GENERALIZATION OF AN IMO INEQUALITY ZVONKO ČERIN and SILVIJA VLAH

(Received June 6, 2002)

Submitted by K. K. Azad

Abstract

We give an improvement of the inequality for four positive real numbers whose special case was given as a problem of the 42nd International Mathematical Olympiad.

The second problem of the 42nd International Mathematical Olympiad was the following interesting inequality.

Problem 2. Prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1
$$

holds for all positive real numbers a, b and c.
The Problem 2 is the subject of several recent articles (see [1], [2], [3] and [4]). The official Web page http://imo.wolfram.com/ of the 42 nd International Mathematical Olympiad (IMO) contains an elegant proof. There is also a mention of the second part of the following more general version of Problem 2.

[^0]Generalization of Problem 2. Let a, b, c and λ be positive real numbers. Then

$$
\frac{a}{\sqrt{a^{2}+\lambda b c}}+\frac{b}{\sqrt{b^{2}+\lambda c a}}+\frac{c}{\sqrt{c^{2}+\lambda a b}}
$$

is at least 1 for $0<\lambda<8$ and at least $\frac{3}{\sqrt{1+\lambda}}$ for $\lambda \geq 8$.
Proof of the generalization of Problem 2. Let us introduce new variables x, y and z with formulas

$$
x=\frac{a}{\sqrt{a^{2}+\lambda b c}}, \quad y=\frac{b}{\sqrt{b^{2}+\lambda c a}}, \quad z=\frac{c}{\sqrt{c^{2}+\lambda a b}} .
$$

The numbers x, y and z are positive real numbers strictly smaller than 1 and it holds

$$
\frac{1}{x^{2}}-1=\frac{a^{2}+\lambda b c}{a^{2}}-1=\frac{\lambda b c}{a^{2}}
$$

and similarly for differences $\frac{1}{y^{2}}-1$ and $\frac{1}{z^{2}}-1$. By multiplying these three expressions and transferring the denominator on the other side, we get

$$
\left(1-x^{2}\right)\left(1-y^{2}\right)\left(1-z^{2}\right)=\lambda^{3}(x y z)^{2}
$$

Now, we make the substitutions $x^{2} \rightarrow x$ and $y^{2} \rightarrow y$ and let $u=1-x$ and $v=1-y$. With these notations the above equality becomes

$$
u v\left(1-z^{2}\right)=\lambda^{3} x y z^{2}
$$

When we solve this with respect to the variable z, we obtain $z=\frac{T}{S}$, where $S=u v+\lambda^{3} x y$ and $T=\sqrt{u v S}$. Therefore, our problem is to find the minimum value of the function $f(x, y)=\sqrt{x}+\sqrt{y}+\frac{T}{S}$ for $0<x<1$ and $0<y<1$.

In order to get some idea about the function f, we can draw its graph for $\lambda=\frac{1}{2}$ and $\lambda=15$.

Figure 1. Graph of the function $f(x, y)$ for $\lambda=\frac{1}{2}$ and the plane $z=1$ together.

The derivative of the function f by x is

$$
\frac{\partial f}{\partial x}=\frac{1}{2 \sqrt{x}}-\frac{u y \lambda^{3}}{2 S T} .
$$

Since the situation is symmetrical in x and y, we automatically get

$$
\frac{\partial f}{\partial y}=\frac{1}{2 \sqrt{y}}-\frac{v x \lambda^{3}}{2 S T}
$$

The derivatives of the second order are

$$
\begin{aligned}
& J=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\lambda^{3}\left(\lambda^{3} x y-2 u v\right)}{4 S^{2} T}, \\
& H=\frac{\partial^{2} f}{\partial^{2} x}=\frac{v y \lambda^{3}\left(\lambda^{3} y-4 S\right)}{4 u S^{2} T}-\frac{1}{4 \sqrt{x^{3}}},
\end{aligned}
$$

Figure 2. Graph of the function $f(x, y)$ for $\lambda=15$ and

$$
\text { the plane } z=\frac{3}{4}=\frac{3}{\sqrt{1+\lambda}} \text { together. }
$$

and analogously

$$
K=\frac{\partial^{2} f}{\partial^{2} y}=\frac{u x \lambda^{3}\left(\lambda^{3} x-4 S\right)}{4 v S^{2} T}-\frac{1}{4 \sqrt{y^{3}}} .
$$

Let $\Delta=H K-J^{2}$.
In order to obtain the values of x and y when the (local) extremes are achieved we must solve the system $\left\{\frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=0\right\}$. This system is clearly equivalent to the following system of equations:

$$
\left\{u S^{3}-v x y^{2} \lambda^{6}=0, v S^{3}-u y x^{2} \lambda^{6}=0\right\} .
$$

