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Abstract

Support vector machines, based on statistical learning theory, are a kind
of novel machine learning algorithm. Due to their outstanding learning
performance, support vector machines have become a hot spot for
research in the field of international machine learning, and have been
developed for solving classification and regression problems. In this
paper, we apply the structural risk function to radial basis function
(RBF) networks, and discuss the relationship between support vector
regression model and RBF networks. Simulation experiments reveal
that this algorithm can improve the generalization ability of RBF
networks.

1. Introduction

Neural networks have wide application in many areas [6]. BP
networks and RBF networks are the most common network models. BP
networks change weights by error propagation, and have relatively slow
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convergence rate and local minima. RBF networks are three-layer feed-
forward neural networks. The action function of hidden layer units is a
radial basis function. The key of radial basis function is center selection
which can be obtained by assemble and learning methods.

In recent years, support vector machines learning algorithm [1, 2, 4,
5], introduced by Vapnik and others according to statistical learning
theory, has drawn broad attention in international academic circle. An
important character of the algorithm is that it uses the structural risk
minimization principle instead of the traditional risk minimization
principle to improve the generalization ability of learning machine. In
addition, because support vector machines algorithm is a convex optimal
control problem, local optimal solutions must be global optimal solutions.
Support vector machines have been utilized to solve classification and
regression problems. In this paper, the structural risk function is used in
RBF networks so that the generalization ability of RBF networks can be
improved; furthermore, the relationship between support vector
regression model and RBF networks is discussed. This paper also gives
an example of chaos time sequence forecast, forecasted by the RBF
networks based on the structural risk function and the general RBF
networks respectively and the result indicates that the generalization
ability of the former is improved remarkably.

2. RBF Networks based on Support Vector Regression Algorithm

First we introduce RBF networks, and then apply the support vector
regression algorithm to RBF networks learning.

2.1. RBF networks

The structure of RBF networks is similar to that of multilayer feed-
forward networks. They are three-layer feed-forward networks. The input
weights of hidden layer units are set to be 1. Only weights input from
hidden layer units to output units can be transformed. The action
function of hidden layer units is a radial basis function. Suppose

{ }M
iii yx 1, =  is a training set, where M is the number of training data,

m
i Rx ∈  are input data and Ryi ∈  are output data. Then RBF network
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structure can be expressed as

( ) ( )∑
=

+=
N

i
kk Bxgwxf

1

,

where ( )xgk  is a radial basis function, ( ) ,exp
2
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the center, kσ  is the standard deviation, N is the number of radial basis

functions. Center selection of RBF networks is crucial. There are three

selection methods:

(1) Select center by experience. We can select several centers

according to the distribution of the samples.

(2) Select center by assemble method. We can first divide the sample

into some units and then let the center of each unit be the centers of RBF

networks.

(3) Select center by sample learning.

After selecting parameters of RBF networks the weight can be

calculated using the method of least squares.

2.2. RBF networks based on structure risk function

Firstly we select all samples as a network center with the same width

σ, and let

( ) ,...,,, 21
T

MwwwW =

( ) ( ) ( ) ( )( ) ....,,, 21
T

M xgxgxgxG =

Then RBF networks can be showed

( ) ( ) .BxGWxf T += (1)

Introduce structure risk into the networks, according to the structure risk

minimization principle, then optimal problem is a minimal function

( )∑
=

∗ξ+ξ+
M

i
iiCW

1

2 .
2
1 (2)
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The conditions are

( ) ,...,,1, Miyxf iii =ε+ξ≤− ∗

( ) ,...,,1, Mixfy iii =ε+ξ≤−

....,,1,0, Miii =≥ξξ ∗

The first term of the formula (2) makes the function more smoother
and improves the generalization ability. The second term reduces the
errors while the constant C compromises them, ε is a positive constant.
When the difference between ( )ixf  and iy  is smaller than it, then the

error is neglected. On the contrary, the error is ( ) .ε−− ii yxf  This is a

convex quadratic optimal problem, take Lagrange function

( )∗∗∗ γγααξξ ,,,,,,, BWL

( ) ( )[ ]∑ ∑
= =

∗ +−ε+ξα−ξ+ξ+=
M

i

M

i
iiiiii xfyCW

1 1

2
2
1

[ ( )] ( )∑ ∑
= =

∗∗∗∗ γξ+γξ−−+ε+ξα−
M

i

M

i
iiiiiiii xfy

1 1

, (3)

where ,0, ≥αα ∗
ii  ,0, ≥γγ ∗

ii  ....,,1 Mi =  The minimax of function L

satisfies the conditions:

