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Abstract

The problem of discrimination between two autoregressive processes of
order p is considered when the observed time series is contaminated
with an extra noise and the main discriminatory information is in the
covariance structure rather than the mean. An analytic discrimination

rule is given based on likelihood ratio and its performance is examined.

It is well known that the distribution of the discrimination can be
expressed in terms of a weighted sum chi-square random variables of
one degree of freedom. The weights in the sum have to be calculated
numerically. The approximated weights are calculated. It is shown that
they are very close to the true values.

1. Introduction

A number of practical problems in time series analysis reduce
to classifying a stochastic process to one or other categories. These
applications are in physical sciences as seismic records, medical sciences
as recorded brain waves, audiology, archeology, engineering and even in

biology and developmental psychology.
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A comprehensive overview of applications has been given in
Shumway [14, 15] as well as common methodologies to the discrimination
time series analysis in both time domain and frequency domain
approaches (see also Dargahi-Noubary [6]). Some more references in this
area are Dargahi-Noubary and Laycock [8], Dargahi-Noubary [5, 7],
Alagon [1], Chan et al. [2], Shumway and Unger [16], Kakizawa et al.
[12] and Chinipardaz [4].

Majority of works in time series discrimination, however, is devoted
to considering ARMA processes which can be expressed as a linear
combination of white noise processes (see Fuller [10]). ARMA models
have great success in engineering, business and economics applications.
However, as Dargahi-Noubary [6] pointed out, despite their wide
applicability, no real attempts have been made to find out the reason

behind their success in any particular application area.

It should be noted that improved models can be constructed by
incorporating more available information than linear models. For
instance consider the tracking of a missile fired from a submarine using

satellite measurements. The missile position at time ¢, x;, and its
position at same time as observed by radar, y;, may be embedded in a

white noise, say ¢;, i.e.,

Vi = Xp + €. 1)
Now, if for example the movement of the missile is an autoregressive
of order p models, i.e.,
xp = 01xq + 0929 + -+ 02, + 1y @)
both (1) and (2) altogether can be expressed as AR(p) plus noise model or

be considered as a state-space model which include ARMA models as an
especial case. Such examples viewed signal plus noise and are given in
Zyweck and Bogner [18].

Clearly, these models are more complicated to be used in time series

discrimination because of an extra noise.
Chinipardaz [4] obtained discrimination rule for two AR(1) models

with an extra noise and compared with other works given in time domain
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approach when various variance of ¢; is considered. In this article
the work extended to an autoregressive process of order p, AR(p).
Throughout, it is assumed that data are observed on stationary AR(p)
denoted by x = (xq, X9, ..., x7). However, the observed time series is
subjected to an extra stationary noise.

The distribution theory of classification rule is extremely complicated
and involves the weighted sum chi-squared random variables of one
degree of freedom (see Shumway [15] and Chaudhuri and Borwanker
[3]). However, these weights are very complicated to obtain and matrix
manipulation is required.

In this study, an attempt has been made to give approximated
analytic weights. The paper is organized as follows: In Section 2,
approximation to discrimination is suggested. Section 3 is devoted to
simulation works to obtain the performance of given approach. The

analytic distribution of discrimination between two AR(p) processes plus

noise 1s given in Section 4. Finally, in the last section the cumulants of

discriminant function are compared with those given in the literature.

2. Discrimination Between Two AR(p) Plus Noise Processes

Consider that the T observed dimensional vector y = (y1, ¥9, .., Y7 )’

1s a stationary time series process subjected to an extra noise, 1.e.,
Hl . yt = xt + St

xt = (X,lxt71 + (X2xt72 + -+ Otpxt,p + nt

and
Hy @y, =x; + ¢
Xy =P +Box g+ + PpXyp + My,
where o;s and Bs are constants. g, and m, are serially uncorrelated

disturbances with zero mean and variances cf and G%, respectively. It is
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assumed that & and mng are uncorrelated for all ¢ and

st,s=1,2,..,7T), ie,

cov(g;, ng) =0

a’;s and s are so that x; is stationary and invertible. It means that

y; is also stationary and invertible. If xo = (x_;, x_g, ..., X_1,,) and a =
(01, ag, ..., a,) under Hyp, then we have
T
T
2\ 1
p(x; Xg, @) = (2107 2 exp{ Z (xp = 0y = = apXy_p) }
0 =1

