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Abstract 

Natural convection in air-filled horizontal annuli is studied numerically 

for radius ratio and Rayleigh number in the ranges 32.1 ≤≤ R  and 

.000,150<Ra  Three complementary approaches are used to investigate 

stability and multiplicity of flow states. A systematic investigation 

performed for two-dimensional flows leads first to establish a stability 

diagram of flow regimes as a function of Ra and R. Flow transitions as a 

function of R, from narrow to large gap annuli of infinite length, are then 

examined by using 3D-linear stability computations. New stable and 

unstable regions are highlighted and are strengthened thanks to direct 

3D-numerical experiments for finite length annuli. The influences of 

both the axial aspect ratio on the onset of instabilities and the initial 

conditions on the asymptotic flow states are also examined. 

I. Introduction 

Free convection in horizontal annuli bounded by two cylinders held at 

different temperatures has been intensely studied in the last past 
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decades from the experimental, numerical and theoretical points of view. 

Besides the technological applications such as thermal storage systems, 

this geometrical configuration offers a large variety of flow patterns 

because it consists in four regions over which the thermal gradient 

rotates between horizontal and vertical directions. In addition, a rich 

diversity of natural convective flows occurs according to the Rayleigh and 

Prandtl number values, Ra and Pr, but also according to the values of the 

annulus length and radius ratio of the cylinders, R, which is a key 

dimensionless parameter. 

Although the first studies on natural convection in horizontal annuli 

probably date from the 30’s [1], the first relevant analyses for the flow 

properties come from the experimental works by Bishop et al. [2, 3], 

Grigull and Hauf [15] and Powe et al. [28] who established the famous 

chart summing up the flow regime and the spatial patterns for air-filled 

annuli as a function of the Grashof number and radius ratio. 

For small Rayleigh numbers, the flow consists in a two-dimensional 

crescent-shaped flow formed by two large cells, symmetrically located 

with respect to the vertical plane containing the cylinder axes. For wide 

gap annuli, i.e., for radius ratio larger than 71.1=R  [28], the fluid 

particle trajectories lie mainly in the cross-section of the annulus with a 

very small axial dependency. This flow pattern was termed helical. The 

transition therefore happens for large Ra-values from an almost two-

dimensional steady flow to an oscillatory flow, as observed in 

experiments [2, 3, 18]. For moderate gap annuli 71.124.1( << R  [28]) 

and past the transition, a three-dimensional spiral flow is observed, 

resulting from the combination of two origins of the fluid motion: in the 

lower region of the annulus, the helical structure persists whereas 

counter-rotating transverse rolls (with respect to the annulus axis) 

develop in the upper part of the annular space. The onset of transverse 

rolls at the top of the annuli was confirmed by linear stability analysis 

and by three-dimensional numerical simulations [8, 11, 15, 30]. For 

narrow gap annuli 24.1( <R  [28]), the basic crescent-shaped flow 

evolves towards multi-cellular flows giving birth to longitudinal rolls at 

the top of the annular space. The changes in the flow patterns were 
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widely studied numerically by performing two-dimensional computations 

for flows assumed to only occur in the cross-section of the annular spaces 

[4-6, 9, 10, 20, 21, 29, 31, 32]. It was shown that the slight curvature of 

the cylinder walls at the top of the annular space breaks the usual 

Rayleigh-Bénard pitchfork bifurcation into a couple of a virtual 

transcritical bifurcation and a saddle-node bifurcation. Therefore, two 

branches of solutions, disconnected from each other, exist above a 

threshold Rayleigh number. According as the flow belongs to one or to the 

other branch, the solution exhibits a different number of counter-rotating 

cells at the top of the annulus for the same set of parameter values. 

Contrary to the Powe chart [28] and the two-dimensional simulations 

describing transitions to longitudinal rolls at the top of narrow gap 

annuli, the three-dimensional stability analyses [8, 11, 23], confirmed by 

three-dimensional simulations [11], foresee the growing of transverse 

rolls at the top of the annulus, like for moderate radius ratios. However 

for ,2.1≤R  three-dimensional numerical simulations performed by Dyko 

and Vafai [13] have shown possible combinations between transverse and 

longitudinal rolls in the upper region of the annulus. In that case, the 

longitudinal patterns look like those predicted by two-dimensional 

simulations and shown in the Powe chart [28]. 

