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Abstract

The limit analysis, by epiconvergence techniques, of the sequence of
nonperiodic convex integral functionals, with time dependent case, is
studied by a new approach. This approach allows to treat some cases
more general than the ones considered in the previous literature. Our
main result generalizes the one obtained by Mascarenhas [Trans. Amer.
Math. Soc. 281(1) (1984), 179-195], in the time independent case. An

example of such sequence is presented.

1. Introduction

In order to treat the periodic homogenization, the notion of two scale
convergence is developed in [1] and [2]. As remarked by [11], the two
scale limit represents in fact the barycenter of a Young measure. More
recently, [6] introduced the scale convergence, which generalizes the
multiscale convergence introduced by [1] and [2]. This new concept,
seems to be a powerful tool to study by epiconvergence, the nonperiodic
case. In this paper, we deal with the sequence of the nonperiodic integral

functionals, of the form
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T
F,(v) = j j £, %, o, (x), o(t, x), V¢, x))dxds,
0 JQ

where, v e H([0, T], I2(Q)) and f:(t x, A, & ) > f(t, x, A, &, C) is a

function from [0, 7] x Q x [1xR? into R*, which satisfies the following

conditions:

e fis (&, €)-convex;

e there exists C > 0, such that for every (&, ¢) e R?

SUEP+ICP) < 6 x 08 Q< C+ | +[CP),

a.e. (¢, x, 1) e [0, T]x QxTII; (*)
o f, g—}; and % are (¢, x)-measurable, (A, &, {)-continuous.

By using, the theory of epiconvergence, the fundamental theorem for
Young measures and the scale convergence, we will prove that the

following integral functional

T
FPom(y) = inf{‘[o JQ J-H f(¢, x, A, wit, x, 1), w'(t, x, 1))dudt;

we H, vt x) = IH w(t, x, K)dux}

is the epilimit of the sequence (F,), with H = H([0, T’} La(Q x [1)). The

paper is organized as follows. Section 2 contains some useful results
concerning Young measures, while Section 3 is devoted to introduce the
so called scale convergence and related results. In Section 4, we prove our

main result and in Section 5, we give an example.

2. Young Measures and the Measurable Functions

Let O be an open bounded subset of R and let S be a metrizable

space. We denote by: dx the Lebesgue measure on R"; F(O) the family



NONPERIODIC CONVEX INTEGRAL FUNCTIONALS ... 27

of all Lebesgue measurable subsets of O and B(S) the Borel c-field of S;

M*(O x S) the set of the positive Radon measures.

Definition 2.1. The Young measure on OxS, is an any p e
M* (O x S), whose projection on O is dx, i.e., W(A x S) = dx(A), for all
A e F(O).

We denote by V(O x S), the set of all Young measures on O x S, and

we say that, the sequence p,, narrow converges to p in Y(O x S) and we

write p, "% W, if for each ¥ in Cthb(O x S) (the set of the Carathéodory
bounded integrands), we have (¥, p,) = (¥, p).

Theorem 2.1 (disintegration [10]). Let p € Y(O x S). Then for a.e. x
in O, there exists a probability measures p, from S, such that for all

¥ :0x8S - RY, u-measurable
I Y(x, A)du = I J W(x, A)dup,dx.
OxS 0JS

Thus we write p = p, ® dx.

Let a : O — S, be a measurable function and G : x — (x, a(x)) from

O into O xS, the graph map of a. Denoting by p, = dx o G, the
image measure of dx on O by G. Then p, € Y(O x S), and for every

A e F(O) and every B e B(S) pg(AxB):=dx(ANa (B)). So, for

each p, -measurable function ¥ : O x S — R", we have
¥(x, A)d :IWx,ax dx.
[, e g = [ (e o)

By using Theorem 2.1, we obtain p, =6, ® dx, here §, denotes the
Dirac measure of a. p, is said the Young measure associated to a. For a

measurable sequence a,, : O - S, we say that

@) p in Y(O x S) is generated by a,, if the sequence of the Young

measures associated to a,,, narrow converges to p or equivalently for all
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¢ in Cth®(0 x S)
[ ot anthar > [ o, 1)du
O OxS

