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Abstract

The efficacy of a new drug may be demonstrated by showing it is
clinically equivalent or non-inferior to a standard active drug. To arrive
at such a non-superiority efficacy conclusion, one must (ideally) first
establish that both the standard and test drugs have efficacy profiles
that are superior to placebo or no treatment in the prospective clinical
trial. The statistical analysis approach for the demonstration of clinical
equivalence or non-inferiority involves the construction of a confidence
interval that rules out any possibility of the test drug being less
efficacious than the standard drug by more than a pre-defined clinically
irrelevant amount called an inferiority margin. In this paper we review
statistical inference and methodological concepts for clinical equivalence
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and non-inferiority clinical trials. Additionally, we also show, at least for
two correlated endpoints, multiplicity due to multiple endpoints could
negatively impact the power of the test statistics.

1. Introduction

In a positive control clinical trial, the efficacy of a test drug can be
compared to a reference without the objective of demonstrating
superiority of the test to the reference drug. This class of trials could be
divided into three groups: bio-equivalence, clinical equivalence, and non-
inferiority trials. For bio-equivalence trials (which are mostly blood level
trials in normal volunteers), the expectation is that both the test and the
reference drugs studied in the prospective clinical trial are
pharmacokinetically absorbed in the blood compartment at the same rate
and extent to produce the same therapeutic effects. So the objective is to
demonstrate that the test drug (e.g., a generic version or a new
formulation of an approved drug) is bio-equivalent to the reference drug
(e.g., the approved original drug itself). That is, for some class of drugs, it
is possible to use bio-equivalence argument to establish therapeutic
equivalence between a test and a reference drug.

However, it is not possible to establish clinical equivalence in this
way for drugs that do not work through systemic absorption. Examples of
such drugs are sucralfate for acute healing of duodenal ulcer, bulk
laxatives, antidiarrheals, and pancreatic enzymes, which work locally
within the gastro-intestinal tract and hence cannot be demonstrated to be
therapeutically equivalent in the blood stream. For such non-absorbable
drugs, one way to establish therapeutic equivalence between a test and a
reference drug is through clinical trials with one or more appropriate
clinical endpoints. This class of trials falls within the domain of clinical
equivalence trials where both the inferiority and the superiority of the
test drug in comparison to the reference product are undesirable (1).
However, it is sometimes acceptable to design a clinical trial with the
objective of showing that the efficacy of the test drug is no worse than the
reference drug with some added advantages including a superior toxicity
profile and/or some pharmacoeconomic benefits. The pharmacoeconomic
edge may include an overall cost benefit or simplicity in administration
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(e.g., intravenous versus subcutaneous or subcutaneous versus oral). This
type of clinical trials is generally referred to as non-inferiority clinical
trials in the efficacy E-9 ICH (International Conference on
Harmonization) document.

One key consideration in the design of clinical equivalence or non-
inferiority clinical trials is the need to establish that the active
comparator (i.e., the reference drug) is also effective in the prospective
clinical trial. This is usually achieved by incorporating a concurrent
placebo, or a low dose arm of the investigational drug, or any other
inferior arm of an effective treatment relevant to the indication being
studied in the design of the prospective clinical trial. When there is an
ethical concern for the use of non-effective treatment, an appropriate
historical control patient population is often used to achieve this goal. If
the active comparator is not shown to be effective in the prospective
clinical trials either through internal or external validations, then the
results of such clinical trials are generally difficult to interpret. These
and other relevant issues regarding clinical equivalence and/or non-
inferiority clinical trials have been addressed by many authors including
Fleming [4], Gould [5], Lamborn [7], and Temple [9].