The purpose of this article is to present up to date numerical 
solutions and linear stability analysis results for natural convection 
between differentially heated horizontal cylinders. A special attention is 
brought on flow patterns and flow stability properties. In what follows, 
the paper is divided into three main parts. The problem and the 
equations are first established for the fluid motion and for the linear 
stability analysis. The discrete models and numerical methods are then 
introduced. The results are presented into three sub-sections. First, a 
review of the fluid flow occurring in the transverse section of an annular 
space is discussed with a particular interest put on the multiplicity of 
solutions for a fixed set of parameters. A chart summing up the flow 
patterns is then established for large ranges of Rayleigh number and 
radius ratio values. In the second sub-section, three-dimensional linear 
stability analyses of these flows are then led, complementing the studies 
reported in the current literature for moderate and large radius ratios. 
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The reason of the sudden disappearance of the Ra-threshold value for 

2≥R  is clearly shown. In the last sub-section, the discussion is on 

three-dimensional simulations carried-out to validate the stability 
diagram and to describe the fluid motions in the instability regions of 
two-dimensional flows. The effects of the axial aspect ratio and of the 
initial conditions on the onset of the amplification of instabilities are 
investigated. 

II. Continuous Models 

A. Governing equations 

The annulus of length ∗L  is formed by two co-axial cylinders of radii 

,∗∗ < oi rr  held at uniform temperatures ( ) ( ) ∗∗∗∗∗∗ =>= ooii TrTTrT  and 

bounded by two impermeable and adiabatic plates (Figure 1). The flow is 
assumed to be laminar and incompressible with constant physical 
properties except the density in formulating the buoyancy effect 
(Boussinesq approximation). By scaling the axial coordinate by the 

annulus gap ,∗∗∗ −= io rrd  the velocity components by the thermal 

diffusivity velocity ,∗α d  by introducing the dimensionless temperature 

difference ( ) ( ),∗∗∗∗ −−= oir TTTTT  where ( ) 2∗∗∗ += oir TTT  is the 

reference temperature, and the dimensionless radial coordinate =r  

( ) ,∗∗∗ − drr i  the dimensionless governing equations write in cylindrical 

coordinates ( ):,, zr θ  

,0~ =⋅∇ V  (1a) 

( ) ( ) θ−
∂
∂−=η−⋅∇+

∂
∂ cos~ 2 TfPrRa

r
pfvVufu

t
 

,
2~ 22

2







 η−
θ∂
∂η−∇+

f
uv

f
uPr  (1b) 

( ) ( ) θ+
θ∂
∂η−=η+⋅∇+

∂
∂ sin~ TfPrRapuvVvfv
t

 

,
2~ 22

2







 η−
θ∂
∂η+∇+

f
vu

f
vPr  (1c) 
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( ) ( ) ,~~ 2wPr
z
pfVwfw

t
∇+

∂
∂−=⋅∇+

∂
∂  (1d) 

( ) ( ) ,~~ 2TVTfT
t

∇=⋅∇+
∂
∂  (1e) 

where 1−=η ∗∗
io rr  and .1+η= rf  The spatial operators are defined as 

follows: 

( ) ( ) ( ) ( )
,~

z
XwfXv

r
Xuf

VX
∂

∂
+

θ∂
η∂+

∂
∂

=⋅∇  

,~ 2
2 







∂
∂

∂
∂+








θ∂

∂η
θ∂
∂+







∂
∂

∂
∂=∇

z
Xf

z
X

fr
Xf

r
X  

where ( )zrX ,, θ  is a scalar quantity. The problem is then characterized 

by four dimensionless parameters: the Prandtl number, ,αν=Pr  the 

Rayleigh number based on the annulus gap, ( ) ( ),
3

να−β= ∗∗∗ dTTgRa oi  

the radius ratio, ,∗∗= io rrR  and the axial aspect ratio, .∗∗= dLA  The 

boundary conditions are 

5,0,0 +==== Twvu  at ,0=r  (2a) 

5,0,0 −==== Twvu  at ,1=r  (2b) 

0,0 =
∂
∂===

z
Twvu  at 0=z  and .Az =  (2c) 

Owing to the symmetry both of the experimentally observed flows and 
dominant disturbances computed by stability analyses, the half cross-
section annulus is generally considered when computing three-
dimensional flows, with the following symmetry conditions applied at 

0=θ  and π: 

,0,0,0,0 =
θ∂

∂=
θ∂

∂==
θ∂
∂ Twvu  at 0=θ  and .π=θ  

The two-dimensional base flows introduced when conducting stability 
analysis are assumed independent of the axial direction. The fluid flow is 
then governed by equations (1a)-(1c) and (1e) for an axial component of 

the velocity equal to zero ( ),0=w  provided with the boundary conditions 

(2a)-(2b). 
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The local Nusselt number at any axial location on the cylinder 
surfaces is defined by 

