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Abstract

We give an improvement of the inequality for four positive real numbers
whose special case was given as a problem of the 42nd International
Mathematical Olympiad.

The second problem of the 42nd International Mathematical
Olympiad was the following interesting inequality.

Problem 2. Prove that

a b c 51

+ + >
\/az + 8bc x/bz + 8ca x/c2 + 8ab

holds for all positive real numbers a, b and c.

The Problem 2 is the subject of several recent articles (see [1], [2], [3]
and [4]). The official Web page http://imo.wolfram.com/ of the 42nd
International Mathematical Olympiad (IMO) contains an elegant proof.
There is also a mention of the second part of the following more general

version of Problem 2.
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Generalization of Problem 2. Let a, b, ¢ and A be positive real

numbers. Then

a b c

+ +
x/az + Abe x/bQ + Aea \/c2 + Aab

isatleast 1 for 0 < A < 8 and at least for A > 8.

3
V14+A
Proof of the generalization of Problem 2. Let us introduce new

variables x, y and z with formulas

a b c
zZ =

— V= —
Va2 + \be Vb2 + Aca ¢ + hab

The numbers x, y and z are positive real numbers strictly smaller than 1
and it holds

X =

and similarly for differences Lz -1 and % —1. By multiplying these
y z

three expressions and transferring the denominator on the other side, we

get
1 -x*)1-y*) (1 -2%) = X (xy2)*.

2

Now, we make the substitutions x“ — x and y2 —>y andlet u=1-x

and v =1 - y. With these notations the above equality becomes
wu(l - 2%) = 33xyz2.
. . . . T
When we solve this with respect to the variable z, we obtain z = 5’

where S = uv + k3xy and T = vuvS. Therefore, our problem is to find
the minimum value of the function f(x, y) = vx ++/y +% for 0 <x <1

and 0 < y < 1.
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In order to get some idea about the function f, we can draw its graph

forkzéandk:IS.

Figure 1. Graph of the function f(x, y) for A = % and

the plane z =1 together.

The derivative of the function f by x is

o _ 1 _uyk3
ox  2Jx 28T

Since the situation is symmetrical in x and y, we automatically get

of 1 a3

ay 2)y 28T’

The derivatives of the second order are

% B(03xy - 2w)

Cxdy 48T

2 30,3,
Hzﬁfzvyk(?»y 4S)

1

%x 4uS3T

alx®
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Figure 2. Graph of the function f(x, y) for A =15 and

the plane z = % = 3 together.

N1+ A

and analogously

K- Pf  ud(@x-48) 1
o2y 4vS%T 44/ y®

Let A = HK — J%.

In order to obtain the values of x and y when the (local) extremes are
achieved we must solve the system {% =0, % = 0}. This system is
clearly equivalent to the following system of equations:

wS? —vxy*)® = 0, v8® —uyx®\8 = o}.
Their left hand sides are

[t? - (32 + u®)y][(Py - v)Px? - 03y —v) 03y - 20)x + 07,

0% - (Py% +v?)x][0%x — ufy® - (P — 1) (Px - 2u)y + u?].
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Let the square brackets in the above expressions be denoted by letters A,
B, C and D. Let a=%-1, B=r+1, y=2-2, 6=22-%+1 and
g =22

u2
u2 + 8x2

When A =0 and C =0, then from A =0, we have y =
By substituting this back into C will give the quotient

sux(u — Ax)[(w — Ax)? + Aux]
(ex? + uz)z

This can be zero only for x = % Returning this back into the above
. . 1
expression for y, we obtain y = —.

u2
u2 + 8x2

When A =0 and D = 0, then from A = 0, we have y =
By substituting this now into D will produce the quotient

eux[l — 8x][(2B5x + v)% + 322
45(ex? + u?)?

This will be zero only for x = % Returning this value back into the above

2
. o
expression for y, we get y = 3
When B =0 and C =0, then from B =0 for y > 44 , we get
+€
_ey-2vxU
2M

where M =gy —v and U = gy(ey — 4v). Substituting this into C will

give the quotient

+UV + eyW
2M ’
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where V = [38y2 +2v-1 and W = [38y2 —1. The numerator of this

quotient will be zero if and only if U2v? - g2 y2W2 is equal to zero. It is

easy to see that this difference is the quotient

eyv2(8y — 1)[(2ey + 2y + v)* + 322
< .

It will be zero only for y = % Notice that this value of y is always at least

2
. Substituting this into the above expression for x, we get x = %

4+ ¢

and x =1.
5

Finally, in the last case, when B =0 and D =0, then the above

value of x from B =0 and for y > is substituted into D we shall

+ €
get the quotient
—eBduy [+ UV + W]
2M

with V = Bdy — 2 and W = B3(e + 2)y? — 4BSy + 2. The numerator of this

quotient will be zero if and only if U 2v2 _w? is equal to zero. However,

this difference 1s the quotient

v(8y —1)[(2ey + 2y + y)2 +33%]
5 .

It will vanish only for y = % Observe that this value of y is always at

least . Returning this value back into the above expression for x will

+¢g
o? 1

produce again x = 3 and x = 5

In this way we showed that the function f can have local extremes

~ : (11 (L 1y (o1
only in the pairs p—(B,B), q_(S’S)’ r—[s,s} and
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2
s = (%, %j In order to simplify our notation, for a pair ¢ and a function

g of two variables, let g, denote the value g(¢).

We shall use now the well-known theorem from the mathematical

analysis for functions in two real variables which says that such a

function f will have in the pair ¢ for which (gj =0= (6—fj the local
Ox )y Wy

minimum if A; > 0 and H; > 0 (the alternative A;), local maximum if
Ay >0 and H; <0 (the alternative A;), may or may not have in ¢ the
local extreme if A; = 0 (the alternative Ag), and definitely does not have

the local extreme in the pair ¢ if A; < 0 (the alternative A,).

. 3p3y2 B2y 3 .
Since A, = , H,==—*+ and f, = —, it follows that for
P 162 P2 P B

A >2 the A; holds, for A <2 the Ay is true, and for A =2 the

alternative Aj is valid.

83(6 - 1)(36 — 5)
16022

Since A,, H,

q and f, are respectively equal to

)

3

—52(52 _
M and 3-% for 0 <X <1, it follows that in the range

4)o NEY

0 < A <1 the alternative Ay holds. On the other hand, for L > 1 we see

— 3By 25>

that A, =
7 16002

is clearly negative so that the A, holds.

Analogously, since for A >0 the terms A,, H, and f. are

3
_ as3p.,2 _.259
respectively equal to 35 3B é , b 63 and E, it follows that for
16032 Aho V5

0 <A <1 the Ay holds while for A > 1 the A, is true.

— 3py 25>

for L > 1 we conclude that in
160322

At last, since Ag is equal to
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this range it is negative so that A, holds. On the other hand, for

3

B 243 02 a2 _

0<A<l1, wehaveAs:LW, HS:M andfsz—a
16032 ak Vs

so that the alternative A, is true.

In this way we showed that the function f can have the least value

p

3 . . . .
— 1n the pair p for A > 2 and the least value —= in the pair r for

B 7

0 < A < 1. Since f(0,0) =1, the number B is always greater than 1 for

V3

0 < A <1, and the number is less or equal to the number 1 only for

3
VB
A > 8 we conclude that f >1 for 0 <X < 8 andthatfz% for A > 8.

This concludes the proof.
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