= (27:0

Q
~.
Il
—
~.
H
O
~
Il
—

» T

— (zncn) 2 exp{ Z OtiOth xtixtj}
p T

- (2ncn) 2 exp{— 57 {ZZagxtg

=0 Jj=i+1 t=j+1

p-1 p T+i
RS

T
_Z 1
= (2n02) 3 expl-——
i 262

[X,BZp+1,(xx + g(x, OL)]},
n

where oo =1, By, o 1s a band matrix with band width 2p +1 and
g(x, a) is a corrected term which depends on few first and last terms of

x; - p(x; X, B) can be obtained similarly as,

T
plx: x0, p) = (2n02) 2 exp{—ﬁ [X'Ba i, px + g(x, B)]}-
On
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Removing the corrected terms for two models the loglikelihood ratio is
given by

In(fa, y) _ 1, [Z] 1,1 o1
LLR = 2% ¥) _ 2y, + =yt -5y
InB,y) 2 [Zg] 2 2 -3

2 2
ol +o0,X
1 n—l ; 2 p! +ly'[(cgl + G%EB)_l —(c21 + G%Za)_l]y
262+ o1 | 2

2 2n-1
1 |G I+o Bz 1, | 1 , _ -1
= Eln ; ;1 7f+ B + 5}’[((5?1 + 6%321174—1,[3)
| ol + GnB2p+1,a |

2 2np-1 -1
_(GSI+GnB2p+1,a) ]y’

where Z,(Xg) and %;(Zy) stand for the covariance matrix of x and y
under H;(Hjy), respectively. Byy 1 o and Bgy, g can be approximated

by a polynomial of order p of Bs (see Chinipardaz [4]). Then

p , p ,
Bopii,a ® chBé, Bopi1,p ® Zijé, 3)
Jj=0 j=0

where (i, j)th element of Bj is given by
-1 Ji-j|=1
[B3]ij R .
0 otherwise
and ¢; and d; are constant coefficients depend on a and B, respectively

and have to be obtained from (3) and Bg = I is defined to be identity

matrix.

The eigenvalue of jth element of Bs, is given by A; = 1+a?

- 20 cos( T] JT: 1) and normalized corresponding eigenvector is

2 . Jr . 2jn) (T]n)}
5 = T+1{sm(T+1)’ sm(T+1 e ST
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(see Chan et al. [2] and Chinipardaz [4]). Taking L = {&;, &g, ..., &7}, L

1s symmetric and orthogonal matrix. Therefore, based on loglikelihood
ratio y is classified to Hy if

2 2 -1
2 2 1 1 2 2 -1 1 | oz +oyB3pi1p |
Y071 + 07Byp,1p) " — (071 + 03By o) 1y = In— n2p+L,p

2 2 p-1
| ol + GT]B2p+].,U. |
and to Hy otherwise. By defining z = Ly

2 2 -1 '

o2l +6p LBy oL
LLR:_%lnl( AR, Wi el ,)l
|(6€I+GnLsz+l’[3L )l

1 2 27 p— n-1 2 27 p— n-1
5z [(621+067LByy, o L) —(021 +07 LBy, pL') 2
-1

-1
p .
LLR « 7| c2I + G%L{Z ijg] r
7=0

171

-1
= z'{ ool + cﬁ[i dj(LBgL’)J

p .
1+ cﬁ{ cj(LB?{L')J z
7=0
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~

cq-1
2, 2 z:l’ ar )
O¢ + Gn|: i=0 Cj(—z COSm) :|

and therefore y is classified to Hj if

Z 1
Z‘ Z iTh
r= 2 92 p nr
O¢ +Gn|: j:Odj(_2 COSm] :|

T+1

9-1
T J
2 2 P (_ nr
| |r:1 oy +Gn{ 2 jzod]( 2 cos ) }

It is a closed form of discrimination. Considering Gz =0, the problem

leads to discriminant between two AR(p) processes and y is classified to
H, if

T P ar Y
T p j H ~ Z,_ dj(—Zcos )
LZZ(d-—c-) -2 cos = 22 >1n r=1£4j=0 T+l —.
o T P nr )
1.2 el 2o )
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In special case p =1
dy=(1+p*),  di=p
o = (1+a?) g =a 4)