( ) ( ) ,
1

1,
cr

c r
T

R
rRlnzNu

∂
∂








−
+−=θ  

where cr  stands for 0=ir  or .1=or  

B. Linear stability problem 

Consider the two-dimensional steady velocity ,000 θ+= eveuu r  

temperature ,0T  and pressure 0p  fields and the following three-

dimensional disturbances ,zr eweveuu δ+δ+δ=δ θ  δT and δp satisfying 

slip boundary conditions on the adiabatic end-walls at :,0 Az =  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )













θ=δ

θ=δ

θ=δ

θ=δ

θ=δ

,cos,,

,cos,,

,sin,,

,cos,,

,cos,,

kztrTT

kztrpp

kztrww

kztrvv

kztruu

 (3) 

where Ank π=  is the dimensionless wavenumber and n is an integer. 

By substituting in the governing equations (1) the velocity, pressure and 

temperature fields by ,0 uu δ+  pp δ+0  and TT δ+0  and by neglecting 

the second-order transport terms, the variables ,u  ,v  ,w  p  and T  satisfy 

the time-dependent equations 

( )
,0=+

θ∂
∂η+

∂
∂

wkfv
r
uf

 (4a) 

( ) ( ) ( )
00

00 vvuwkf
uv

r
uuf

t
uf

η+−
θ∂

η∂
−

∂
∂

−=
∂

∂
 

 
( ) ( )

vv
uv

r
ufu

0
0 η+

θ∂
η∂−

∂
∂

−  

 






 η−
θ∂
∂η−−








θ∂

∂η
θ∂
∂+





∂
∂

∂
∂+

∂
∂−

f
uv

f
ukfu

fr
uf

r
Pr

r
pf

22
2

2 2
 

 ,sin θ− TfPrRa  (4b) 
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( ) ( ) ( )
00

00 vuvwkf
vv

r
vuf

t
vf

η−−
θ∂

η∂
−

∂
∂

−=
∂

∂
 

 
( ) ( )

vu
vv

r
vfu

0
00 η−
θ∂

η∂
−

∂
∂

−  

 






 η−
θ∂

∂η+−







θ∂
∂η

θ∂
∂+





∂
∂

∂
∂+

θ∂
∂−

f
vu

f
vkfv

fr
vf

r
Prpf

22
2

2 2
 

 ,sin θ+ TfPrRa  (4c) 

( ) ( ) ( )
pkf

wv
r
wfu

t
wf

+
θ∂

η∂
−

∂
∂

−=
∂

∂ 00  

 ,2
2









−








θ∂

∂η
θ∂
∂+





∂
∂

∂
∂+ wkfw

fr
wf

r
Pr  (4d) 

( ) ( ) ( ) ( ) ( )
θ∂

η∂
−

∂
∂

−−
θ∂

η∂
−

∂
∂

−=
∂

∂ Tv
r
Tfu

Twkf
Tv

r
Tuf

t
Tf 00

0
00  

 .2
2

TkfT
fr

Tf
r

−







θ∂

∂η
θ∂
∂+





∂
∂

∂
∂+  (4e) 

The boundary conditions for the unknowns ,u  ,v  ,w  and T  are 

homogeneous. 

III. Discrete Models and Numerical Methods 

The numerical scheme and the numerical methods are shortly 
presented. For more details, refer to references [24, 26, 27]. 

A. Spatial and temporal discretization 

The governing equations with the boundary conditions were solved 
numerically in the primitive variable formulation by using a finite 
volume method on a staggered but structured grid. For a half-annulus, 

the mesh defined by [ ] [ ] [ ]111 ,,, +++ ×θθ× kkjjii zzrr  was built up as 

( )

( ) ,1,1,
tanh2

tanh112tanh
+=

+













 −−

= r
r

r
r

r

i Ni
c

c
N

ic
r  
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( ) ,1,1,
1exp

11exp

1
1 +=
−π

−






 −π
π=θ θ

θ

θ
θ

Nj
c

N
jc

j  

( )

( ) .1,1,
tanh2

tanh112tanh
+=

+











 −−

= z
z

z
z

z

k Nk
c

c
N

kc
Az  

For the computations of the two-dimensional steady states and the 

dominant disturbances, the full angular domain was considered 

( )












++=θ−π

+=
−π

−






 −π
π=θ

θ
θ

θ

θ

θ
θ

−+θ
.1,1

2
,2

,1
2

,1,
1exp

112exp

2
2

22

22

N
N

j

N
j

c

N
jc

jN

j  

The variables 
1

,, θNNN zr  are any integers and 
2θN  is an even integer. 