(i) The sequence p, in Y(O x S) is tight if, for every n > 0, there
exists a compact space K, c S, such that supp,{Ox (S\K,)} <n, or
n

sup dxix € O; a,(x) € (S\K,))} < m, if p,, is associated to a,,.
n

Theorem 2.2 (Prokhorov’s theorem, see [10]). Every tight sequence

w, in V(O xS), admits a subsequence My, which narrow converges in

V(O x S).

Note that, if S = R?, and a, is a bounded sequence in Ll(O; Rd),

then the sequence of their associated Young measure is tight. If now, S is

a compact space, then the sequence p,, of the Young measure associated

to a,, is tight.

Proposition 2.1. If the sequence (u,) is relatively compact in
V(O x S;) and if the sequence (v,) is relatively compact in Y(O x Sg),
then the sequence (u,,, v,,) is relatively compact in Y(O x S} x Sg).

Theorem 2.3 (Fundamental theorem [10]). Let a, : O > S be a

sequence of measurable functions, such that the sequence of their

associated Young measures narrow converges to (L.
(@) If v : OxS — R is a normal integrand such that, the sequence of

the negative parts {y(x, a,(x))"} is uniformly integrable in O, then

J. v(x, A)dp < lim ian. v(x, o, (x))dx.
OxS n o

) If vy:0xS > R is a Carathéodory integrand such that, the

sequence {y(x, o, (x))} is uniformly integrable in O, then

JOXS y(x, A)du = lirgn IO v(x, a,(x))dx.
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3. The Scale Convergence
In [6], the concept of the scale convergence, or o, -convergence is
given in (L*(Q), Lﬁ(Q x [1)), where [] is a metrizable compact space. In
this section, we will extend this notion to (H'([0, T} L*()), H'([0, T';

Lﬁ (@ xI1))) and we will demonstrate some related results, which used in

the section below. In the sequel, C(I]) denotes the space of continuous

functions from [] into R.

Definition 3.1. The sequence (v,) in H([0, T] I*(Q)), o,-
converges to v € H([0, T’} Lﬁ(Q x 1)) if for all ¢ e L2([0, T]x Q; C(IT));

T T
f ) j ol )60, %, 0ty () dxdt > IO f oy V6 )00, %, 2)duds
and
T T
J I o (¢, %)o@, x, ocn(x))dxdt—>J. I v'(t, x, Mo, x, L)dudt.
0 JQ 0 JQOxJI

We will say that v is the a,, -limit of the sequence v,,.

Definition 3.1 is justified in view of the following compactness

theorem:

Theorem 3.1. From each bounded sequence (v,) in H ([0, T];

L2(Q))’ there exists a subsequence (vnk), which  a,, -converges to

w e HY([0, TJ; Lﬁ(Q x [1)). In particular, for a.e. x in Q
O, *J‘ w(t, x, \)dy, weakly in H([0, T}, I2(Q)).
II
Consequently, for every ¢ in L2(Q; C(I1))

J.Q U, (T, x)o(x, oy, (x))dx — IQ J.H w(T, x, M)o(x, A)du,dx.



30 MESSAOUDI KHELIFA and BENHADID AYACHE

Proof. Let A,, be the Young measure on [0, T'] x Q x R? associated to
0, : (t, x) > (v, (¢, x), U, (¢, x)) from [0,7]xQ into R%. From Proposition
2.1, A, is relatively compact in ([0, T]x Q x R?); the sequences of
Young measures associated to a, : Q — [[ is relatively compact in
Y(QxTI). Hence the sequence of Young measures associated to

(v, U}y> 0) denoted (0,) is relatively compact in Y([0, T']x Q x [T x
R?). Then, there exists a subsequence still denoted (0,) which narrow

converges to some 0 € Y([0, T]x Q x [T x R?).