Another key consideration in such trials is the formulations of the
null and alternate hypotheses. These formulations are different from
those of the superiority trials where the null hypothesis is usually the
conventional hypothesis of no treatment difference. For example, consider
a simple clinical trial where 1n  patients are randomized to the test drug

T and 2n  to the reference drug R. Suppose that Tπ  and Rπ  are the true

unknown response rates for the test T and reference R drug, respectively.
Assume that higher response rates are more desirable. Testing the
conventional null hypothesis RTH π=π:0  against (the 2-sided or 1-sided)

alternative hypothesis ,: RTaH π<π  or RTaH π>π:  at a nominal

level of significance α is inappropriate for declaring similarity in efficacy
profiles between T and R if 0H  is not rejected at level α. This is because

the non-rejection of the null hypothesis does not necessarily imply that
the null hypothesis is true. This point is articulated in Blackwelder [2].
In addition, even if there is a sufficient built in statistical power of the
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test, this approach does not give much incentive to the experimenter,
because a sloppy trial could have a very good chance of not rejecting the
null hypothesis of no treatment effect.

We revisit in this paper the design, hypothesis formulations, and
analysis approach for clinical equivalence and non-inferiority clinical
trials for a single primary clinical endpoint. We then formulate the
problem for such clinical trials for two primary endpoints and provide
results on the impact of multiplicity due to multiple endpoints on the
type I error rate and the power of the test.

2. Single Endpoint Case

2.1. Non-inferiority trials

Consider a simple clinical trial in which 1n  patients are randomized

to a test drug T and 2n  patients to a reference drug R. Let Tπ  and Rπ

denote the true unknown response rates (e.g., success rates) for the test
and reference drug, respectively. Assume that higher response rates are
more desirable. In a clinical trial with a non-inferiority objective, the
alternate hypothesis is that the test drug T is not inferior to the reference
drug R by some pre-specified inferiority margin (of clinical relevance) .0δ

The corresponding null hypothesis is that T is inferior to R by at least
this amount .0δ  Thus, if 0H  and aH  are, respectively, the null and

alternate hypotheses, then for this simple trial we have

00 : δ−π≤π RTH  (hypothesis of inferiority) vs.

0: δ−π>π RTaH  (hypothesis of non-inferiority). (1)

The null hypothesis 0H  is an interval hypothesis and can be tested using

a z-statistic ( )[ ] ,0 DDZ σδ−−=  where RT ppD −=  is the observed

treatment difference, Tp  and Rp  being the observed response rates for T

and R, respectively, ( ) RTDE π−π==δ  (the true treatment difference),

and =σD  standard error of D defined by ( ) ( ){ +π−π=πδσ 11, nTTRD

( ) } .1 21
2nRR π−π  That is, assume that sample sizes are sufficiently

large so that Z follows approximately a normal distribution with some
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mean and standard deviation under .0H  Note that the standard error

Dσ  is a function of two unknown parameters δ and .Rπ

While one could consider test statistics based on exact binomials, or
odds ratio, or risk ratio, we consider here a simple test formulation to
illustrate statistical principles and to show some results related to the
power of the test and sample size for single as well as for multiple
endpoints. (Lui [8] considers an exact binomial approach for the risk ratio
under inverse sampling.)

The rule for establishing non-inferiority based on the above z-statistic
is then to reject the hypothesis of inferiority 0H  if ,1 α−> uZ  where

α−1u  is such that ( ) ,11 α−=Φ α−u  and ( )xΦ  denotes the area under the

standard normal probability curve from ∞−  to x.

Example. For the above 2-treatment-group clinical trial case,
suppose that the observed response rates for the test T and reference R
drugs are, respectively, %55=Tp  and %,60=Rp  and the corresponding

sample sizes are 10021 == nn  patients (per treatment group). Assume

pre-specified %200 =δ  and %.5=α  Then one can calculate the test

statistic in three different ways:

(i) If it is known that 70.=πR  and that ,20.0 −=δ−=δ  then from

above, ( ) ( ){ } { } ,0678.0021.0025.3.7.5.5. 221 =+=+=σD  leading to =Z

( ) .21.20678.20.05. =+−

(ii) If Rπ  is unknown but that ,20.0 −=δ−=δ  one could assume

50.=π=π TR  to obtain maximum ,0707.=σD  leading to a minimum Z

value of 2.12.