In order to adjust the grid distribution at the upper part of the annulus 

(near )π=θ  and in the wall regions, three strictly negative real 

parameters ( )zr ccc and, θ  were introduced. If one of these three 

parameters was zero, the grid distribution was uniform in the 

corresponding direction. 

The transport terms of the momentum and energy equations were 

discretized by using a second-order centred scheme. The time integration 

was performed by an implicit second-order Euler scheme for the diffusion 

terms and an Adams-Bashforth extrapolation scheme for the transport 

terms. The time splitting methods [14] and [16] were used to uncouple 

velocity and pressure fields for both the three- and two-dimensional 

computations. 

B. Steady two-dimensional flows 

The simulations of two-dimensional steady flows provide the basic 

solutions that are next perturbed by infinitesimal disturbances in order 

to establish the transition thresholds. Close to the critical parameter, the 

growth rate of the disturbances tends to zero, so that the use of a time 
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marching procedure to compute the basic flow is inefficient. In order to 

obtain multiple flows, a continuation strategy was applied. It implies the 

computations of steady solutions lying on unstable branches. The two-

dimensional basic flows were thus calculated by solving the steady-

conservative equations by using the Newton-Raphson method. To avoid 

constructing explicitly the Jacobian matrix, coming from the linearization 

of the non-linear equations about the basic flow, an iterative linear solver 

was used. This solver requires only the knowledge of the product of the 

Jacobian matrix by any vector. The evaluation of the residual and of the 

matrix-vector product, preconditioned by the diffusion operators, was 

performed by Mamun and Tuckerman [19] method. It consists in using 

two slightly modified temporal codes based on a first-order time 

differencing and an implicit evaluation of the viscous and thermal 

diffusions. The preconditioned residual and the Jacobian-vector product 

are then simply the differences between two successive solutions of two 

temporal codes build up with the convective non-linear terms and its 

linearization about the current approximation of the basic flow, 

respectively. 

C. Stability analysis 

Several methods were developed to compute the transition 

thresholds. For the two-dimensional stability analysis, namely equations 

(4a)-(4c) and (4e) with 00 =w  and ,0=k  the bifurcations were 

evaluated by solving a large non-linear system consisting in the non-

linear equations and their linearized counterparts at the transition. The 

algorithm used is an extension of method [19] briefly presented in Section 

III B. The direct computation of the bifurcations is particularly relevant 

to follow transitions as a function of one parameter, the radius ratio for 

example. Otherwise, an iterative evaluation of the critical parameter 

based on the shooting method, was applied: let us assume that the 

bifurcation parameter is Ra and suppose that two Rayleigh number 

values ( )0Ra  and ( )1Ra  were determined so that the growth rates ( )0λ  and 
( )1λ  of the dominant perturbation satisfy ( ) ( ) .010 <λ×λ  Starting from 

,0=i  the following algorithm converges toward the critical value :cRa  
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1. ( )
( ) ( ) ( ) ( )

( ) ( ) .
1

11
2

+

++
+

λ+λ

λ×+λ×=
ii

iiii
i RaRaRa  

2. The basic flow and then the growth rate ( )2+λ i  are computed at 
( ).2+iRa  

3. • If ( )2+λ i  is small enough, then ( ),2+≈ i
c RaRa  stop. 

 • If ( ) ( ) ,02 <λ×λ + ii  then ( ) ( )ii RaRa =+3  else ( ) ( ).13 ++ = ii RaRa  

4. ,2+= ii  go to step (1). 

