α -FAVORABILITY OF C(X) WITH A SET OPEN TOPOLOGY II

A. BOUCHAIR and S. KELAIAIA

(Received January 2, 2006)

Submitted by K. K. Azad

Abstract

As in our papers [Révue Sciences & Technologie, Univ. Mentouri Constantine A-No. 20 (2003), 17-20] and [Far East J. Math. Sci. (FJMS) 18(3) (2005), 305-312], we consider C(X) the set of all continuous real-valued functions on a topological space X, when it is equipped with a set open topology defined with the help of a particular non-empty family γ of compact subsets of X. We give a necessary condition for C(X) to be weakly- α -favorable and extend a result obtained of McCoy and Ntantu in the framework of the compact-open topology [Topology Appl. 2 (1986), 191-206]. Obtaining this result is essentially due to a hypothesis of admissibility of the family γ , introduced in [Topology Proc. 10 (1985), 329-345].

1. Introduction

Throughout this paper X denotes a completely regular Hausdorff space, C(X) denotes the set of all continuous real-valued functions on X and γ denotes a non-empty family of compact subsets of X. The symbols \mathbb{R} and \mathbb{N} denote respectively the real numbers and the positive integers. C(X) is equipped with a topology which has as subbase the collection:

 $2000\ Mathematics\ Subject\ Classification:\ 54C35.$

Keywords and phrases: set-open topology, admissible family, weakly- α -favorable, σ -compact.

© 2006 Pushpa Publishing House

 $\{[A, V] : A \in \gamma, V \in \mathfrak{I}(\mathbb{R})\}, \text{ where } [A, V] = \{f \in C(X) : f(A) \subset V\} \text{ and } \mathfrak{I}(\mathbb{R}) \text{ denotes the collection of all open bounded intervals of } \mathbb{R}.$ C(X) equipped with this topology is denoted by $C_{\gamma}(X)$ and it is said to have a set-open topology [6].

A remark that we will need later is that if Y is a subset of X, then the set C(Y) may be endowed with the set-open topology which has as subbase the collection $\{[A \cap Y, V] : A \in \gamma, V \in \mathfrak{I}(\mathbb{R})\}$, and it will be denoted by $C_{\gamma \cap Y}(Y)$.

Recall that the completeness properties of a topological space range from complete metrizability to the Baire space property. Most of the completeness properties of C(X) when it is equipped with the compact-open topology were studied in [7].

In the beginning we give a definition and some results needed in the sequel.

A non-empty family γ of compact subsets of X is said to be admissible if for every $A \in \gamma$ and for every finite sequence $\mathcal U$ of open subsets of X which covers A, there exists a finite sequence $\mathcal A$ of members of γ which covers A such that for every $B \in \mathcal A$ there exists $U \in \mathcal U$ such that $B \subset U$.

A non-empty family γ of compact subsets of X is said to be *weakly-admissible* if for every $A \in \gamma$ and for every finite sequence $\mathcal U$ of open subsets of X disjoint pairwise which covers A, there exists a finite sequence $\mathcal A$ of members of γ which covers A such that for every $B \in \mathcal A$ there exists $U \in \mathcal U$ such that $B \subset U$.

If γ and β are families of compact subsets of X, then we say that β approximates γ or γ can be approximated by β provided that for every element A of γ and for every open U of X such that $A \subset U$, there exists

$$B_1, ..., B_n \in \beta$$
 with $A \subset \bigcup_{i=1}^n B_i \subset U$.

Remark that if Y is a closed subset of X and if γ is an admissible

 α -FAVORABILITY OF C(X) WITH A SET OPEN TOPOLOGY II 177 family of X, then so is the case for the family $\{A \cap Y : A \in \gamma\}$ in Y endowed with its subspace topology.

Remark also that when γ is admissible, then the set-open topology on C(X) defined with the help of the family γ is the same with the topology of the uniform convergence on the elements of γ defined on C(X). Recall that in the later topology the basic neighbourhoods of any point f in C(X) have the form $\langle f, A, \varepsilon \rangle = \{g \in C_{\gamma}(X) : |g(x) - f(x)| \prec \varepsilon, \ \forall x \in A\}$, where $A \in \gamma$, and ε is a positive real number.