Applying Theorem 2.3 (b) with O =(0,T)xQ, S=R%x[] and
w(t, x, &, ¢, A) = E4(t, x, L), we obtain

T
j j v, (t, )0, *, an(x))dxdt—>J. £d(t, x, 1)db.
0Ja [0 I1

, TIROXR?x

By Theorem 2.1 there exists the family of the probability measures
(e(t,x,X))(t,x,x)e[o, TxQxIT such that

.[(0, TIxOxR2X]] S0(t, x, )b = L)T IQ -[H 9, x, K)J.u@ &dOt, x,)(& C)dndt;

therefore

T T
jo jgun(t, X)b(t, x, o, (x))dxdt — IO ngn w(t, x, 1), x, \)duds,

where w(t, x, 1) = IRg éde(t,x,?»)'

It remains to prove that w e H((0, T'); Lﬁ (@ xI1)). Applying Jensen’s

inequality to the probability measures (0 x, 1)), x, 1)c[0, T]xx[1> We have

T 2
2 _
Y 4 ] T

: .[oT J.Q IH J.Rz ‘iQde(t,x,x)(é, ¢)dudt.
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From Theorem 2.3 (a), with O=(0,T)xQ, S=RZx[] and
\V(t’ X, &9 C.n )") = §2

T
£2d6 < lim inf | (2, x) [Pdxdt < +oo,
2 n
(0, THxQxR“x[1 n—+o JO0 JOQ

therefore w e L2((0, T'); Lﬁ(Q x I1)).

Using the same argument for the sequence (v),) and taking
v(t, %, & G, &) = Co(¢, x, 1). We obtain

T T _
j ) IQvn(t, 2)o(t, x, o, (x))dxdt — j ) ngn w(t, x, M), x, \)duds,

where w(¢, x, 1) = JRZ CdO;, x,7)(& €) and w e L%((0, T); Lﬁ(Q x[1)). In

order to complete the proof we will show that w 1is the time derivative of
w. Let ¢ € ©((0, T); C(Q x I1)), we have

T T
[, I, vh =)0, %, onenardt = = [ vt 006 x, o (o)t
0JQ 0 Jo
when n — +oo
T . T '
J.o J.anw(t, x, M)(t, x, L)dudt = _J.o J.QXH w(t, x, M)§'(t, x, \)dudt.

For ¢, €®(0,T) and ¢y € C(Q xII), setting o(t, x, 1) = ¢1(t)pa(x, 1),
then

j ng w(t, x, 1)1 (£)z(x, 2)dudt = j j w(t, x, 1)@} (£)g(x, 1)dudt;

IQ HIO [w(¢, x, L)1 (¢) + w(t, x, 1)o](E)]os(x, A)dtdu = 0.
Therefore

T
j @, x, M)oy(t) + wt, x, V)i ()dt = 0 pae. in QxII,
0
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hence
T T
J we(t)dt = —J wei(2)dt,
0 0
and
w(t, x, \) = w't, x, 1) in D'(0, T,
which implies that w =w’ for all (¢ x, A) e [0, T]xQxT[l, so

w e HY((0, T); Li.(Q x IT)).

Proposition 3.1. Let w be in H'([0, T}, I2(©; C(I1))) and w, (¢, x) =
w(t, x, o, (x)). Then, for all Carathéodory integrand ¢ : [0, T]x Q x [1x

R?2 5> R such that, there exist a positive constant C and

pe Ll((O, T) x Q) satisfying, for all (A, &, ¢) € [T xR?2

|0t x, &, & C)| < C(pt, x)+| &P +| ¢ [P), ae. (¢ x) [0, T]x Q.

We have

j ! j 0, x, 0, (), w,, (¢, %), wh(t, x))dxd
0 JQ

T
N j I o, x, % wlt, x, 1), W', x, 1))dudt.
0 JQOx[]

In particular (w,,), o, -converges to w.