This algorithm was found efficient both for two- and three-dimensional 

disturbances. For the three-dimensional stability analysis, the eigenvalue 

problem depends on the wavenumber k. Thus for infinite length annuli, 

the critical Rayleigh number ( )ckc RaRa min=  ( =cRalyrespective  

( ))ck Ramax  for a destabilizing (respectively stabilizing) transition was 

computed by a quadratic interpolation based on the nearest threshold 

values ( ).kRac  

IV. Results 

All the computations were performed for a Prandtl number value 

corresponding to air ( ).7.0=Pr  

A. Two-dimensional flows and stability 

1. Narrow gap annuli, 2.1=R  

For a small Rayleigh number value, ,2000≈<Ra  the flow consists 

in two crescent-shaped cells, symmetrical located with respect to the 

vertical line containing the axis of the cylinders. In each of the two 

annular half-spaces, the fluid goes upwards and downwards, respectively 

along the hot inner and cold outer cylinders. The conduction is the major 

mode of heat transfer between the differentially heated boundaries of the 

annulus. As the Rayleigh number is increased, the centre of rotation of 

the main cells moves upward and a thermal plume starts to form at the 

upper part of the annulus with an impingement region on the outer 
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cylinder. The distribution of the thermal fluxes along the inner and outer 

cylinders shows that the largest part of the heat convected within the 

annulus is extracted from the lower part of the inner cylinder. 

To discuss the changes in the flow patterns, a two-dimensional 
bifurcation diagram representing the steady radial velocity component 
( )π,5.0u  as a function of Ra is drawn in Figure 2. This velocity 

component indicates the direction of the rotating cells in the upper region 
of the annulus when the flow is symmetric. Each point of these curves 
represents a different steady-state flow. The steady solutions lying on the 
continuous and dashed lines are stable and unstable, respectively. Below 

,1911
1
=l

sRa  a couple of crescent-shaped cells is the only possible flow 

structure. Just above ,
1

l
sRa  two new steady solutions are found lying on 

the unstable branch as shown in the enlargement plotted in Figure 2. For 

convenience, the branches starting from 0=Ra  and l
sRa
1

 will be called 

in what follows as the “basic-branch” and “lower-branch”, respectively: 
the quantities expressed on these branches are labeled “b” and “l”. The 
sharp growth of ( )π,5.0u  as well as the appearance of the lower-branch 

of solutions are Rayleigh-Bénard like thermal instabilities. As described 
in [21], the slight curvature of the walls for 2.1=R  breaks the classical 

pitchfork bifurcation into a saddle-node bifurcation at 1911
1
=l

sRa  and, 

into a virtual bifurcation which looks like a transcritical bifurcation at 
.1917=tRa  Contrary to what has been shown in [21], the basic solutions 

lying on the lower part of the lower-branch for l
sRaRa
1

>  remain 

unstable until ( ) ,2000
1

=≥ l
fRaRa  where a subcritical pitchfork 

bifurcation occurs. Another noticeable difference with [21] concerns the 
stability of flows lying on the basic branch, that is to say the part of the 
curve which suddenly grows in the enlargement (Figure 2). Indeed, the 

basic flow is unstable in the Ra-range .24562068
21
=<<= b

f
b
f RaRaRa  

The three pitchfork bifurcations ,
1

b
fRa  b

fRa
2

 and l
fRa
1

 are associated with 

dominant disturbances breaking the symmetry of the basic flow. 
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The flow patterns are now described on each branch of solutions. The 
stable solutions being always symmetric with respect to the vertical line 
containing the cylinder axes, only the flow in one half annulus is 
presented. The cells rotating in the same direction as the large crescent-

cell are noted +C  or ,+c  whether they are stretching out on the entire 

annulus gap or not. The counter-rotating cells are therefore labelled .−C  

For ,tRaRa <  the flow pattern labelled +C  consists in the previously 

mentioned couple of crescent-shaped cells. Slightly above tRa  on the 

basic branch, a co-rotating cell +c  grows very fast with Ra but remains 

confined in the large +C  cell for 2270≈<Ra  (Figure 3(a)) and, then 

gives rise to a counter-rotating cell −C  located between them (Figure 

3(b)). The Ra-value corresponding to the onset of this three-cellular flow, 

denoted ,+−+ CCC  is in good agreement with previous studies [9, 17]. On 

the lower part of the continuation curve, a reverse flow (Figure 3(c)) 

appears just after the saddle-node bifurcation point at ,
1

l
sRa  as indicated 

by the negative radial velocity ( )π,5.0u  on the enlargement in Figure 2. 