A useful concept for studying topological properties of function spaces is the *induced function*. Every continuous function $\Phi: Y \to X$ induces a function $\Phi^*: C(X) \to C(Y)$ defined by $\Phi^*(f) = f \circ \Phi$, for each $f \in C(X)$. Most of the properties of Φ^* were studied by McCoy and Ntantu in [6], and Kelaiaia in [5].

Theorem 1 [6]. Let $\Phi: Y \to X$ be a continuous function, and let γ and β be families of compact subsets of X and Y, respectively. Then $\Phi^*: C_{\gamma}(X) \to C_{\beta}(Y)$ is continuous if and only if $\Phi(\beta)$ is approximated by γ .

Theorem 2 [5]. Let X be a topological space, Y be a sub-space of X, β be an admissible family of compact subsets of Y and γ be a weakly-admissible family of compact subsets of X. Let $i: Y \to X$ be inclusion mapping. Then $i^*: C_{\gamma}(X) \to C_{\beta}(Y)$ is open onto its image if and only if β approximates $\gamma \cap \overline{Y}$.

2. The Banach-Mazur and the R. A. McCoy Games

Let X be a topological space. Then the Banach-Mazur game $\Gamma_{BM}(X)$ on X is played as follows: Two players I and II take turns choosing open subsets U_n and V_n , respectively.

The player I first chooses an open subset U_1 .

When the player I has chosen the open subset U_n , the player II chooses an open subset V_n included in U_n .

When the player II has chosen the open subset V_n , the player I chooses an open subset U_{n+1} included in V_n .

The player II wins the game if $\bigcap \{U_n : n \in \mathbb{N}\} \neq \emptyset$.

A strategy in the game $\Gamma_{BM}(X)$ is a function $\sigma: S(\tau^*) \to \tau^*$, where τ^* denotes the collection of all non-empty open subsets of X and $S(\tau^*)$ denotes the collection of the finite sequences of members of τ^* , such that $\sigma(U_1, U_2, ..., U_n) \subset U_n$ for all $n \geq 1$. A strategy σ is said to be winning for the player H in $\Gamma_{BM}(X)$ if for each play $U_1, V_1, U_2, V_2, ...$ such that $U_1 \supset V_1 = \sigma(U_1) \supset U_2 \supset V_2 = \sigma(U_1, U_2) \supset \cdots$ we have $\bigcap \{U_n : n \in \mathbb{N}\} \neq \emptyset$.

Usually strategies depend on all previous plays, a strategy σ which depends only on the previous play is a strategy such that $\sigma(U_1, U_2, ..., U_n) = \sigma(U_n)$.

A topological space X is called weakly α -favorable space if the player II has a winning strategy in $\Gamma_{BM}(X)$ which depends on all previous games. The space X is called α -favorable if the player II has a winning strategy in $\Gamma_{BM}(X)$ which depends only on the previous play. We say also that X is weakly β -defavorable (resp. β -defavorable) if player I has no winning strategy in $\Gamma_{BM}(X)$.

A topological space X is called a *Baire space* if the intersection of any sequence of dense open subsets of X is dense in X. In his paper Oxtoby [8] proved that a topological space X is a Baire space if and only if it is weakly β -defavorable.

Now let us introduce two games due to McCoy and Ntantu [7] played on a topological space X using a non-empty family γ of compact subsets of X including the empty set. These two games which are denoted by $\Gamma^1_{\gamma}(X)$ and $\Gamma^2_{\gamma}(X)$, will allow us to answer when $C_{\gamma}(X)$ is weakly α -favorable.

α -FAVORABILITY OF C(X) WITH A SET OPEN TOPOLOGY II 179

The game $\Gamma^1_{\gamma}(X)$ is played as follows: Two players I and II take turns choosing elements of the family γ . On the nth play, player I chooses $A_n \in \gamma$ and player II chooses $B_n \in \gamma$. The only restriction is on player I, who must choose A_n disjoint from $B_1 \cup \cdots \cup B_{n-1}$ for $n \succ 1$. Player II wins if $\{A_n : n \in \mathbb{N}\}$ is a discrete family in X; otherwise player I wins.

In the second game $\Gamma_{\gamma}^2(X)$, players I and II also take turns choosing elements of the family γ , this time with no restriction. On the nth play, player I chooses $A_n \in \gamma$ and player II chooses $B_n \in \gamma$. Let $R_1 = A_1$, and for each $n \succ 1$, let $R_n = A_n \setminus (B_1 \cup \cdots \cup B_{n-1})$. Player II wins if $\{R_n : n \in \mathbb{N}\}$ is a discrete family in X; otherwise player I wins.