and the discrimination rule leads to classified y to H; if

T
Z T]([3 a)([3+a 2cosT 1) 2
2 nr 2 B nr "
r=1 |:G +6(1+OL 2acosT+1j“:c58+cn(l+[3 2BCOST+1H
T | 2 2 2 o O\
Hr=1 o +(5n|:1+0L —20ccos(T+1ﬂ
> In 5)

T | o2 2 2 o ]!
Hr:l o2 +cn[1+[3 —2Bcos(T+1ﬂ

and to Hy otherwise. For AR(2) plus noise processes

LLR = —%m —| y(Z‘1 =)y

|GI+B5B| 2, . 2 1 2
= —_— [(GI+GB ) —(GI+GB y.
A ! "

It leads to classify y to Hj if

T

2
nr nr
E {cg + G%Hdo + dl(—2 R, 1) + dz(—z €08 o~ 1)

r=1

- 9\7-1
- |:G§ + c% [co +¢ (—2 cos Tn: 1) + 02(—2 cos Tn—:tnl) H z,%

-1
T 2
2 2 nr nr
I |r=1 o, + Gn|:CO + cl(—2cos T +1)+02(—2 cos 7 +1) }

-1
T nr o\
| |r:1 ol +o {do +d1( 2cosT+1)+d2(—ZCosT+1j }
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With substituting cg, ¢, ¢, dp, di and dy obtained from (3) as
2 2
Co = 07 +(1+oc2) , €1 2(11(1—&2), Cy = —Qg

dy = Bf + (L +Pg)?, dy = P11 - Ba) dy = By

we have

i {L? + o7 [B% +(1+By)” 2611~ Bz)(cos Tn—J’rdl) - 4BZ(COS2 Tn: 1)}_1

r=1

:|—].
171
_ |:G§ + GTZ] |:(x% +(1+0g)? =20 (10 )(COS—TH_:J - 4(12(COS2 Tnj—nlﬂ } e

T
Hr:l

T
Hrzl

1
o +G%l:0(% +(1+ag)? _2a1(1—a2)(cosTn—:1j_4a2(cosz Tn:1ﬂ ‘
(6

>In

o2 +cﬁ[ﬁ% +(1+Pg ) -2, (1 —Bz)(cos TKIJ ‘432(“’52 Tn: 1)}_1 ‘

3. Simulation Study

The performance of this method was investigated via computer

simulations. Two hundred data sets of size 500 were generated for H;

and Hy using SPLUS/2000 package. The considered time series models

were both AR(1) plus noise and AR(2) plus noise with cﬁ =1.0 and

different values of 02 and various values of o and B according to H; and
Hs models. Then equation (5) or (6) was used, based on which AR(1) or
AR(2) had been used, to classify observed time series to one of two

models.

Reprehensive results of these simulations are given in Table 1. As
can be seen from the results of the table the method works well and the

performance would be improved if observation noise variance, c2, take

T‘I’

smaller value.
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Table 1. The percentage of misclassification for AR(1) plus noise

processes for various parameter values a(oq, og) and B(B;, Ba).

Time series of length 500 generated from H;(Hy) with cﬁ =1.0 and

different values of 62

o, B 0 1| 2| 3] 4 5 6 7 8 | 9 | 10
(-0.2, -0.6) 1 | 25|88 |65 |118| 125 | 18 | 225 [238| 278|408
(0.3,0.5) 0 o | ofos| 3| 43 | 65 | 68 |123]| 138 [1L5
(-0.3,-0.5) 0 0o |os|o08|25]| 83 | 73 | 65 |145| 14 |188
(-0.1,-0.6) 0 0 |os|15|28]| 45 | 95 | 85 |123]| 135|133
(0.2,0.5) 08 | 15| 62| 2 | 28| 75 9 | 115 | 128/ 205 [19.3
(0.1,-0.5) 0 |05 | 43| 6 |115| 153 | 165 | 21.3 [ 258 255 | 26
(0.2,-0.4) 75 | 138 | 19 (235|258 | 30 | 305 | 345 | 37 | 38 |403
(a1, as), (Brs Bo) 0 1| 2| 3| 4 5 6 7 8 | 9 |10