2. Radius ratio effect 

Increases in R lead to displacements of the bifurcation thresholds and 
modify the shape of the bifurcation diagram. For example at ,26.1≈R  a 

new stable branch of solutions arises and is from now on named “upper 
branch” [24]. This upper branch originates from the collision of two 
branches of solutions. As for the lower branch, the upper branch of 

solutions exists only above the saddle-node bifurcation point at ( ).u
sRa  As 

a consequence of the large modification of the bifurcation diagram, the 
shape of the solutions lying on the basic-branch is substantially modified: 

the three-cellular flow +−+ CCC  is now located on the upper-branch 

whereas the basic branch is mainly characterized by the mono-cellular 

flow pattern .+C  On the lower branch, the variation of l
sRa
1

 as a function 

of R is found in good agreement with [21] since the largest relative 
difference is only 0.25% for .32.1 ≤≤ R  For ,6.1≥R  the threshold of 

the pitchfork bifurcation ( )l
fRa
1

 increases abruptly with R and then 
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delimits a bounded region outside of which the flow patterns +−CC  are 

unstable. The flow patterns as a function of the radius ratio and Rayleigh 
number are summed up in Figure 4. Three, two or only one solution may 
exist for a given parameter set, with a decreasing number of flow 
patterns when increasing the radius ratio. 

B. Three-dimensional linear stability analysis 

For infinite length annuli, the flow stability is ensured when all 

spectral components k of the disturbances are damped. As already 

mentioned in [8], the first transition for small and moderate radius 

ratios, ,2<R  occurs for the couple of counter-rotation cells .+C  In other 

words, the two- or three-cellular flows are always unstable with respect 
to three-dimensional disturbances. Although the results of the two-
dimensional analysis could therefore be considered as useless, a recent 
study [7] showed that such multi-cellular solutions are stable above a 
critical Péclet number value in the case of fully developed mixed 
convective flows in horizontal annuli. 

The critical Rayleigh number values ( )RRac  are plotted in Figure 5 

as a function of ( )122 −==σ ∗∗ Rdri  (bottom abscissa axis) or as a 

function of R (top abscissa axis). It should be noted that parameter σ was 

widely used in previous works instead of R. The ranges of the radius ratio 

and Rayleigh number values where the transitions occur are as follows: 

• for ;28941734,95.12.1
1
≤≤≤≤ cRaR  

• for ;540,133643,5.195.1
2
≤≤≥≥ cRaR  

• for ;000,52130,17,24.25.1
3
≤≤≤≤ cRaR  

• for .330,151040,110,33.2
4
≤≤≤≤ cRaR  

For 2<R  and ,
1cRaRa <  low velocity magnitudes are obtained at the 

top region of the annulus so that a conductive regime is nearly predicted. 
For small radius ratios, the cylinder surfaces are almost horizontal at the 
top of the annular space where a Rayleigh-Bénard like instability occurs. 
Both the shape of marginal mode and the variation of the critical 
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Rayleigh 
1cRa  as a function of R are in agreement with [8]. The usual 

conditions for the appearance of this instability, namely a conductive 
regime for the basic flow between differentially heated horizontal plates, 
are all the more satisfied since the radius ratio and the velocity 
magnitude at the top annuli are small. Therefore, the reverse transition 
at 

2cRa  is expected for smaller Ra-values as the radius ratio increases 

(Figure 5, for ).25.1 <≤ R  Thus, the disappearance of the first 

transition 
1cRa  close to 2=R  is not due to the sudden increase of the 

critical value [8] but rather to the collapse of the unstable region 
.

21 cc RaRaRa <<  Above ,
2cRa  the two-dimensional flow is a new 

stable. New transitions are also reported for large Rayleigh number 
values: for moderate and large gap annuli, the onsets of oscillatory modes 
and steady modes occur at 

3cRa  and ,
4cRa  respectively [27]. Contrary to 

the oscillatory marginal disturbances, the steady mode consists in flow 
patterns which do not exhibit the symmetry property. The Hopf 
bifurcation at 

3cRa  does not agree with the stability analysis reported in 

[8]. The authors predicted indeed a stable behaviour of the two-
dimensional basic flow for 2=R  at 000,100≤Ra  whereas our results 

show a transition at .621,24
3
=cRa  

Simple analytical functions were sought to define correlations 
between the critical Rayleigh numbers and the radius ratios. The critical 
Rayleigh numbers ( )RRa

ic  were thus approximated by 

• for ( ) ( ) ( )485.17069.023981072,95.12.1 1 −−=≤≤ RRRRaR  with 

%;4.1
11 1 <− cc RaRaRa  

• for ,5.195.1 ≥≥ R  ( ) ( ) 73001440,102 −−= RRRa  with −
2cRa  

%;2
22 <cRaRa  

• for ,24.25.1 ≤≤ R  ( ) ( ) 244.0
3 24.2400,37000,52 RRRa −×−=  with 

%;4
33 3 <− cc RaRaRa  

• for ,33.2 ≤≤ R  ( ) 300,27100,594 −= RRRa  with 44
RaRac −  

%.4.1
4
<cRa  
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C. Numerical simulations 

Many experimental results but few three-dimensional numerical 
solutions were reported in the literature. The most quoted results are 
shown in a stability chart (Figure 5) which includes the present three-
dimensional simulations. The filled and open symbols correspond to 
three- and to two-dimensional flows, respectively, while the half-filled 
circles are for parameter values for which both 2D- and 3D-solutions may 
be obtained. The stability chart by Powe et al. [28] is also drawn in 
Figure 5. 