Their left hand sides are

$$
\begin{aligned}
& {\left[u^{2}-\left(\lambda^{3} x^{2}+u^{2}\right) y\right]\left[\left(\lambda^{3} y-v\right)^{2} x^{2}-\left(\lambda^{3} y-v\right)\left(\lambda^{3} y-2 v\right) x+v^{2}\right],} \\
& {\left[v^{2}-\left(\lambda^{3} y^{2}+v^{2}\right) x\right]\left[\left(\lambda^{3} x-u\right)^{2} y^{2}-\left(\lambda^{3} x-u\right)\left(\lambda^{3} x-2 u\right) y+u^{2}\right] .}
\end{aligned}
$$

Let the square brackets in the above expressions be denoted by letters A, B, C and D. Let $\alpha=\lambda-1, \quad \beta=\lambda+1, \quad \gamma=\lambda-2, \quad \delta=\lambda^{2}-\lambda+1$ and $\varepsilon=\lambda^{3}$.

When $A=0$ and $C=0$, then from $A=0$, we have $y=\frac{u^{2}}{u^{2}+\varepsilon x^{2}}$. By substituting this back into C will give the quotient

$$
\frac{\varepsilon u x(u-\lambda x)\left[(u-\lambda x)^{2}+\lambda u x\right]}{\left(\varepsilon x^{2}+u^{2}\right)^{2}}
$$

This can be zero only for $x=\frac{1}{\beta}$. Returning this back into the above expression for y, we obtain $y=\frac{1}{\beta}$.

When $A=0$ and $D=0$, then from $A=0$, we have $y=\frac{u^{2}}{u^{2}+\varepsilon x^{2}}$. By substituting this now into D will produce the quotient

$$
\frac{\varepsilon u^{2} x[1-\delta x]\left[(2 \beta \delta x+\gamma)^{2}+3 \lambda^{2}\right]}{4 \delta\left(\varepsilon x^{2}+u^{2}\right)^{2}} .
$$

This will be zero only for $x=\frac{1}{\delta}$. Returning this value back into the above expression for y, we get $y=\frac{\alpha^{2}}{\delta}$.

When $B=0$ and $C=0$, then from $B=0$ for $y \geq \frac{4}{4+\varepsilon}$, we get

$$
x=\frac{\varepsilon y-2 v \pm U}{2 M},
$$

where $M=\varepsilon y-v$ and $U=\sqrt{\varepsilon y(\varepsilon y-4 v)}$. Substituting this into C will give the quotient

$$
\frac{ \pm U V+\varepsilon y W}{2 M}
$$

where $V=\beta \delta y^{2}+2 v-1$ and $W=\beta \delta y^{2}-1$. The numerator of this quotient will be zero if and only if $U^{2} V^{2}-\varepsilon^{2} y^{2} W^{2}$ is equal to zero. It is easy to see that this difference is the quotient

$$
\frac{\varepsilon y v^{2}(\delta y-1)\left[(2 \varepsilon y+2 y+\gamma)^{2}+3 \lambda^{2}\right]}{\delta}
$$

It will be zero only for $y=\frac{1}{\delta}$. Notice that this value of y is always at least $\frac{4}{4+\varepsilon}$. Substituting this into the above expression for x, we get $x=\frac{\alpha^{2}}{\delta}$ and $x=\frac{1}{\delta}$.

Finally, in the last case, when $B=0$ and $D=0$, then the above value of x from $B=0$ and for $y \geq \frac{4}{4+\varepsilon}$ is substituted into D we shall get the quotient

$$
\frac{-\varepsilon \beta \delta v y[\pm U V+W]}{2 M}
$$

with $V=\beta \delta y-2$ and $W=\beta \delta(\varepsilon+2) y^{2}-4 \beta \delta y+2$. The numerator of this quotient will be zero if and only if $U^{2} V^{2}-W^{2}$ is equal to zero. However, this difference is the quotient

$$
\frac{v(\delta y-1)\left[(2 \varepsilon y+2 y+\gamma)^{2}+3 \lambda^{2}\right]}{\delta}
$$

It will vanish only for $y=\frac{1}{\delta}$. Observe that this value of y is always at least $\frac{4}{4+\varepsilon}$. Returning this value back into the above expression for x will produce again $x=\frac{\alpha^{2}}{\delta}$ and $x=\frac{1}{\delta}$.

In this way we showed that the function f can have local extremes only in the pairs $p=\left(\frac{1}{\beta}, \frac{1}{\beta}\right), \quad q=\left(\frac{1}{\delta}, \frac{1}{\delta}\right), \quad r=\left(\frac{\alpha^{2}}{\delta}, \frac{1}{\delta}\right), \quad$ and
$s=\left(\frac{1}{\delta}, \frac{\alpha^{2}}{\delta}\right)$. In order to simplify our notation, for a pair t and a function g of two variables, let g_{t} denote the value $g(t)$.