The winning strategies for the games $\Gamma^1_{\gamma}(X)$ and $\Gamma^2_{\gamma}(X)$ are defined in the same way as for the Banach-Mazur game.

Obviously, if player II has a winning strategy in $\Gamma^2_{\gamma}(X)$, then player II has also a winning strategy in $\Gamma^1_{\gamma}(X)$.

Theorem 3 [2]. Let X be a normal space, γ be an admissible family including the empty set and which is stable by finite unions and verifying the property that any point of X admits a member of γ as a neighborhood. Then the following are equivalent:

- 1. $C_{\gamma}(X)$ is weakly α -favorable.
- 2. Player II has a winning strategy in $\Gamma^1_{\gamma}(X)$.
- 3. Player II has a winning strategy in $\Gamma_{\gamma}^{2}(X)$.

3. More on Weak-α-favorability and σ-compacity

A space is a σ -compact space provided that it is a countable union of compact subspaces. The first main result relates to the σ -compact property with the game $\Gamma^2_{\gamma}(X)$.

Proposition 4. Let X be a topological space, γ be a family of compact subsets of X contains the empty set. Let γ_0 be a countably subfamily of γ such that $X = \overline{\bigcup \{K : K \in \gamma_0\}}$. If player II has a winning strategy in $\Gamma^2_{\gamma}(X)$, then X is a countably union of members of γ (then, σ -compact).

Before giving the proof of this proposition we need to recall a lemma and a definition.

Lemma 5 [7]. Let X be a topological space and γ be a family of compact subsets of X. If player II has a winning strategy σ in $\Gamma^2_{\gamma}(X)$ and (C_n) is a sequence of elements of γ , then the strategy σ' defined by $\sigma'(A_1, ..., A_n) = \sigma(A_1, ..., A_n) \cup C_n$ is also a winning strategy for player II in $\Gamma^2_{\gamma}(X)$.

Definition 6. A strategy σ for player II in $\Gamma_{\gamma}^{2}(X)$ is called a *spanning* one if for each positive integer n, we have $A_{n} \subset \sigma(A_{1}, ..., A_{n})$.

Proof. Let $X = \bigcup \{K_i : i \in \mathbb{N}^*\}$, $K_i \in \gamma_0$ and σ be a winning strategy for player II in $\Gamma_\gamma^2(X)$. Then the strategy σ' as defined in Lemma 5 by taking $C_n = K_n$ for all n, is also a winning spanning strategy for player II in $\Gamma_\gamma^2(X)$. Let $B_0 = \phi$, as the player II has a winning strategy σ' in the game $\Gamma_\gamma^2(X)$. Then whatever is the play of the player I in this game the player II will win using this strategy. So let the player I use the same strategy σ' and begin the play by choosing $A_1 = \sigma'(B_0)$. The player II will answer by $B_1 = \sigma'(A_1)$. For the nth move, define A_n and B_n inductively by:

$$A_n = \sigma'(B_0, B_1, ..., B_{n-1})$$
 and $B_n = \sigma'(A_1, A_2, ..., A_n)$.

For each n, we put

$$R_n = A_n \setminus (B_0 \cup \cdots \cup B_{n-1})$$
 and $S_n = B_n \setminus (A_1 \cup \cdots \cup A_n)$.

Then both $\{R_n: n \ge 1\}$ and $\{S_n: n \ge 1\}$ are discrete families in X,

because σ' is a winning strategy in $\Gamma^2_{\gamma}(X)$. We prove that

$$(\bigcup \{R_n : n \ge 1\}) \cup (\bigcup \{S_n : n \ge 1\}) = (\bigcup \{A_n : n \ge 1\}) \cup (\bigcup \{B_n : n \ge 1\}).$$

Obviously, we have

$$(\bigcup \{R_n : n \ge 1\}) \cup (\bigcup \{S_n : n \ge 1\}) \subset (\bigcup \{A_n : n \ge 1\}) \cup (\bigcup \{B_n : n \ge 1\}).$$

For the converse case, let $x\in (\bigcup\{A_n:n\geq 1\})\cup (\bigcup\{B_n:n\geq 1\})$ and let n_1 respectively n_2 be the smallest integers such that $x\in A_{n_1}$ and $x\in B_{n_2}$ with $n_1=\infty$ if $x\not\in \bigcup\{A_n:n\geq 1\}$ and $n_2=\infty$ if $x\not\in \bigcup\{B_n:n\geq 1\}$. If $n_1\leq n_2$, then $x\in R_{n_1}$ and if $n_1\succ n_2$, then we have $x\in S_{n_2}$.