(iii) Alternatively, one could estimate the value of Dσ  from the data

to obtain ( ) ( ){ } ,070.4.6.5.5. 21 =+=σD  leading to .15.2=Z

For this example, we notice that each of the three approaches for
calculating Dσ  gives about the same value of Z and leads to the same

conclusion, namely rejection of the null hypothesis 0H  in all three cases.
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The rule for rejection of the null hypothesis of inferiority α−> 1uZ

implies that ,01 δ−>σ×− α− DuD  where the left-hand side of the

inequality is the lower limit of the ( )%21100 α−  2-sided confidence

interval of δ. This leads to a confidence interval based rule:

Reject 0H  if the α− 21  lower confidence lower limit ( )α−21LCL

of the true treatment difference δ exceeds .0δ−

This confidence interval approach is more appealing to clinicians because
the lower confidence limit value can easily be related to 0δ−  for clinical

interpretations. In the above example, we see that the minimum
( ) .201886.96.10707.05.LCL 021 δ=−>−=−−=α−  Thus we reject the

null hypothesis of inferiority 0H  at the .025 level of significance (for pre-

specified 2-sided .05 level).

Power function. The power function for the above test procedure is
the probability of 0δ  falling in the rejection region given the expected

value of D ( )[ ].,i.e. δ=DE  In addition to being a function of δ, the power

function also depends on ,0δ  ,Rπ  ,1n  2n  and α. For convenience, let

( ) ( )απδδ=∗δ ,,,,;; 210 nnPP R  denote the power function. With the

above assumptions about the test statistic ( )[ ] ,0 DDZ σδ−−=  we have

( ) [( ) ( ) ]δ=−|δ−σ−−=∗δ α− RTDRT ppE>uppPrP 01;

 ( )( ).1 01 Du σδ+δ−Φ−= α− (2)

It is easy to see that ( ) α=∗δ;P  at ,0δ−=δ  and ( ) α<∗δ;P  for

.0δ−<δ  Therefore, the type I error rate for the above test procedure is

( ){ } ,for;Sup 0 α≤δ−≤δ∗δδ P  with a maximum value at the boundary

point .0δ−=δ

Sample size calculations. If β−1  is the pre-specified power of the

test for sample size determination, then on equating (2) to β−1  leads to

the expression

( )[ ] ,01 β=σδ+δ−Φ α− Du  or ( ) ,01 βα− −=σδ+δ− uu D
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where ( ) .β=−Φ βu  On assuming equal samples sizes of n patients per

treatment group, the last expression leads to the following sample size
expression:

( ) ( ) ( ) ( )[ ],2112 22
0 δ−δ+δπ−π−π+δ+δ= βα

−
RRRZZn (3)

where pZ  denotes the critical z-value corresponding to the proportion p

on the upper tail of the standard normal distribution. For example,
96.1025.0 =Z  and .645.105.0 =Z  Upon assuming that the true treatment

difference ,0=δ  then (3) reduces to

( ) ( ( )),12 22
0 RRZZn π−π+δ= βα
−

which corresponds to the conventional sample size formula of

( ) ( )221
222 µ−µ+σ= βα ZZn

for a normally distributed continuous endpoint with unknown mean µ
and known standard deviation σ for testing the null hypothesis

0: 210 =µ−µH  using 1-sided alternative.

If the sample size is calculated using the 1-sided approach, for
example, using the test statistic ( ),oferrorstandard0 DDZ =  and

assuming that 0Z  follows a standard normal distribution under the null

hypothesis of no treatment difference, then the formula for n for
detecting a treatment difference of ,0δ−=δ  is given as follows:

( ) ( ) ( )[ ],2112 22 δ−δ+δπ−π−π+δ= αβ
−

RRRfZZn (4)

( )
( ) ( ) ,,

211
1

0
2 δ−=δ

δ−δ+δπ−π−π
π−π

=
RRR

RRf

where the correction factor f is due to the fact that the standard error of
D also depends on δ and ,Rπ  which are different under the null and

alternate hypotheses for the binary endpoint case. For a normally
distributed continuous endpoint with unknown mean µ and known
standard deviation σ, however, the term ( )[ ]21 δ−δ+δπ− R  in (4) is zero,
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resulting in the standard sample size expression for a 1-sided test of