For narrow annulus gaps ( ),23.1<R  the stability results [8, 11, 22, 

23] and three-dimensional simulations [11, 12] confirm the onset of 
transverse roll disturbances and thus contradict the Powe chart. 
However, some complex flows were obtained in [13] that consist in 
development of both the classical transverse rolls and longitudinal cells 
that could correspond to the 2D-multicellular flows as described by Powe 
et al. [28]. 

The multiple transitions presented in the previous section for 
moderate radius ratios are not mentioned in the chart by Powe et al. [28], 
in which only the transition close to 

1cRa  was reported. The simulation 

performed in the first instability region ( ),
21 cc RaRaRa ≤≤  for =Ra  

6,7.1,6000 == AR  and represented by a filled square in Figure 5, is in 

agreement with the results of Dyko et al. [11] and the spiral flow 
described in experiments [28]. The flow was found steady and the fluid 
particles injected in the vertical ( )zr,  upper section of the annulus follow 

first a spiral motion in the upper part of the cavity and are then ejected 
in the core region in which a helical motion is observed (Figure 6). 

The investigation of the flow motion above the threshold 
2cRa  shows 

clearly the influence of the initial conditions on the steady-state 
solutions. The simulations were carried-out for ,000,10=Ra  7.1=R  

and 6=A  and are symbolized by a half-filled circle in Figure 5. By 

starting the computations with a quiescent fluid at uniform temperature 
,0=T  the flow remains steady and mainly two-dimensional in the core 

region of the annulus. Figure 7(a) shows that the isotherms plotted in the 
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upper vertical ( )zr, -plane are almost independent of the axial 

coordinate, except near the end walls where transverse cells form 
because of the viscous shear associated with the no-slip boundary 
condition. The average Nusselt numbers at the mid-axial plane 2Az =  

differ from less than 2% between the inner and outer cylinders 

( ).732.1,699.1 == oi uNuN  On the other hand, when the simulation 

starts by using the developed flow computed for ,6000=Ra  the three-

dimensional pattern is preserved at the steady state (Figure 7(b)). The 
three-dimensionality of the flow field is confirmed by the 40%-relative 
difference between the average Nusselt numbers evaluated on the 

cylinder walls at ( === oi uNuNAz ,612.12  ).253.2  Notice however 

that the average Nusselt number calculated on the entire inner or outer 
surfaces is only slightly larger than its value for two-dimensional flow 
( ).%4≈  It can be thus concluded that the heat transfer rate may be 

evaluated with a reasonable accuracy from results of 2D-simulations. 
Finally, it is worth noting that a similar three-dimensional flow pattern 
was observed in the experimental work by Grigull and Hauf [15] for 

64.1=R  and .160,13=Ra  To explain their result, it is suggested that 

the increase in the temperature difference applied between the cylinder 
surfaces required to reach 160,13=Ra  was slow, so that the three-

dimensional pattern achieved in the instability region was preserved. 

According to Grigull and Hauf [15], reversal transitions to two-

dimensional flows occur above ,000,21=Ra  for .3.63.1 ≤≤ R  This 

Rayleigh number value is close to the instability threshold 
3cRa  (Figure 

5) at which three-dimensional oscillatory perturbations are predicted. To 
study the instability of the two-dimensional flow above ,

3cRa  numerical 

simulations were carried out for 7.1=R  and ,000,22=Ra  for various 

axial aspect ratios. For small aspect ratio ( ),6=A  the flow converges 

towards a steady flow with a structure mainly two-dimensional. This 
solution contradicts the stability analysis but agrees with the two-
dimensional flow observed experimentally by Grigull and Hauf [15] for 