(-0.1,-0.2), (-0.2,-02)| 05 | 12 | 23 | 303| 32 | 31.8 | 368 | 46.3 | 41.8| 455 | 465
(-0.2,-0.1), (-0.2,02)| 05 | 7.8 | 7 |245]|268]| 33.3 32 32.3 | 385 | 388 [41.3
(-0.2,-0.05), (0.2,0.5)| 325 | 375 | 40 | 443|423 | 44 465 46 | 478 | 44.8 | 488
(-0.3,-0.2), (0.3,0.2) | 22 |248([283| 29 [31.3]| 338 32 385 | 38 | 385 [425
(-0.4,-0.2), (0.4,0.2) | 138 | 195|175 | 195 | 21.8| 23 245 | 295 |215| 27.8 | 268

0.3,-0.3),(-02,-04)| 1.3 | 1.8 4 | 53] 10| 125 | 7.8 | 145 | 193] 235 | 26

4. Distribution of the Discriminant Function

As was mentioned the distribution of the discriminant function when
the variances of two populations are different can be expressed in terms
of a weighted sum of random variables, each having a chi-square

distribution with one degree of freedom, i.e.,

T
dg(x) = ZMX%- (7
=1

So far the weights in the sum are calculated numerically. To give
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analytically weights for AR(p) plus noise consider y is from H;. It

means that
Y ~ N(0, =, +o21)

and z = Ly has multivariate normal distribution with zero mean vector

and diagonal covariance matrix with (r, r) th element

-1
P j
c§ + G%[Z cj(—Z cos Tn: 1) ] . 8

The discriminant function between two populations in favor of H; after

removing constant term is

T

do(@) = Y. '

. L2
o, + 0%{210 cj(—2 cos Tm J]}
Using (8)
dg(z)
-1
zZT: o2+ n | 624 o =Ll ©

— p | mr J p (_ nr
Zj:ld]( ZCOS—T+1) ijlc]( 2cos—T+ 1)

where x%, are nearly independent chi-squared random variables each

with one degree of freedom. Therefore, the rth coefficient of linear
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combination of x%, is given by

2
On

2
On
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-1

o7 +

Zp c-(—2cos Lk !
j=1 " T+1

The coefficient when y is from Hj is given by

2

On

2

On

p o Y
Zj:l dj(—2cos T+ 1)

-1

Ay = Gz+

o2 +

Some Special Results

p o Y D R
Z}_:l ¢; (—2 cos T+ 1) ijl dj(—2 cosﬁ)

-1.(10)

In the case of discrimination between two pure AR(p) processes,

o2 = 0, the rth coefficient of distribution of discriminant function is

2%

nr
-2
( ST

1-

)]
-—1 yEHl,

Zp c-(—Zcos o )J

j=0 7 T+1

Zp c-(—2c0s Lk )]
j=0 J T+1

For AR(1) plus noise
Hl .
H2 .

leads to

2.
j=0

€H2.

J
nr
d;| —2cos
J T+1
xt + gt’ xt = axt_l + nt

Xp+ g, X =P My

G%(B—a)(a+[3—2cos Tnilj

r
(1 + a2 - 2a.cos

T+1

) c%(l + B2 —2Bcos TNIJJF cz

r
T+1

(1 + [32 — 2B cos

G%(B—(l)((l-ﬁ-B—ZCOS TTEIJ
[

j c%(l +a? - 2a.cos Tn:

(11

ye Hy,
(12)

y € Hy
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and reduces to

(B—a)(a+B—ZCosTn—:1j

2 nr
(1+oc 2acosT+1j
A = (13)