( ) ( ) .2 2
21

22 µ−µ+σ= βα ZZn

2.2. Clinical equivalence trials

For non-inferiority clinical trials as discussed above, it is not
desirable that the test drug T is inferior to the standard treatment R by

an amount ( )1
0δ  or greater. However, for clinical equivalence trials, in

addition to the non-inferiority condition, it is also not desirable that the

test drug T is superior to R by an amount ( )2
0δ  or greater. This is the case

when a generic version of a brand has to be a duplicate with identical
chemical or biological formulation. Clinical trials currently conducted for
the approval of generic versions of sucralfate fall into this category. As a
specific example, sucralfate was approved for Marion Laboratories in
1981 and is marketed under the brand name Carafate® for the treatment
of acute duodenal ulcer. Sucralfate is a complex of sucrose octasulfate
and aluminum hydroxide, not easy to identify chemically. It has various
postulated modes of action some of which are adherence to the ulcer
crater, increasing prostaglandin synthesis in mucosa, and bringing
growth factor in greater concentration to the ulcer site. This unique
chemical complexity compounds the problem of demonstrating bio-
equivalence for these class of drugs, and has led to the current
requirement that a clinical endpoint, e.g., healing of acute duodenal
ulcers as demonstrated by endoscopy, must be used to demonstrate
therapeutic equivalence instead. These sucralfate trials are at the
moment being designed as 3-arm trials with sucralfate, Carafate, and
placebo with the aim of demonstrating the generic sucralfate is clinically
equivalent to the marketed Carafate after validating that Carafate is
effective in the given trial.

Thus, in a clinical equivalence trial, one has to address the two test

interval hypotheses: ( ) ( )1
0

1
0 : δ−π≤π RTH  (hypothesis of inferiority), and

( ) ( )2
0

2
0 : δ+π≥π RTH  (hypothesis of superiority). Both must be rejected

simultaneously through an efficient test procedure on assuring that in
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the test procedure the overall probability of wrongly concluding that the
true treatment response Tπ  is within the clinical equivalence interval

( ( ) ( ) )2
0

1
0 , δ+πδ−π RR  is no more than a pre-specified α. For our simple

two-arm trial, the null hypothesis ( )1
0H  can be tested against the

alternative hypothesis ( ) ( )1
0

1 : δ−π>π RTaH  by the criterion

( ) [( ) ( ( ) )] ,1
1
0

11
α−

− >δ−−−σ= uppZ RTD

leading to the rejection of ( ).1
0H  Similarly the null hypothesis ( )2

0H  can

be tested against the alternative ( ) ( )2
0

2 : δ+π<π RTaH  by the criterion

( ) [( ) ( ( ) )] ,1
2

0
12

α−
− −<δ−−σ= uppZ RTD

leading to the rejection of ( ).2
0H  Therefore, the (overall) null hypothesis

of non-clinical equivalence with respect to both endpoints ∈δ:0H

( ( ) ( ) )2
0

1
0 , δδ−  will be rejected in favor of the alternative hypothesis of

clinical equivalence with respect to both endpoints if the values of the

statistics ( )1Z  and ( )2Z  for the given data fall in the ‘intersection’ critical
region C given by

( ( ) ) ( ( ) ).: 1
2

1
1

α−α− −<∩> uZuZC

Note that the alternate hypothesis aH  is the intersection of the two

alternate hypotheses ( )1
aH  and ( ),2

aH  i.e., ( ) ( ).21
aaa HHH ∩=  Similarly,

the null hypothesis 0H  can be written as the union of the two null

hypotheses ( )1
0H  and ( ),2

0H  i.e., ( ) ( ).2
0

1
00 HHH ∪=  Berger and Hsu [1]

address the ‘intersection-union’ hypothesis testing principle in the
context of bio-equivalence clinical trials.