000,21>Ra  and .3.63.1 ≤≤ R  For a larger aspect ratio ( ),20=A  the 

flow was oscillatory with a frequency equal to the frequency predicted by 
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the linear stability analysis at the threshold .
3cRa  Nevertheless, the flow 

seems to remain essentially two-dimensional with the largest axial 
components of velocity located near the end walls (Figure 8). For 
example, the streamfunctions, illustrated by the fluid particle tracking in 
the core region and at a fixed time, look like those of two-dimensional 
patterns. The three-dimensional behaviour of the flow consists in weak 
spatial oscillations associated with steady and travelling waves within 
the core region and close to the lateral walls of the annular space, 
respectively [26]. The wavenumbers predicted numerically and those 
from the stability analysis are in good agreement. The simulations for 
two very different aspect ratios showed that the flows were mainly 
characterized by 2D-flow patterns in the core region of the annulus. 
Thus, these results may be considered in qualitative agreement with the 
experimental observations by Grigull and Hauf [15] for 000,21>Ra  and 

R≤3.1  ,3.6≤  at least near the instability threshold. 

For large gap annuli, the transition at 
4cRa  is well represented by 

the marginal curve plotted by Powe et al. [28] in their stability chart. 
Whereas the critical parameters are in qualitative concordance, the 
steady nature of the transition predicted by the linear stability analysis 
does not match the flow oscillatory regime observed experimentally [2, 3, 

18] and numerically [25]. The bifurcation at 
4cRa  is therefore probably 

subcritical. In both cases, linear perturbations and flows break the 
symmetry of the basic two-cellular solution. The flow consists in an 

unsteady thermal plume in each ( )θ,r -plane. For ,000,130=Ra  4.2=R  

and ,6=A  the thermal plume periodically oscillates and forms a steady 

axial wave. 

V. Conclusion 

Natural convection in air-filled horizontal annuli has been 
investigated for radius ratios and Rayleigh numbers in the ranges ≤2.1  

3≤R  and .000,150<Ra  Two-dimensional studies of flows as a function 

of Ra and R have clearly highlighted the parameter sets for which two or 

three possible solutions exist, depending on the initial conditions. Linear 
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stability analyses have shown that all the flow transitions are induced by 
three-dimensional disturbances. The following asymptotic states were 
exhibited as a function of the radius ratio: for narrow-gap annuli 

( ),5.1<R  transverse steady rolls are amplified beyond ;2000≈cRa  

multiple transitions occur for two-dimensional flows in moderate-gap 

annuli ( );25.1 << R  for large-gap annuli with 2>R  oscillatory 

disturbances are amplified for 24.22 << R  and ( )410O=Ra  while 

steady symmetrical breaking disturbances are amplified for 24.2>R  

and ( ).105O=Ra  3D-numerical simulations have confirmed these 

findings. For moderate gap annuli, the steady flow states lying in the 
new stable region discussed in the present paper depend on the initial 
conditions applied to simulate the transient regime by using a time-
marching procedure. Finally, the onset of instabilities are delayed for 
small axial aspect ratios. 
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Figure 1. Geometry. 
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Figure 2. Bifurcation diagram and enlargement for [ ]:1950;1900∈Ra  ( )π,5.0u  

versus Ra. Continuous (resp. dashed) lines stand for branches of stable (resp. unstable) 
solutions, [24]. 

 
(a) ++Cc  pattern at 

[ ]( )5.0,5.4;0,2000=Ra  

(b) +−+ CCC  pattern at 

[ ]( )5.0,6;1,2500 −=Ra  

(c) +−CC  pattern at 

[ ]( )1,12;5,5000 −=Ra  

Figure 3. Streamlines of steady states lying on the (a), (b), basic-branch and (c) lower 
branch of the bifurcation diagram (Figure 2), [24]. 

 
Figure 4. Two-dimensional stable flow patterns in the ( )RaR,  plane, [24]. 
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Figure 5. Stability thresholds, ,cRa  as a function of σ or R; comparisons with the 

literature [4-7, 9, 23, 24, 27, 32]. 

 
Figure 6. Two streak lines for 6,7.1 == AR  and ,106 3⋅=Ra  [26]. 



w
w

w
.p

ph
m

j.c
om

ERIC CHÉNIER, GUY LAURIAT and GIUSEPPE PETRONE 286

 
(a) Fluid flow initialized by rest conditions 

 
(b) Fluid flow initialized by the 3D-flow at 3106 ⋅=Ra  

Figure 7. Isotherms and velocity vectors in the vertical ( )zr,  top section achieved by 

two initial conditions, for 6,7.1 == AR  and ,104=Ra  [26]. 

 
Figure 8. Isosurfaces of the axial component of the velocity and streak lines for 

20,7.1 == AR  and ,000,22=Ra  [26]. 

 g 


