [25] and
Shiga [27]. Especially, M,(R)-valued immigration branching diffusions

without spatial motion were constructed in Shiga [27], where the subject
diffusion is obtained as the unique solution of stochastic equation similar
to (29), but with the term (s, a,t) replaced by simple §,. In [17], Fu-Li

succeeded in derivation of non-trivial extension of Shiga’s result to a
more general case of independent spatial motion, by considering the

notion of measure-valued excursions.

(ii1) In connection with the formalism underlying the proof of the

main theorem, the martingale characterization for the rescaled processes

{Zte; ¢t > 0} described in Proposition 5 of Subsection 3.3 is equivalent to

the assertion that {Z?} is a solution of the (Zg, Dom(Zg))-martingale

problem.
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(iv) To assert the main theorem, some assumption on the convergence

of initial data is needed: for instance, for the original IMS Y, =pn
e M,(R), the rescaled process YOe = ng converges to a certain purely

atomic measure Y; = py. In our model, related to the purely atomic

representation, for the initial data p = Zjozl £;(0)3,,, automatically the

convergence: g = Zil &i(O)SaQ - Up = Zi:1 £;(0)8y, follows for some
13
sequence {b;} c R. However, this is completely equivalent to the
convergence: Ziéfe (0)609 - Ziﬁfo (0)8p,, whereby derived is a? — b;
12

as 0 —» o for each i € N. This is nothing but one of the conditions for the

limiting result that the interacting Brownian motions with starting

points {a?} converge in distribution sense to the coalescing Brownian

motions with initial state {b;}.

(v) In this paper we treat the case of vanishing deterministic

immigration at infinity: gg — 0 as 6 — . However, if the deterministic

immigration rate does not vanish, then another type of limit theorem is
obtained. This new result is explained in the companion paper [12].
Moreover, we can consider the rescaled convergence problem for the case
of function-type immigration rate. This challenging limit theorem for
superprocesses with non-trivial immigration shall be discussed in the

forthcoming paper [13].
Acknowledgements

This article is partially based upon the announced results at Spring
Meeting on Probability Theory, held in Tokyo Institute of Technology
(TIT) during March 16-17, 2005. The author is grateful to the organizer
Professor T. Shiga (TIT) for giving him an opportunity to talk about his
early results on some convergence theorems for rescaled immigration
superprocesses associated with SDSM. The author also expresses his

sincere gratitude to Professor Z.-H. Li (Beijing Normal University) for



204

ISAMU DOKU

stimulating discussion on superprocesses and for his useful and valuable

comments, especially through Winter Meeting on Probability Theory,
held at TIT in January, 2006.

(1]

(2]

(3]

(4]

(5]

(6]

(7

(8]

(9]

[10]

[11]

(12]

(13]

(14]

[15]

References

dJ. T. Cox, R. Durrett and E. A. Perkins, Rescaled voter models converge to super-
Brownian motion, Ann. Probab. 28 (2000), 185-234.

D. A. Dawson and Z. H. Li, Construction of immigration superprocesses with
dependent spatial motion from one-dimensional excursions, Probab. Theory Related
Fields 127 (2003), 37-61.

D. A. Dawson, Z. H. Li and H. Wang, Superprocesses with dependent spatial motion
and general branching densities, Electron. J. Probab. 6(25) (2001), 1-33.

D. A. Dawson, Z. H. Li and X. Zhou, Superprocesses with coalescing Brownian
spatial motion as large-scale limits, J. Theoret. Probab. 17 (2004), 673-692.

I. Doku, Exponential moments of solutions for nonlinear equations with catalytic
noise and large deviation, Acta Appl. Math. 63 (2000), 101-117.

I. Déku, Removability of exceptional sets on the boundary for solutions to some
nonlinear equations, Sci. Math. Jpn. 54 (2001), 161-169.

I. Doku, Stochastic convergence of superdiffusion in a superdiffusive medium, Quant.
Inform. III (2001), 197-217.

I. Doku, Path level large deviation of measure-valued processes in a random
medium, RIMS Kokyuroku (Kyoto Univ.) 1193 (2001), 144-171.

I. Doku, White noise approach to limit theorems for solutions of some Wick type
nonlinear equations, Far East J. Math. Sci. 4(2) (2002), 137-187.

I. Doku, Weighted additive functionals and a class of measure-valued Markov
processes with singular branching rate, Far East J. Theo. Stat. 9(1) (2003), 1-80.

I. Doku, Mathematical Basis on Branching Random Systems, Saitama Univ.,
Saitama, 2004 (in Japanese).

I. Déku, A limit theorem of superprocesses with non-vanishing deterministic
immigration (preprint).

I. Doku, A convergence problem of rescaled superprocesses with immigration rate
function (in preparation).

R. Durrett, Stochastic Calculus: A Practical Introduction, CRC Press, Boca Raton,
1996.

R. Durrett and E. A. Perkins, Rescaled contact processes converge to super-
Brownian motion in two or more dimensions, Probab. Theory Related Fields 114
(1999), 309-399.



A CERTAIN CLASS OF IMMIGRATION SUPERPROCESSES ... 205

[16] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence,
Wiley, New York, 1986.

[17] Z. Fu and Z. H. Li, Measure-valued diffusions and stochastic equations with Poisson
process, Osaka J. Math. 41 (2004), 727-744.

[18] T. Hara and G. Slade, The scaling limit of the incipient infinite cluster in high-
dimensional percolation II: Integrated super-Brownian excursion, J. Math. Phys. 41
(2000), 1244-1293.

[19] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion
Processes, North-Holland, Amsterdam, 1989.

[20] J.F.C. Kingman, The coalescent, Stochastic Process. Appl. 13 (1982), 235-248.

[21] N. Konno and T. Shiga, Stochastic partial differential equations for some measure-
valued diffusions, Probab. Theory Related Fields 79 (1988), 201-225.

[22] Z. H. Li, Skew convolution semigroups and related immigration processes, Theory
Probab. Appl. 46 (2002), 274-296.

[23] Z. H. Li, A limit theorem of discrete Galton-Watson branching processes with
immigration (preprint).
[24] Z. H. Li, Branching processes with immigration and related topics (preprint).

[25] Z. H. Li and T. Shiga, Measure-valued branching diffusions: immigrations,
excursions and limit theorems, J. Math. Kyoto Univ. 35 (1995), 233-274.

[26] J. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrsch. Verw. Geb. 59
(1982), 425-457.

[27] T. Shiga, A stochastic equation based on a Poisson system for a class of measure-
valued diffusion processes, J. Math. Kyoto Univ. 30 (1990), 245-279.

[28] T. Shiga and H. Tanaka, Infinitely divisible random probability distributions with an
application to a random motion in a random environment (preprint).

[29] H. Wang, State classification for a class of measure-valued branching diffusions in a
Brownian medium, Probab. Theory Related Fields 109 (1997), 39-55.

[30] S. Watanabe, A limit theorem of branching processes and continuous state branching
processes, J. Math. Kyoto Univ. 8 (1968), 141-167.
|