Also note that the symmetric case is obtained when ( ) ( ) .0
2

0
1
0 δ=δ=δ

For this case, ( )
α−> 1

1 uZ  implies ( ) 0121LCL δ−>×σ−= α−α− uD D  and

( )
α−< 1

2 uZ  implies ( ) .UCL 0121 δ<×σ−= α−α− uD D  This leads to a
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confidence interval rule. That is, reject the null hypothesis of non-clinical

equivalence with respect to both endpoints ( ( ) ( ) )2
0

1
00 ,: δδ−∈δH  in favor

of the alternative if the α− 21  confidence interval of the true treatment

difference δ is within the clinical equivalence interval ( )., 00 δδ−

Power function. Again the power function of the above test

procedure is the probability of both ( )1Z  and ( )2Z  falling in the critical
region C given ( ) .δ=DE  Besides being a function of δ, the power

function would conditionally depend on ,0δ  ,Rπ  ,1n  2n  and α. On

assuming that for sufficiently large n, both ( )1Z  and ( )2Z  follow normal
distributions, this probability, for the symmetric case, is given by,
( ) ( ),,,,,;; 210 απδδ=∗δ nnPP R

( ) [( ( ) ) ( ( ) ) ( ) ]δ=|−<∩>=∗δ α−α− DEuZuZPrP 1
2

1
1;

 ,0
1

0
1 













σ
δ−δ

−−<∩







σ
δ+δ

−>= α−α−
DD

uUuUPr

where U is the standard normal random variate. Using normal
probability integrals, the above power function expression can be
equivalently written as

( ) ( )[ ] ( )[ ].; 0101 DD uuP σδ+δ−Φ−σδ−δ−−Φ=∗δ α−α− (5)

The type I error probability is ( ) ( ){ },,for;Sup 00 δδ−∈δ∗δδ P  and equals

the nominal α when δ is at the boundary. For example, when ,20.0 =δ

,100,50. 21 ===π nnR  and ,05.=α  we obtain from expression (5)

( ) ( ) ( ) ( ) ( ) ≈Φ−Φ=Φ−+−Φ=∗δ− 645.125.4645.10678.40.645.1;0P  nominal

α. Similarly, we obtain ( ) ( ) ( ) ≈−Φ−−Φ=∗δ 25.4645.1;0P  nominal α. In

addition, given that there is no treatment difference (i.e., ),0=δ  the

power of the test is ( ) ( ) ( )0707.2.645.10707.20.645.15.0 −Φ−+−Φ==π|β R

( ) ( ) %76184.1184.1 =−Φ−Φ=  when the response rate for the standard

treatment is .5.=πR  For ,7.=πR  the power of the test increases to

( ) ( ) ( ) %.86475.1475.170.0 =−Φ−Φ==π|β R



w
w

w
.p

ph
m

j.c
om

IMPACT OF MULTIPLE ENDPOINTS ON TYPE I ERROR RATE …57

Sample size formula. We notice that at ,0=δ  the power function

in expression (5) is of the form ( ) ( ),hh −Φ−Φ  where ( ).10 α−−σδ= uh D

Thus equating (5) to a nominal power, say ,1 β−  leads to the equation

,210 βα− =−σδ uuD  where ( ) .22 β=−Φ βu  This gives the sample size

expression:

( ) ( ).12 2
2

2
0 RRZZn π−π+δ= βα
− (6)

Fleiss [3] gave a similar sample size expression ( ) 2
0

2
22

22 δ+σ= βα ZZn

for clinical equivalence trials at .0=δ  In his expression, 2α  is used in

place of α, and ( )%1100 α−  confidence interval criterion is used instead

of the ( )%21100 α−  criterion used here in our calculations. This latter

formulation is consistent with the two-tailed test formulation for a
superiority trial with a total significance level of α, when 2α  is spent in

assuring that the clinical efficacy of the test drug is different from or
inferior to the reference drug.

