
w
w

w
.p

ph
m

j.c
om

Adv. & Appl. in Stat. 6(2) (2006), 129-144

:tionClassifica jectSub sMathematic 2000 62H30, 62M10.

Keywords and phrases: quadratic discrimination, ( )pAR  plus noise processes, band

matrices, cumulants.

Received April 5, 2005

 2006 Pushpa Publishing House

TIME SERIES DISCRIMINANT ANALYSIS OF AR(p)

PLUS NOISE PROCESSES: A TIME DOMAIN

APPROACH

RAHIM CHINIPARDAZ and SEYED MAHMOUD LATIFI

Shahid Chamran University, Ahvaz, Iran

Jundishapour University of Medical Sciences, Ahvaz, Iran

Abstract

The problem of discrimination between two autoregressive processes of

order p is considered when the observed time series is contaminated

with an extra noise and the main discriminatory information is in the

covariance structure rather than the mean. An analytic discrimination

rule is given based on likelihood ratio and its performance is examined.

It is well known that the distribution of the discrimination can be

expressed in terms of a weighted sum chi-square random variables of

one degree of freedom. The weights in the sum have to be calculated

numerically. The approximated weights are calculated. It is shown that

they are very close to the true values.

1. Introduction

A number of practical problems in time series analysis reduce
to classifying a stochastic process to one or other categories. These
applications are in physical sciences as seismic records, medical sciences
as recorded brain waves, audiology, archeology, engineering and even in
biology and developmental psychology.
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A comprehensive overview of applications has been given in
Shumway [14, 15] as well as common methodologies to the discrimination
time series analysis in both time domain and frequency domain
approaches (see also Dargahi-Noubary [6]). Some more references in this
area are Dargahi-Noubary and Laycock [8], Dargahi-Noubary [5, 7],
Alagon [1], Chan et al. [2], Shumway and Unger [16], Kakizawa et al.
[12] and Chinipardaz [4].

Majority of works in time series discrimination, however, is devoted
to considering ARMA processes which can be expressed as a linear
combination of white noise processes (see Fuller [10]). ARMA models
have great success in engineering, business and economics applications.
However, as Dargahi-Noubary [6] pointed out, despite their wide
applicability, no real attempts have been made to find out the reason
behind their success in any particular application area.

It should be noted that improved models can be constructed by
incorporating more available information than linear models. For
instance consider the tracking of a missile fired from a submarine using

satellite measurements. The missile position at time ,, txt  and its

position at same time as observed by radar, ,ty  may be embedded in a

white noise, say ,tε  i.e.,

.ttt xy ε+= (1)

Now, if for example the movement of the missile is an autoregressive

of order p models, i.e.,

tptpttt xxxx η+θ++θ+θ= −−− 2211 (2)

both (1) and (2) altogether can be expressed as ( )pAR  plus noise model or

be considered as a state-space model which include ARMA models as an
especial case. Such examples viewed signal plus noise and are given in
Zyweck and Bogner [18].

Clearly, these models are more complicated to be used in time series
discrimination because of an extra noise.

Chinipardaz [4] obtained discrimination rule for two ( )1AR  models

with an extra noise and compared with other works given in time domain
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approach when various variance of tε  is considered. In this article

the work extended to an autoregressive process of order ,p ( ).pAR

Throughout, it is assumed that data are observed on stationary ( )pAR

denoted by ( )....,,, 21 Txxx=x  However, the observed time series is

subjected to an extra stationary noise.

The distribution theory of classification rule is extremely complicated

and involves the weighted sum chi-squared random variables of one

degree of freedom (see Shumway [15] and Chaudhuri and Borwanker

[3]). However, these weights are very complicated to obtain and matrix

manipulation is required.

In this study, an attempt has been made to give approximated

analytic weights. The paper is organized as follows: In Section 2,

approximation to discrimination is suggested. Section 3 is devoted to

simulation works to obtain the performance of given approach. The

analytic distribution of discrimination between two ( )pAR  processes plus

noise is given in Section 4. Finally, in the last section the cumulants of

discriminant function are compared with those given in the literature.