(B—a)(a+B—200sTn—:1j
(1 +B2 — 2B cos Tnil)

when discrimination is for two pure AR(1) processes. It should be

y € H

y € Hy

mentioned that (12) and (13) are the same as given in Chinipardaz [4]

and in Chan et al. [2], respectively. In AR(2) plus noise

oalf(B) - f(a)]
9 9 (S H]_,
[67/(B) + oz ]f(a)
Aj = (14)
oalf(B) - f(a)] ;
[o2f(a) + o2]£(B) ’
where
f(B) = B + (1 +B3)* — 2B1(1 - B) cos 77 — 4By cos” =,
fla)=a? +(1+03)? - 2a;(1 - ag)cosTn—Il — 4oy cos? i1

5. Numerical Comparison of Classical Method
and New Method for Weights

The distribution of the discriminant function has been studied by

some authors (see for examples Johnson and Kotz [11] and Davies [9]).

For example Johnson and Kotz [11] tabulated 2111 ijfj for T = 5.

This approach has been followed of fitting Pearson curve to intractable

distribution of quadratic forms. A Pearson curve is fitted by the using the
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first four cumulants (see Krishnaiah et al. [13]). Solomon and Stephens
[17] showed that the sth cumulants, Ky(dg(y)) under H;, i =1, 2 is given
by

T
Ks(dg(y)) = 257 (s = 1)! )25,
j=1

The weights can be obtained numerically by finding the eigenvalue of

%z}zl (Z;— 21_1], where it depends on whether y comes from the

first or second population. In general, the eigenvalues are very difficult to
obtain and require the cumbersome manipulation especially in time
series because T has very large dimension. An analytical formula has
now been suggested for the weights. The performance of the analytic
method 1s investigated by comparison between two methods. For
T =100 and different o and B in AR(1) plus noise process is considered.

The various values of cg also is selected to find the effect of observation

noise.

Table 2 compares the first four cumulants of K4(dg(y)) calculating

by using (I): A; given in (12) and (II): %A; = jth eigenvalue of

%23;1( ;1— zl_l J From the tables it was found that the explicit

approximation to the eigenvalues gave the cumulants very close to those
using the true values of the cumulants. The cumulants are closer if the

variance of the observation noise c§ takes small value and two models

are more different.



TIME SERIES DISCRIMINANT ANALYSIS OF AR(p) PLUS ... 143

Table 2. Comparison of the first four cumulants of the discriminant
function obtained by analytical method and numerical method, given
in patronesses, for AR(1) plus noise processes

@a=02 p=04

ol i Kz Kz
0.0 | 425x10 "(400x10 7) | 185 x 10 " (16510 ) | 5.27 % 10 ' (282x 10 1) | 457> 10 (4 50107 )
05 | —4.08 % 1077 (—6.80 x 107%) | 713 x 107* (718 x 107%) | —4.20 % 1079 (430 x 107%) | 1.37 % 1077 (1.20 x 107 )
1.0 | =168 x 1072 (—1,79 x 107} | 4.55 x 107 (458 x 107} | —3.12 x 10~ 5( 3.18 x 107%) | 6.37 x 107 (6,46 x 10~ )
{ ! ! (- ) °)

( ) = ) °)

205 | B0 I0TR S n0R Sl | R 100 (B0 DY) | 07 stet a8 | Lsosanet (e san
50| —1.6%x107%(-168 x107%) | 814 x 107 (324 x 107"} | —3.56 % 1077 (-3.62 x 1077) | 2.0 » 107%(3.08 x 10~

a=-01,8=01

( N R (170><1o ") 122><105(122><10 ) 595><1o*( )
05 | Tred10- % (1 raei?) 729x10“(728x10 )| 233x107%(2.33x 107%) | 1.02 x 1077 (1.03 x 1077)
1.0 | 9.97 x 10~ 3(998x10 %) | 4.05 x 107 (4.05 x 1074} | 733 x 10~ 7(733><10 N 3.0 x 10- a(amxlo 2
2.5 | 3.27 % 1072 (3.27 x 1072} | 1.81 x 1075 (1.31 % 10~5%) | 7.82 % 1072 (7.82 x 102} [ 3.18 5 10~° {3.19 > 10~°)
5.0 | 112 x 1077 (112 x 10~} | 4.47 x 1075 (4.47 x 10) | 8.10 x 10~° (8.11 x 10=?) | 3.66 x 101* {3.67 x 109