The sample size expression in (6) differs from the conventional one in
expression (3) obtained when 0=δ  only in that 2βZ  replaces .βZ  This

means that if the true treatment difference 0=δ  is assumed, then the

increase in sample size in using a non-inferiority trial instead of a clinical

equivalence trial is by a factor of ( ) ( ) .22
2 βαβα ++= ZZZZg

However, when δ is not zero, the power function in (5) is of the form
( ) −σδ−Φ Dh  ( ),Dh σδ−−Φ  where for ,10 α−−σδ= uh D  the sample

size value can be obtained by solving the following non-linear equation:

( ) ( ) ,1 β−=σδ−−Φ−σδ−Φ DD hh

( ) ( )[ ] .21122 nRRRD δ−δ+δπ−π−π=σ (7)

This is a non-linear equation in n, and can easily be solved by a standard
programming for desired α, ,1 β−  ,0δ  δ, and .Rπ  If the sample size is

calculated using the conventional 2-sided approach [with the test statistic
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( ),0 DseDZ =  with the usual normal distribution assumptions as in (4)],

then the expression for n for detecting a treatment difference of δ is the
same as in expression (4) except that αZ  is replaced by .2αZ

3. Multiple Endpoints Case

Similar to placebo-controlled trials, active-controlled trials are often

designed and conducted with multiple efficacy and safety endpoints. For

example, in an acute duodenal ulcer healing trial, healing rates are

generally measured at different time points such as week 4 and week 8.

In this case, the clinical expectation may be that the test drug T must be

non-inferior (or clinically equivalent) to a reference drug R for both time

points. Similarly, in a large vaccine trial, it may be necessary to show

that a new vaccine is at least as good as the old vaccine with respect to

not one but a number of key efficacy and safety measurements. For anti-

infective clinical trials, often the non-inferiority of a test drug in

comparison to an active control is sought with respect to both a cure rate

endpoint and a suitable bacteriological endpoint.

The computational results presented in this section are for binary
endpoints under the assumption of large sample size to provide sufficient
power for a single endpoint case. To introduce some notations, suppose
that, for endpoint j ( ),...,,2,1 Kj =  jTπ  and jRπ  represent the true

response rates for the test and reference drug, respectively, =δ j

jRjT π−π  represents the true treatment difference between the test and

reference drug, j0δ  is a pre-specified minimal clinical significant

difference of interest, and { ( )} jjjj DZ σδ−−= 0  is the test statistic for

testing the null hypothesis of inferiority jjRjTjH 00 : δ−π≤π  against

the alternative hypothesis of non-inferiority ,: 0 jjRjTajH δ−π>π

where ( )jRjTj ppD −=  is the observed treatment difference, and jσ  is

the standard error of jD  for endpoint j. Suppose that we adopt the

following rule for multiple endpoint testings.
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Rule. Claim non-inferiority for the test drug T in comparison to the
reference treatment R, if α−> 1uZ j  for all ,...,,1 Kj =  i.e., =Z

( )KZZ ...,,1  is within the intersection region ( ).11 α−≤≤ >∩ uZ jKj

In the following, we evaluate the impact on the type I error
probability and the power of the test procedure for multiple endpoint
testing. We assume that the endpoints are correlated, the sample sizes
for treatments T and R in the clinical trial are sufficiently large so that
the test statistic vector ( )KZZ ...,,1=Z  follows a multivariate normal

distribution.

3.1. Two-endpoint case

Let ( )21, δδ  denote the axes of a rectangular co-ordinate centered

about ( )., 0201 δ−δ−  Then the overall null hypothesis 0H  is the union of

the three quadrants ( )3,2,10 =iCi  and the alternative hypothesis is the

quadrant aC  as defined in the following:

{ }02201110 ,: δ−≤δδ−≤δC

{ }02201120 ,: δ−>δδ−≤δC

{ }02201130 ,: δ−≤δδ−>δC

{ }.,: 022011 δ−>δδ−>δaC

That is, the test drug T is inferior to the reference drug R with respect to
both endpoints in quadrant ,10C  but it is inferior to R with respect to

endpoint 1 only in quadrant ,20C  and inferior to R with respect to

endpoint 2 only in quadrant .30C  Let ( )∗δδ ;, 21P  denote the power

function of the test procedure. The critical regions for non-inferiority,
clinical equivalence, and superiority are displayed in Figure 1 where
( )jkC  stands for ,jkC  dj stands for jδ  and dj0 stands for  ( ),1,00 ==δ kjj

and to.respectwithwrt =  Note that the critical regions for a single

endpoint can be read off of any one of the two axes.
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Figure 1. Critical regions ( )jkC  for two-endpoint case, 1,0== kj