2. Discrimination Between Two ( )pAR  Plus Noise Processes

Consider that the T observed dimensional vector ( )′= Tyyy ...,,, 21y

is a stationary time series process subjected to an extra noise, i.e.,

ttt xyH ε+=:1

tptpttt xxxx η+α++α+α= −−− 2211

and

ttt xyH ε+=:2

,2211 tptpttt xxxx η+β++β+β= −−−

where sjα′  and sjβ′  are constants. tε  and tη  are serially uncorrelated

disturbances with zero mean and variances 2
εσ  and ,2

ησ  respectively. It is
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assumed that tε  and sη  are uncorrelated for all t and

( ),...,,2,1, Tsts =  i.e.,

( ) 0,cov =ηε st

sjα′  and sjβ′  are so that tx  is stationary and invertible. It means that

ty  is also stationary and invertible. If ( )pxxx +−−−= 1210 ...,,,x  and =α

( )′ααα p...,,, 21  under 1H , then we have

( ) ( ) ( )












α−−α−
σ

−πσ=α ∑
=

−−
η

−
η

T

t
ptptt

T
xxxp

1

2
1122

2
0

2

1exp2,; xx

( )












αα
σ

−πσ= ∑∑∑
= = =

−−
η

−
η

T

t

p

i

p

j
jtitji

T
xx

1 0 0
22

2

2

1exp2

( )












αα
σ

−πσ= ∑∑ ∑
= = =

−−
η

−
η

p

i

p

j

T

t
jtitji

T
xx

1 0 1
22

2

2

1exp2

( )











α

σ
−πσ= ∑∑

= =η

−
η

p

i

T

t
ti

T
x

0 1

22
22

2

2

1exp2

   ( )











α+αα+ ∑ ∑ ∑

−

= +=

+

+=
−−

1

0 1 1

,2
p

i

p

ij

iT

jt
jtitji gxx x

( ) [ ( )] ,,
2

1exp2 ,1222
2













α+′
σ

−πσ= α+
η

−
η xxx gB p

T

where ,10 =α  α+ ,12pB  is a band matrix with band width 12 +p  and

( )α,xg  is a corrected term which depends on few first and last terms of

( )β⋅ ,; 0xxpxt  can be obtained similarly as,

( ) ( ) [ ( )] .,
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Removing the corrected terms for two models the loglikelihood ratio is

given by

( )
( ) ( )yy
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where ( )βα ΣΣ  and ( )21 ΣΣ  stand for the covariance matrix of x and y

under ( ),21 HH  respectively. α+ ,12pB  and β+ ,12pB  can be approximated

by a polynomial of order p of 3B  (see Chinipardaz [4]). Then

∑ ∑
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(see Chan et al. [2] and Chinipardaz [4]). Taking { },...,,, 21 TL ξξξ=  L

is symmetric and orthogonal matrix. Therefore, based on loglikelihood
ratio y is classified to 1H  if
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In special case 1=p
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With substituting ,0c  ,1c  ,2c  ,0d  1d  and 2d  obtained from (3) as

( ) ( ) 22211
2

2
2
10 ,1,1 α−=α−α=α++α= ccc

( ) ( ) 22211
2

2
2
10 ,1,1 β−=β−β=β++β= ddd

we have

( ) ( )∑
=

−−

ηε


















 







+
πβ−







+
πβ−β−β++βσ+σ

T

r
T

r
T

r

1

11
2

221
2

2
2
1

22
1

cos4
1

cos121

( ) ( ) 2
11

2
221

2
2

2
1

22
1

cos4
1

cos121 rz
T

r
T

r



















 







+
πα−







+
πα−α−α++ασ+σ−

−−

ηε

( ) ( )

( ) ( )
.

1
cos4

1
cos121

1
cos4

1
cos121

ln

1

1
2

221
2

2
2
1

22

1

1
2

221
2

2
2
1

22

∏

∏

=

−

ηε

=

−

ηε





 







+
πβ−







+
πβ−β−β++βσ+σ





 







+
πα−







+
πα−α−α++ασ+σ

≥
T

r

T

r

T
r

T
r

T
r

T
r

(6)

3. Simulation Study

The performance of this method was investigated via computer

simulations. Two hundred data sets of size 500 were generated for 1H

and 2H  using SPLUS/2000 package. The considered time series models

were both ( )1AR  plus noise and ( )2AR  plus noise with 0.12 =ση  and

different values of 2
εσ  and various values of α and β according to 1H  and

2H  models. Then equation (5) or (6) was used, based on which ( )1AR  or

( )2AR  had been used, to classify observed time series to one of two

models.