Proof. It sufficient to remark that
| 9t %, 0y (%), wy, wh)| < Clplt, x) + wy + (wy,)?)
< C(p(t, x) + sup[w? + W')*]),
rell

and using Theorem 2.3 (b).

Proposition 3.2 (see for instance [11]). H'([0, T} I2(Q; C(IT)) is
dense in H = H([0, T, Lﬁ(Q x [1)).
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4. The Main Result

Let (X, t) be a Banach space, and let {F,, F, n € N} be a family of
functions mapping X into R U {+w}. Let us recall the following notion of
convergence, which i1s called epiconvergence or in its general setting
I'-convergence. For overview about epiconvergence, we refer the reader to
[3] and [7].

Definition 4.1. We say that the sequence (F,),_y Tt-epiconvergences

to F'at x in X iff the two following sentences hold:

(i) For every sequence (x,),_y, T-converging to x in X,

F(x) < liminf F,(x,).
n—>+w

(i1) There exists a sequence (x,, )n <y of X, t-converging to x such that,

F(x) > lim sup F,(x,,).

n—+w

If (i) and (ii) are satisfies for every x in X, then we say that (F),), _y
t-epiconvergences to F in X, and we write F' = t-epilimit F,,.
Proposition 4.1 (variational properties of epiconvergence). Assume

that, (F, ) t-epiconverges to F, and let H be a t-continuous functional from

Xinto R. Then
() F is Isc and t-epilimit (F,, + H) = F + H.

(i) If now, (x,),.n is a sequence in (X, t) such that, F,(x,)<
F,(x)+¢,, where g, >0, and if furthermore (x,),.y is t-relatively
compact. Then any cluster point x of (xn)neN is a minimiser of F and

lim inf{F,(x); x € X} = min{F(x); x € X} = F(¥).

n— 4+

We are now in a position to state the main result of this paper. Let
(F,; FP™} be the family of the integral functionals defined in the

introduction. Then we have:
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Theorem 4.1. F,, epiconverges weakly to F™™ in H'([0, T} L*(Q)).

Proof. It remains to prove the assertions (i) and (i1), in Definition 4.1,
of the epiconvergence.

(i) Let v, v, be a sequence in H([0, T} [3(Q)), such that v, — v
weakly. From (+) and Theorem 3.1, there exists a subsequence (v,,) of

(vy), still denoted (v,), which a,, -converges to w € H, with v(t, x) =

[t x,0)duy, ae. (¢ x)€[0, T]xQ and liminf F,(v,) = lim F,, (o, );
I1 n—-+oo k—+x0 k k
hence from Proposition 3.2, there exists a sequence (w”) in H([0, T';

I2(©; C(I1))) such that | w" -w I, < By (*), and the fact that f is

1
-

(¢, £)-convex, we have, g—é(t, X, o, wn, (wn)) and g—é(t, X, o, w,li,

(w,’i)’) belong to L2((0,T)x Q; C(I1)), here wk(t, x) = w*(t, x, a,(x)),

therefore

Fy(v,) > Fylwp) + j j A (4, x, oy, wh, @) Yo,dds
[ v ekl
Lt s )

I IQ o (t. x, . wf, WE)) (f) dadt

by Definition 3.1, we obtain

I IQ o€ (¢ x, 0‘mwn, (wn))vndxdt

I IQXH ag b % b w”, @) wdydt;
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and

.[ IQ ac (t, x, oy, wyy, (] ),)U}dedt

of ko kv
o7 ot

Taking respectively in Proposition 3.1, ¢(¢,x, A, &, C):i‘g—é(t’xJ" £, 0);

o, x, A, € Q) = C%(t, x, A, & ) and ¢ = f we have respectively when

n — +©
A i
(t X, Op, wn, (wn)) ndxdt
Jo J GE_,
ST L w o wh, @b ke x, 2)duds;
Jo JaxIl 6&
T ' '
a (t, %, oy, wh, WF)) (WE) dxdt
Jo J 6&
.T d af k k k
- t, x, &, w*, @) ) @") @, x, 1)dudt
Jo Joax 9§
and