If
( )∗δδ=α ;,Sup 211 P  when ( ) 1021, C∈δδ

( )∗δδ=α ;,Sup 212 P  when ( ) 2021, C∈δδ

( )∗δδ=α ;,Sup 213 P  when ( ) ,, 3021 C∈δδ

then the type I error rate of the test procedure is { }.,,max 321 ααα=α

Power function. The power function ( ) ( ){ ,;,;, 102121 δδδ=∗δδ PP

}αππδ ,,,,, 212120 nnRR  is the probability of C given ( ) ,jjDE δ=  where

( ) ( ){ }.: 1211 α−α− >∩> uZuZC  This probability can be calculated using

( )21,,;, δδρkhL  of the standard bivariate normal distribution as

( ) ( ) ( ( )) ( )∫ ∫
∞ ∞ − φρ−π=δδρ=∗δδ
h k

dudvvu khLP ,,14,,;,;, 2122
2121

where ( ) ( ) ,,,, 22022110112111 σδ+δ=ξσδ+δ=ξξ−=ξ−= α−α− ukuh

and ρ is the correlation coefficient between 1Z  and .2Z  It is easy to see

that ( ),;, 111 ρ=α α−α− uuL  because the supremum of ( )khL ,  when

( ) 1021, C∈δδ  is attained at ,, 202101 δ−=δδ−=δ  leading to 2
1 α=α



w
w

w
.p

ph
m

j.c
om

IMPACT OF MULTIPLE ENDPOINTS ON TYPE I ERROR RATE …61

when ,0=ρ  and α<α1  with 1α  approaching α in the limit as

correlation ρ approaches 1. In addition,

 ( )khL ,Sup2 =α  when ( ) 2021, C∈δδ

( )ρ= ;, khL  at R222101 1max, π−≤δ=δδ−=δ

( )( )ρσδ+δ−= α−α− ;max, 220211 uuL

( ) .1 1 α=Φ−< α−u

Similarly,

 ( )khL ,Sup3 =α  when ( ) 3021, C∈δδ

( )ρ= ;, khL  at 202111 ,1max δ−=δπ−≤δ=δ R

( )( )ρσδ+δ−= α−α− ;,max 111011 uuL

( ) .1 1 α=Φ−< α−u

That is, as ,∞→n  both 2α  and 3α  approach the nominal significance

level α. To see this, let ( ) ( ) 22022 σδ+δ=δφ  and RT 222 π+δ=π  in the

expression for .2α  Then

( ) ( ) ( ) ( )
.

2
1

12 22
22222022

δ−δ
+δπ−π−πδ+δ=δφ RRRn

Note that ( ) ( ) ( ) 211 2222222 δ−δ+δπ−π−π=δ RRRf  attains its maximum

value at ( ),5. 22 Rπ−=δ  and is strictly decreasing for all ∈δ2

( ).1,5. 22 RR π−π−  The largest possible value of R22 1 π−=δ  when

.12 =π T  Therefore, the maximum of ( )2δφ  is attained at R21 π−  and is

given by ( ) ( )[ ] .11 21
22202 nRRR π−πδ+π−=φ∗  Consequently, =α2

( )ρφ− ∗
α−α− ;, 11 uuL  converges to ( )ρ∞−α− ;,1uL  as .∞→n  But

( ) α=ρ∞−α− ;,1uL  and hence the result for .2α  The result for 3α  can be

derived similarly. Note that in evaluating the L function, both 1δ  and 2δ

are evaluated at their maximum values.
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Tables 1a, 1b and 2 give values of 2α  for various values of ,10δ  ,20δ

,max 2δ  and n; Table 3 presents the results of some power calculation

results.