Reprehensive results of these simulations are given in Table 1. As
can be seen from the results of the table the method works well and the

performance would be improved if observation noise variance, ,2
ησ  take

smaller value.
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Table 1. The percentage of misclassification for ( )1AR  plus noise

processes for various parameter values ( )21, ααα  and ( )., 21 βββ

Time series of length 500 generated from ( )21 HH  with 0.12 =ση  and

different values of 2
εσ

βα, 0 1 2 3 4 5 6 7 8 9 10

(-0.2, -0.6) 1 2.5 3.8 6.5 11.8 12.5 18 22.5 23.8 27.8 40.8

(0.3, 0.5) 0 0 0 0.8 3 4.3 6.5 6.8 12.3 13.8 11.5

(-0.3, -0.5) 0 0 0.5 0.8 2.5 3.3 7.3 6.5 14.5 14 18.8

(-0.1, -0.6) 0 0 0.8 1.5 2.8 4.5 9.5 8.5 12.3 13.5 13.3

(0.2, 0.5) 0.8 1.5 6.2 2 2.8 7.5 9 11.5 12.8 20.5 19.3

(0.1, -0.5) 0 0.5 4.3 6 11.5 15.3 16.5 21.3 25.8 25.5 26

(0.2, -0.4) 7.5 13 19 23.5 25.8 30 30.5 34.5 37 38 40.3

( ) ( )2121 ,,, ββαα 0 1 2 3 4 5 6 7 8 9 10

(-0.1, -0.2), (-0.2, -0.2) 0.5 12 23 30.3 32 31.8 36.8 46.3 41.8 45.5 46.5

(-0.2, -0.1), (-0.2, 0.2) 0.5 7.8 7 24.5 26.8 33.3 32 32.3 38.5 38.8 41.3

(-0.2, -0.05), (0.2, 0.5) 32.5 37.5 40 44.3 42.3 44 46.5 46 47.8 44.8 48.8

(-0.3, -0.2), (0.3, 0.2) 22 24.8 28.3 29 31.3 33.8 32 38.5 38 38.5 42.5

(-0.4, -0.2), (0.4, 0.2) 13.8 19.5 17.5 19.5 21.8 23 24.5 29.5 21.5 27.8 26.8

(0.3, -0.3), (-0.2, -0.4) 1.3 1.8 4 5.3 10 12.5 7.8 14.5 19.3 23.5 26

4. Distribution of the Discriminant Function

As was mentioned the distribution of the discriminant function when

the variances of two populations are different can be expressed in terms

of a weighted sum of random variables, each having a chi-square

distribution with one degree of freedom, i.e.,

( ) ∑
=

χλ=
T

j
jjQd

1

2
1 .x (7)

So far the weights in the sum are calculated numerically. To give
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analytically weights for ( )pAR  plus noise consider y is from .1H  It

means that

( )IN 2,~ εα σ+Σ0Y

and yz L=  has multivariate normal distribution with zero mean vector

and diagonal covariance matrix with ( )rr, th element

.
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The discriminant function between two populations in favor of 1H  after

removing constant term is

( ) ∑
∑=

−

=ηε



























+
π−σ+σ

=
T

r p

j

j

j

Q

T
rd

d
1

1

0
22

1
cos2

1z

.

1
cos2

1 2
1

0
22

r
p

j

j

j

z

T
rc





























+
π−σ+σ

−
−

=ηε ∑
Using (8)
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where 2
1rχ  are nearly independent chi-squared random variables each

with one degree of freedom. Therefore, the rth coefficient of linear
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combination of 2
1rχ  is given by
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The coefficient when y is from 2H  is given by

.1

1
cos2

1
cos2

1

1

2
2

1

2
2 −


























+
π−

σ
+σ


























+
π−

σ
+σ=λ

−

=

η
ε

=

η
ε

∑∑
jp

j j
p

j

j

j

r

T
rd

T
rc

(10)

Some Special Results

In the case of discrimination between two pure ( )pAR  processes,

,02 =σε  the rth coefficient of distribution of discriminant function is
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For ( )1AR  plus noise

ttttt xxxH η+α=ε+ −11 ,:
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and reduces to
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when discrimination is for two pure ( )1AR  processes. It should be

mentioned that (12) and (13) are the same as given in Chinipardaz [4]

and in Chan et al. [2], respectively. In ( )2AR  plus noise
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5. Numerical Comparison of Classical Method

and New Method for Weights

The distribution of the discriminant function has been studied by

some authors (see for examples Johnson and Kotz [11] and Davies [9]).