We shall use now the well-known theorem from the mathematical analysis for functions in two real variables which says that such a function f will have in the pair t for which $\left(\frac{\partial f}{\partial x}\right)_{t}=0=\left(\frac{\partial f}{\partial y}\right)_{t}$ the local minimum if $\Delta_{t}>0$ and $H_{t}>0$ (the alternative A_{1}), local maximum if $\Delta_{t}>0$ and $H_{t}<0$ (the alternative A_{2}), may or may not have in t the local extreme if $\Delta_{t}=0$ (the alternative A_{3}), and definitely does not have the local extreme in the pair t if $\Delta_{t}<0$ (the alternative A_{4}).

Since $\Delta_{p}=\frac{3 \beta^{3} \gamma^{2}}{16 \lambda^{2}}, \quad H_{p}=\frac{\beta^{\frac{3}{2}} \gamma}{2 \lambda}$ and $f_{p}=\frac{3}{\sqrt{\beta}}$, it follows that for $\lambda>2$ the A_{1} holds, for $\lambda<2$ the A_{2} is true, and for $\lambda=2$ the alternative A_{3} is valid.

Since Δ_{q}, H_{q} and f_{q} are respectively equal to $\frac{\delta^{3}(6-\lambda)(3 \delta-5)}{16 \alpha \lambda^{2}}$, $\frac{-\delta^{\frac{3}{2}}\left(\lambda^{2}+2 \gamma\right)}{4 \lambda \alpha}$ and $\frac{3-\lambda}{\sqrt{\delta}}$ for $0<\lambda<1$, it follows that in the range $0<\lambda<1$ the alternative A_{2} holds. On the other hand, for $\lambda>1$ we see that $\Delta_{q}=\frac{-3 \beta \gamma^{2} \delta^{3}}{16 \alpha \lambda^{2}}$ is clearly negative so that the A_{4} holds.

Analogously, since for $\lambda>0$ the terms Δ_{r}, H_{r} and f_{r} are respectively equal to $\frac{-3 \delta^{3} \beta \gamma^{2}}{16 \alpha^{3} \lambda^{2}}, \frac{-\gamma^{2} \delta^{\frac{3}{2}}}{4 \lambda \alpha^{3}}$ and $\frac{\beta}{\sqrt{\delta}}$, it follows that for $0<\lambda<1$ the A_{1} holds while for $\lambda>1$ the A_{4} is true.

At last, since Δ_{s} is equal to $\frac{-3 \beta \gamma^{2} \delta^{3}}{16 \alpha^{3} \lambda^{2}}$ for $\lambda>1$ we conclude that in
this range it is negative so that A_{4} holds. On the other hand, for $0<\lambda<1$, we have $\Delta_{s}=\frac{-(3+5 \lambda) \gamma^{2} \delta^{3}}{16 \alpha^{3} \lambda^{2}}, H_{s}=\frac{-\left(\lambda^{2}-\beta\right) \delta^{\frac{3}{2}}}{\alpha \lambda}$ and $f_{s}=\frac{-\alpha}{\sqrt{\delta}}$ so that the alternative A_{2} is true.

In this way we showed that the function f can have the least value $\frac{3}{\sqrt{\beta}}$ in the pair p for $\lambda>2$ and the least value $\frac{\beta}{\sqrt{\delta}}$ in the pair r for $0<\lambda<1$. Since $f(0,0)=1$, the number $\frac{\beta}{\sqrt{\delta}}$ is always greater than 1 for $0<\lambda<1$, and the number $\frac{3}{\sqrt{\beta}}$ is less or equal to the number 1 only for $\lambda \geq 8$ we conclude that $f \geq 1$ for $0<\lambda<8$ and that $f \geq \frac{3}{\sqrt{\beta}}$ for $\lambda \geq 8$.
This concludes the proof.

References

[1] Š. Arslanagić and F. Zejnulahi, Tri rješenja Problema 2 sa IMO 2001 (Washington), Triangle 5(3) (2001/2002), 146-151.
[2] Z. Čerin and S. Vlah, Rješenje Problema 2 na IMO 2001, Matematičko-fizički list (submitted).
[3] H. Faktić and V. Govedarica, 42. Medunarodna Olimpijada, Triangle 5(2) (2001/2002), 71-76.
[4] O. Muškarov and N. Nikolov, Generalization of an IMO 2001 inequality, Matematika Plus 3 (2001), 17-18.

Kopernikova 7, 10020 Zagreb
Hrvatska, Europa
e-mail: cerin@math.hr
Rudeška 148, 10000 Zagreb
Hrvatska, Europa
e-mail: vlahs@student.math.hr

[^0]: 2000 Mathematics Subject Classification: 26D05, 51M16, 52A40.
 Keywords and phrases: inequality, $42^{\text {nd }}$ International Mathematical Olympiad, substitution, derivatives, extreme values.