T '
lim F,(wk) = j j £t %, 2wt x, L), WF) (¢, x, A))duds.
n—+o 0 QXH

Therefore

liminf ,(,)
T ’
2 j J. fe, x, A, wk(t, x, \), (wk) (t, x, 1)) dpdt
0 JQOx]]
.[ J.Qx (e, %, 2 0P x, ), (@) (0 x, 1) (o - w)dpd

T b ), @ ) - " )
0 JOx[] Q
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Since there exists C > 0 such that

T of R . .
IO J.ana_é’;(t’ x, h, w", (W) ) (w - w") SC%’
T o Y .

.[o .[ana—(;(t, x, A, w", (W))W - w")) SC%’

T - T
lim J I f(¢, x, &, w*, (W) )dudt = I J. @, x, A, w, w')dudt.
0 JOx[] 0 JOx]]

k—+o0

Finally,
r hy
lim inf F, (0,) > j I £t %, % wlt, x, 1), w'(t, x, 1))dudt > FPO™ (),
n—>+w 0 JoxII
(i) Let v be an element of H([0, T]; L?(Q2)). We prove that, there
exists a sequence () in H'([0, T}, I?(Q)) such that

U, — vin HY([0, T} L*(Q)) weakly;
lim F,(v,) = F2°(v).
n

Let (wk) be a minimizing sequence of the following minimizing problem

T
inf{J.O jQ -[H @, x, A, wt, x, 1), w'(t, x, 1))dudt;

w e H, vt x) = »[H w(t, x, l)dux}.

By Proposition 3.2, there exists (@”) in H'(0, T; L*(Q; C(I1))) such that

1

;- Then, for all ¢ < H ([0, T} [3(Q))

—k _k
@™ —w™ [ <

T
f f [w" (¢, x, 1) - w*(t, x, M]o(t, x)dnd
0 JQOx]JI

1
< zlelaqo, 3 2@y
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therefore

T —k T k
lim J I w"edudt = lim I j w"pdudt
0 JOxI1 0 JOx]]

k—+o0 k—>+o0

T T
_ nmj J' I wdy, (\)dxdt = j j olt, x)u(t, x)dxdt.
0 JQ 0 JQ

k—+o0

Since, w” is bounded in H (see (*)), we have

j ! j £t % 0, @E, @R)) = £ x, 0 0", (@) )dudt
0 JQOx[1

T
<[] C+| @k |+ |w |)|@" - wh |dudt < £
0 JOxI1 k
and
T ’ '
j j £t x, b wh, @F)) = £t x, & wF, (WF) )dudt
0 Qx[]
T N 2 N ’ C
<[] el @ [+ 1@ 1@ - ") [dude <
0 JOx[]
Thus

T i PN
lim j j £, x, A, WF, @) )dudt
0 JQOx]I

k—+o0

r k kY h
= lim j J £, %, 0 wh, @) )dudt = FPm ().
0 JOx][]

k—+o0

Setting W) (t, x) = W*(t, x, a,(x)) and let (pj) be a countable dense

family in H'([0, T, L?(Q)), from Proposition 3.1, we have, when n — +o

j ! J £, x, o, (x), @G, %), (@F) (¢, x))dxdt
0 JQ

T k kY
0 JOx]]
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and

r k T k
j I T *)0;(t, x)dxdt—)J _[ T, x, M)o;(t, x)dud.
0 Q 0 JOx]1

Therefore, for all (j,k)eN? and for all &>0, there exists
ng = ng(j, k, 8) € N such that