Now the set $D=(\bigcup\{A_n:n\geq 1\})\cup(\bigcup\{B_n:n\geq 1\})$ is a dense σ -compact subset of X. To see that D=X. Let $x\in X$. Then there exists a neighborhood U of x which intersects at most one R_n and at most one S_n . Since D is dense in X, there exist n_0 and n_1 such that $x\in \overline{R_{n_0}}$ or $x\in \overline{S_{n_1}}$. This means that $x\in A_{n_0}$ or $x\in B_{n_1}$ and then D=X. So that X is σ -compact.

Before giving the next main result, we need to give the following lemmas.

Lemma 7 [5]. Let X be a topological space, K be compact subset of X, F be closed subset of X and let $f: X \to \mathbb{R}$ be a continuous function such that $f(K \cap F) \subset V$, where V is a bounded open interval. Then there exists a continuous function $f_1: X \to \mathbb{R}$ such that $f_1|_F = f|_F$ and $f_1(K) \subset V$.

Lemma 8. Let X be a topological space, Y be a sub-space of X, γ be a family of compact subsets of X with $B \cap Y = B \cap \overline{Y}$ for each $B \in \gamma$ and let $g \in C(Y)$ be a function extendable to a continuous function over X. Let $B_1, ..., B_n \in \gamma$ and $V_1, ..., V_n$ be a bounded open intervals in \mathbb{R} such that $g(B_i \cap \overline{Y}) \subset V_i$ for each i = 1, ..., n. Then there exists $g' \in C(X)$ an extension of g such that $g'(B_i) \subset V_i$ for each i = 1, ..., n.

Proof. Using the reasoning by recurrence. Let $g \in C(Y)$, $B \in \gamma$ and V be a bounded open interval such that $g(B \cap \overline{Y}) \subset V$. Then by Lemma 7 with $F = \overline{Y}$ and K = B, we obtain a function $g' \in C(X)$ prolonge g such that $g'(B) \subset V$.

Suppose that the property is true up to n. Let $B_1, ..., B_{n+1} \in \gamma$ and $V_1, ..., V_{n+1}$ be a bounded open intervals in $\mathbb R$ such that $g(B_i \cap \overline{Y}) \subset V_i$ for each i=1,...,n+1. By hypothesis we have $g((B_i \cap B_{n+1}) \cap \overline{Y}) \subset V_i \cap V_{n+1}$ for each i=1,...,n. The family $\{B_1 \cap B_{n+1},...,B_n \cap B_{n+1}\}$ verifies $(B_i \cap B_{n+1}) \cap Y = (B_i \cap B_{n+1}) \cap \overline{Y}$ for each i=1,...,n. Then there exists $g_1' \in C(X)$ prolonge g such that $g_1'(B_i \cap B_{n+1}) \subset V_i \cap V_{n+1}$, for each i=1,...,n. We put $Y_1 = Y \cup \bigcup_{i=1}^n (B_i \cap B_{n+1})$. It is easy to see that $B_i \cap Y_1 = B_i \cap \overline{Y_1}$ for each i=1,...,n+1, and we have $g_1'(B_i \cap \overline{Y_1}) \subset V_i$ for each i=1,...,n+1. By applying Lemma 7 at the restriction $g_1' \mid_{\overline{Y_1}}$ with $F = \overline{Y_1}$ and $K = B_{n+1}$, we obtain a function $g_2' \in C(X)$ prolonge $g_1' \mid_{\overline{Y_1}}$ such that $g_2'(B_{n+1}) \subset V_{n+1}$. Remark also that $g_2'(B_i \cap B_{n+1}) \subset V_i$ for each i=1,...,n.