For example Johnson and Kotz [11] tabulated ∑ =
χλT

j jj1
2
1  for .5=T

This approach has been followed of fitting Pearson curve to intractable

distribution of quadratic forms. A Pearson curve is fitted by the using the
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first four cumulants (see Krishnaiah et al. [13]). Solomon and Stephens

[17] showed that the sth cumulants, ( ( ))yQs dK  under ,iH 2,1=i  is given

by

( ( )) ( ) .!12
1

1 ∑
=

− λ−=
T

j

s
j

s
Qs sd yK

The weights can be obtained numerically by finding the eigenvalue of

∑ ∑ ∑=
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






 −T
jT 1

1
2

1
1

,1  where it depends on whether y comes from the

first or second population. In general, the eigenvalues are very difficult to

obtain and require the cumbersome manipulation especially in time

series because T has very large dimension. An analytical formula has

now been suggested for the weights. The performance of the analytic

method is investigated by comparison between two methods. For

100=T  and different α and β in ( )1AR  plus noise process is considered.

The various values of 2
εσ  also is selected to find the effect of observation

noise.

Table 2 compares the first four cumulants of ( ( ))yQs dK  calculating

by using (I): jλ  given in (12) and (II): jj =λ th eigenvalue of

∑ ∑ ∑=
− −









−T

jT 1
1

2
1

1
.1  From the tables it was found that the explicit

approximation to the eigenvalues gave the cumulants very close to those

using the true values of the cumulants. The cumulants are closer if the

variance of the observation noise 2
εσ  takes small value and two models

are more different.
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Table 2. Comparison of the first four cumulants of the discriminant
function obtained by analytical method and numerical method, given
in patronesses, for ( )1AR  plus noise processes

4.0,2.0 =β=α

Acknowledgement

The authors wish to thank Shahid Chamran University for financial
support.

References

[1] J. Alagon, Spectral discrimination for two groups of time series, J. Time Ser. Anal.
10(3) (1989), 203-214.



w
w

w
.p

ph
m

j.c
om

RAHIM CHINIPARDAZ and SEYED MAHMOUD LATIFI144

[2] H. T. Chan, R. Chinipardaz and T. F. Cox, Discrimination of AR, MA and ARMA

time series models, Comm. Statist. Theory Methods 25(6) (1996), 1247-1260.

[3] G. Chaudhuri and J. D. Borwanker, Bhattacharyya distance-based linear

discrimination, J. Indian Statist. Assoc. 29 (1991), 47-56.

[4] R. Chinipardaz, Discrimination of ( )1AR  plus noise, Iran. J. Sci. Technol. Trans. A

24(2) (2000), 165-172.

[5] G. R. Dargahi-Noubary, Discrimination between Gaussian time series based on their

spectral differences, Comm. Statist. Theory Methods 21(9) (1992), 2439-2458.

[6] G. R. Dargahi-Noubary, A linear discriminant function for Gaussian time series,

J. Time Ser. Anal. 20(2) (1999a), 144-153.

[7] G. R. Dargahi-Noubary, Time Series with Applications to Seismology, Nova Science

Publishers, Inc., 1999b.

[8] G. R. Dargahi-Noubary and P. J. Laycock, Spectral ratio discriminants and

information theory, J. Time Ser. Anal. 2 (1981), 71-86.

[9] R. B. Davies, Numerical inversion of a characteristic function, Biometrika 60 (1973),

415.

[10] W. A. Fuller, Introduction to Statistical Time Series, 2nd ed., John Wiley, New York,

1996.

[11] N. L. Johnson and S. Kotz, Distributions in Statistics: Continuous Multivariate

Distributions, Vol. 1, John Wiley, New York, 1972.

[12] Y.  R. Kakizawa, R. H. Shumway and M. Taniguchi, Discrimination and clustering

for multivariate time series, J. Amer. Statist. Assoc. 93 (1998), 328-340.

[13] P. R. Krishnaiah, J. C. Lee and T. C. Chang, The distribution of the likelihood ratio

statistics for tests of certain covariance structures of complex multivariate normal

populations, Biomertika 63 (1976), 543-549.

[14] R. H. Shumway, Discriminant analysis for time series, Handbook of Statistics, Vol. 2,

P. R. Krishnaiah and L. N. Kanal, eds., North-Holland, Amsterdam, 1982,

pp. 1-46.

[15] R. H. Shumway, Applied Statistical Time Series Analysis, Englewood Cliffs,

Prentice-Hall, 1988.

[16] R. H. Shumway and A. N. Unger, Linear discriminant functions for stationary time

series, J. Amer. Statist. Assoc. 72 (1974), 881-885.

[17] H. Solomon and M. A. Stephens, Approximations to density functions using Pearson

curves, J. Amer. Statist. Assoc. 73(361) (1978), 153-160.

[18] A. Zyweck and R. Bogner, Radar target classification of commerical aircraft, IEEE

Transactions in Aerospace Electronic Systems 32 (1996), 598-606.

g