‘ j ! J £(t, x, o, (x), TEE, x), @F) (¢, x))dxdt
0 JQ

T '
-] f o @ @) )dude | < 8
0 JOx[]

a

nd
T k r k
“ I T *)9;(, x)dxdt—J. j T, x, M)o;(t, x)dudt | < 8.
0 JQ 0 Qx[1

Taking & = %, J = k and defining an increasing sequence (n;) such that

), we have forall i < k&
. r —k —k hom
Jim j : J' (x4 ), ) ) (6 )dxdt = FPM ),

and, forall i e N

T T
lim I I Wk o;(t, x)dxdt = I j u(t, x)o;(t, x)dxdt.
0Ja 0Ja

k—+0
Since (@") is bounded in H, (wjfk) is bounded in the separable space

HY([0, T I3(Q)), we obtain the last convergence for all ¢«

. =v if

HY([0, T], I?(Q)). Finally setting: 0, := wjk if n=n;,, U
n # ny, the sequence v, satisfies

0, — v in HY([0, T}, I*(Q)) weakly
lim F,(7,) = F'™ ().

n—+o0
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5. Example

We shall us the same notations as in the previous sections, and we
consider the two following problems:

u,(t, x)+ a,(t, x)g(u,(t, x)) = ht, x) in (0, T') x Q;
()
u,(0,x) =0 on Q,
and
Ilgll? Jn(v) (Pn)

K ={v e HY(0, T; I2(Q)(0, x) = 0 dx a.e. in Q). J,(v) is the energy

functional associated to (E,), which takes the form, for every v € K,

J, ) = J.OT IQ {an‘P(v) + an‘P*(h — Uﬂ dxdt + .[()T J.Q(UU — hv)dxdt;

Ap

where u, is the time derivative of w,(t, x); a, € L*((0, T)xQ), o <

a,t, x) <P, Vne N (0<a<B) gy = (Zli—jj; with ¥ e C'(R), which is

strictly convex, 0y> -y <¥(y)<py?+8 (0,p>0andy, §>0), and
heI2((0,T)x Q).

Note that, under consideration, the above minimization problem has

a unique solution, and a close relationship between (E,) and (P,) is
given by the following variational principal, that is: “u,, is the solution of

(E,) iff u, is the solution of (P,)” see for instance [4].

We shall show in the sense of Theorem 4.1 and Proposition 4.1 (11),
that the limit problem of (P,) is

min Jhom (U), (Phom )
veK"

where

Kh = fwe H; w0, x,\)=0,pn-ae in Qx[I}; H = Hl((O, T); Lﬁ(Q x 1))
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and
Jhom () = mln{j I j [k‘l’(w)+ Y (h w) hw]duxdxdt
1 2 R
F gl we K" v = Inwdpx}.

¥* denotes the Fenchel conjugate of \P.
For the sake of the simplicity, we assume that, ¥(y) = % yz; then

Vz e R; ¥(2) = %22; and

g T
J (v)—2J' I a,v +v—+—dxdt—I I —vdxdt—j I hvdxdt
0 JQ

T
+ lJ‘ J v2dxdt.
2J)o Ja

Since, the epiconvergence is stable by the continuous perturbation, see

Proposition 4.1 (i), it sufficient to study the sequence of the integral

functionals
17T 2 v?  h? Te h.
F (v :—I I a,v +—+—dxdt—I —— 0dxdt.
n()zogn a, a 0 Jaa,
Let
_laz, 180 Ly 1n?
Then

(t %6 0) =05 L (t 0 g0 =2-R

It is obvious that f, o and o are Carathéodory functions, f is

g oc
(&, €)-convex, (A, &, €)-continuous and satisfies (*) with C =

1
max( 3B =, Lyn

T o So, in this particular case the epilimit

L*((0,T)x Q)}
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functional takes the form:

T N2
Jhom(y) = min{j j j {& w? + &(h_w) - hw}duxdxdt
0Jalr|2 20 A

1 2 h o _
#g ey we K v _andux}.

As the consequence of Proposition 4.1 (i1), we have

lim min{Jn(v); weK" v= I wdux}
I1

n—>+00

= min{Jhom(v); weK" v= J.H wdux} = Jhom (@),

where v 1s the cluster point of the sequence of the solution of the

minimizing problem min{Fn(v); w e Kh, v = IH wdux}.
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