Table 1a. 2α -values for two endpoints

( ) %30max,100,10. 22010 =δ==δ=δ n

ρ 5.=πR 6.=πR 7.=πR

0.0 .049994 .049998 .050000

0.3 .050000 .050000 .050000

0.5 .050000 .050000 .050000

≥ 0.6 .050000 .050000 .050000

Table 1b. 2α -values for two endpoints

( ) %10max,200,10. 22010 =δ==δ=δ n

ρ 5.=πR 6.=πR 7.=πR

0.0 .049585 .049747 .049934

0.3 .049958 .049978 .049996

0.5 .049998 .049999 .050000

≥ 0.6 .050000 .050000 .050000
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Table 2. 2α -values for two endpoints

( ) ( ) ( )%20%,15max,150100,15. 22010 =δ==δ=δ n

ρ 5.=πR

%20%,15 22 =δ=δ

7.=πR

%20%,15 22 =δ=δ

0.0 .049825, .049978

(.049950, .049996)

.049989, .050000

(.049997, .050000)

0.1 .049911, .049990

(.049977, .049999)

.049995, .050000

(.049969, .050000)

0.5 .049999, .050000

(.050000, .050000)

.050000, .050000

(.049996, .050000)

0.9 .050000, .050000

(.050000, .050000)

.050000, .050000

(.050000, .050000)

Single endpoint power: 74.4%, 84.8%
(Single endpoint power = 79.7%, 88.3%)

Table 3. Power of the test for two endpoints

( )0Power,100,15. 212010 =δ=δ==δ=δ n

ρ 5.=πR 7.=πR

0.0 63.6% (79.7%)∗ 78.0% (88.3%)∗

0.1 64.4% 78.4%

0.5 68.4% 80.6%

0.9 74.7% 84.8%

0.99 78.2% 87.2%
∗Single endpoint power
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4. Discussion

In an ideal situation, a non-inferiority (or a clinical equivalence) trial
would include a concurrent placebo arm for internal validation that the
active control is effective in the given trial, before testing for similarity or
non-inferiority between the test and the reference drug. However, this
situation is often not possible for ethical reasons, thus leading to an
external validation based on historical data or other external clinical
evidence. Without such an internal or external validation, active control
trials pose some serious challenges regarding results interpretation.
These and other relevant issues about active control trials have been
addressed by many authors including Temple [9], Lamborn [7], Gould [5]
and Fleming [4].

A suitable testing of hypothesis framework for such trials is to make
the null hypothesis an interval hypothesis of non-inferiority (or non-
equivalence) and to set up the testing procedure, as discussed in this
presentation, for the purpose of rejecting such a null hypothesis. This
approach leads to a confidence interval rule that helps the interpretation
of the clinical trial results. For clinical equivalence trials, however, the
lower and the upper equivalence margins may not be the same, and thus
the test procedure may not convert to a symmetric confidence interval
rule.

The choice of an acceptable margin of clinical inferiority ( ),0δ  often

called upper and lower equivalence margins, have not been addressed in
this paper. For the binary-type endpoint these margins depend on the
background response rate and the clinical input. If the background
response rate is high, these margins could be small. One obvious
restriction is that the lower and/or upper margins need to be smaller
than the size of the observed treatment difference between the reference
drug and placebo on the δ-scale. In particular, the size of the margin may
not be greater than half the observed and documented treatment
difference between the reference drug and placebo in the trial that
formed the basis for the approval of the reference drug.

We have presented some sample size and power calculations both for
a one and two correlated endpoints for a positive-controlled clinical trial.
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In a superiority trial, multiple endpoints, depending on the strength of
the correlation among the endpoints, generally lead to inflation of the
type I error rate. Therefore, for non-inferiority trials one would expect the
opposite of this, i.e., deflation of the type I error to a much lower value
since the roles of the null and alternative hypotheses are reversed.
However, our computations show that, at least for the two endpoint case,
a test for non-inferiority in the hypothesis-testing framework discussed
above leads to a type I error rate that remains very close to the nominal
α. However, our calculations show that the power of the test procedure is
adversely affected depending on the extent of the correlations between
the endpoints.
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