00 | 400 % 107 400><10 596><10

o= 08 F=08

X [ Kz [ Kq

0.0 .50 [7.04) 6.54 (6.69) 14, 92(15‘87) 58.20 (62.55)

0.5 2.40 (2,50} 0.38 % 1071 (8,02 x 107%) | 836 x 1071 {8.02 x 1074 1.25 (1.34)

1.0 1. 47(1 53) 5.61 % 107" (3.82 > 107) | 1.98 x 1071 (2.11 x 107%) | 1.82 x 107" (1.96 > 107%)
2.5 | 6.07 % 107 {6.35 % 107%) | 8.02 x 1072 (8.50 x 1075} | 2.00 x 1075 (214 x 107%) [ 8.50 % 107° (3.24 % 1077)
5.0 | 2.75 > 107" (2.88 % 1071} | 2.34x 1077 (248 > 107%) | 2.92 x 107°(3.14 x 107%) | 6.75 x 107 (7.27 > 107*)

a=-052=05

s 4 Ks Ky

0.0 1.31(1.52) T80 % 10 ° (1 BL x 107 ) 138 % 10 7 (442 % 10 7) | 178 x 1072 (180 x 10 7)
0.5 | 5.58 5 107! (5.42 % 107%) | 4.32 x 1072 (4.56 > 1072) | 4.65 x 107% (4.70 x 107%) | 0.05 x 107 (9.17 > 107*)
1.0 | 300 x 107 {312 x 107} | 1.97 x 1072 (1.99 x 1072) | 1.28 x 107° (1.30 x 107} | 1.69 x 10~* (1.71 x 10~%)
25 | 1115 107 (112 % 107%) | 5.41 x 107% (5.47 > 107%) | 1.50 x 10~ (1.40 x 107%) | 1.03 x 107 (1.05 > 10~%)
5.0 | 415 x 1072 (419 x 102 | 1.80 x 10~% (1.82 x 10=%) | 1.83 x 10~%(1.86 x 10~%) [ 9.81 x 10-7 (5.85 x 10~7)

a=02 =07

o7 [ Ks s

0.0 | 282x10 " (2 53 x 10 1) | 9.64dx 10 ° (963 x 10 °) | 182x10 " (1.77x 10 ) | 16.66 x 10 °(16.61 x 10 °)
05 | 420 < 1077 (3.65 x 10—?) 3.48 % 1075 {353 % 107°) | —53.20 x 1077 (=351 x 107%) | 2.85 x 107° (2,83 x 107%)
10| 137 %1072 (101 » 1073y | 2.35 x 1075 (240 % 107%) | —3.80 » 107 (—4.05 x 107%) | 1.82 x 107%(1.08 » 107%)
2.5 | —5.28 x 1077 (—5.88 x 107°) | 1.34 x 1077 (1.38 x 107°%) | —2.64 < 107° (—2.74 < 107°) | 882 x 1077 (1.02 % 107%)
50| —554 %1072 (—584x 107%) | 704 x 1074 (820 x 107%) | —1.41 x 1079 (-1.46 x 107%) | 420 %1077 (447 x 1077

a=-03 F=—06

3 oy
894x1076) 3.07x 1077 (200 x 107

al .

00 1o1><101(949><10 N SRR ) T 7 2

05 | ~238 % 107% (—A52 x 1078) | 1.56 x 1075 (155 5 107%) | —187 x 1075 (—1.84 % 10°5) | 777 5 1077 {795 x 1077}

10 | =288 % 1072 (=521 % 1072) [ 111 x 1079 {113 % 107} | —1.81 x 105 (=1.88 x 10°%) | 5.25 % 1077 (5.41 x 10°7)

25 | —427 %1072 (451 x 1072 | 6,14 x 107* (8.25 > 107%) | 863 x 1075 (—8.80 % 1075) | 2.18 % 1077 (224 x 1077}
(= ) it A ( ) { )

SSQXIO 527 % 1077

50 | —3.81 x 1072 (-3.88 x 102 3.28 x 107* (3.37 x 10~ —3.73 % 1077 (—3.85 x 10~¢ 7.21 x 10~ (7.48 x 10~
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