We put $Y_2=Y_1\cup B_{n+1}$. It is easy to verify that $B_i\cap Y_2=B_i\cap \overline{Y_2}$ for each i=1,...,n and that $g_2'(B_i\cap \overline{Y_2})\subset V_i$, for each i=1,...,n. Using the hypothesis of recurrence at $B_i\cap Y_2=B_i\cap \overline{Y_2}$ for each i=1,...,n, there exists $g_3'\in C(X)$ prolonge $g_2'\mid_{\overline{Y_2}}$ such that $g_3'(B_i)\subset V_i$, for each i=1,...,n and we have $g_3'(B_{n+1})=g_2'(B_{n+1})\subset V_{n+1}$. We take $g'=g_3'$.

Using the above result we obtain a necessary condition for $C_{\gamma}(X)$ to be weakly- α -favorable.

Proposition 9. Let X be a normal space, γ be an admissible family of compact subsets of X contains the empty set and stable by finite union

α-FAVORABILITY OF C(X) WITH A SET OPEN TOPOLOGY II 183 such that any point of X admits a member of γ as a neighborhood. Let $Y = \overline{\bigcup \{K : K \in \gamma_0\}}$, where γ_0 is a countably subfamily of γ . If $C_{\gamma}(X)$ is weakly-α-favorable and γ approximates $\gamma \cap Y$, then Y is σ -compact.

Proof. The inclusion map $i:Y\to X$ induces a function $i^*:C_\gamma(X)\to C_\beta(Y)$, where $\beta=\gamma\cap Y$. By Theorem 1, i^* is continuous. By Theorem 2, i^* is an open function onto its image. To see that $i^*(C_\gamma(X))$ is dense in $C_\beta(Y)$, let $\bigcap_{i=1}^n [B_i,V_i]$ be a basic open subset of $C_\beta(Y)$, where $B_i\in\beta$, for each i=1,...,n and $V_1,...,V_n$ are bounded open intervals in $\mathbb R$ and let $g\in\bigcap_{i=1}^n [B_i,V_i]$. For each i=1,...,n there exists $A_i\in\gamma$ such that $B_i=A_i\cap Y$. Since Y is closed in X normal, using Lemma 8, g has an extension $g_1\in C_\gamma(X)$ with $g_1(A_i)\subset V_i$, for each i=1,...,n. It is easy to see that

$$g \circ i \in i^*(C_{\gamma}(X)) \cap \left(\bigcap_{i=1}^n [B_i, V_i]\right).$$

Then $C_{\beta}(Y)$ is a weakly- α -favorable space as continuous image of $C_{\gamma}(X)$. The player II has a winning strategy in the game $\Gamma_{\beta}^{2}(Y)$ by Theorem 3. Therefore Y is σ -compact by Proposition 4.

Acknowledgement

The authors acknowledge the support of M.E.R.S. (Project No. B 2301/04/04).

References

- [1] A. Bouchair and S. Kelaiaia, Applications de jeux topologiques à l'étude de C(X) muni d'une topologie set-open, Révue Sciences & Technologie, Univ. Mentouri Constantine A-No. 20 (2003), 17-20.
- [2] A. Bouchair and S. Kelaiaia, α -favorability of C(X) with a set-open topology, Far East J. Math. Sci. (FJMS) 18(3) (2005), 305-312.

- [3] G. Choquet, Lectures in Analysis, Benjamin, New York, Amsterdam, 1969.
- [4] R. Engelking, General Topology, Polish Scientific Publishing, 1977.
- [5] S. Kelaiaia, Propriétés de certaines topologies set-open sur C(X), Thèse de Doctorat de l'Université de Rouen, Soutenu le 30 Juin 1995.
- [6] R. A. McCoy and I. Ntantu, Countability properties of function spaces with set-open topology, Topology Proc. 10 (1985), 329-345.
- [7] R. A. McCoy and I. Ntantu, Completeness properties of function spaces, Topology Appl. 2 (1986), 191-206.
- [8] J. C. Oxtoby, The Banach-Mazur game and Banach category theorem, Contributions to the theory of games, Vol. 3, pp. 159-163, Ann. Math. Stud. 39, Princeton University Press, Princeton, 1957.
- [9] H. E. White, Topological spaces that are α-favorable for player with perfect information, Proc. Amer. Math. Soc. 50 (1975), 477-482.

Department of Mathematics University of Jijel P. O. Box 98, Jijel, Algeria

Department of Mathematics University of Annaba P. O. Box 12, Annaba, Algeria