.0,0,0,0 =
ξ∂
∂=

ξ∂
∂=

∂
∂=

∂
∂

∗
LLL

B
L

W
ii

Then we get

( ) ,0
1
∑
=

∗ =α−α
M

i
ii (4)

( ) ( ),
1
∑
=

∗α−α=
M

i
iii xGW (5)

,...,,1,0 MiC ii ==γ−α− (6)

....,,1,0 MiC ii ==γ−α− ∗∗ (7)

In terms of conditions (4), (5), (6) and (7), we can obtain the dual form of
the optimal problem from (3), the maximal function
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( ) ( ) ( ) ( ) ( )∑
=

∗∗∗ α−αα−α−=αα
M

j
jijjiii xGxGW

1

,
2
1,

( ) ( )∑ ∑
= =

∗∗ εα+α−α−α+
M

i

M

i
iiiii y

1 1

.

The constraints are

( )∑
=

∗∗ =≤αα≤=α−α
M

i
iiii MiC

1

,...,,1,,0,0

where ,  shows the vector inner product. This is also a quadratic

optimal problem, W can be obtained by (5), B can be obtained by the next

formula.

( ) ( ) ( ) ( )∑
=

∗ ∈αα−α−ε−=
M

i
jjiiij CxGxGyB

1

.,0,,

( ) ( ) ( ) ( )∑
=

∗∗ ∈αα−α−ε+=
M

i
jjiiij CxGxGyB

1

.,0,,

The final solution of the network is

( ) ( ) ( ) ( )∑
=

∗ +α−α=
M

i
iii BxGxGxf

1

.,

According to the character of support vector regression algorithm, in

generally, most of .0=α−α ∗
ii  Those samples with nonzero are called

support vectors, which are regarded as the center of radial basis function.

Hence, we can determine the center of radial basis function by

introducing the structural risk function.

3. The Relationship between Support Vector Regression Model

and RBF Networks

Applying the structural risk function into RBF networks learning, we
obtain the center of the radial basis function and the network weight
directly. In fact, the ideas of constructing both support vector regression
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algorithm and RBF networks are identical, so that the structural risk
function can be applied to RBF networks learning. They both map the
original problems to a high-dimensional characteristic space, then
conduct linear algorithm on the space. The key of RBF networks is the
center determination of the radial basis function, which is obtained by
assemble method or learning method in order to simplify the networks.
The key of support vector regression is to obtain support vectors. Then we
describe the model by the kernel expansion of support vector in order to
simplify the model.

The algorithm in this article does not involve kernel function, which

is extremely important in support vector regression and in avoiding

dimension problems. If we find an appropriate kernel function ( ),, yxK

which satisfies ( ) ( ) ( ) ,,, yGxGyxK =  then the RBF network above is a

standard support vector regression model when replacing ( ) ( )yGxG ,  by

( )., yxK  Here the selection of kernel function is a key point. It has been

proved that there exists a kernel function. At present, there are no

explicit guiding methods concerning the selection problem of kernel

function. We always select the kernel function from those satisfying the

Mercer condition. RBF networks have a close relationship with support

vector regression model, and kernel function is the linking bridge.

Actually, the linkage between support vector machine and RBF

networks is of multi-aspect. Regarding classification problems, document

[3] shows a hybrid algorithm. This algorithm first uses support vector

machine classification algorithm to work out the support vector, which is

considered as the network center, then trains the RBF networks

independently to obtain the network weights. The algorithm also has a

good effect.

4. Example

Let us forecast Lorenz chaos time sequence using the method

introduced in this paper, and then compare the result with that of the

general RBF networks forecast. Lorenz time sequence is generated from

this differential equation
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( ) ( ) .
3
8

,28,10 zxy
dt
dz

yxz
dt
dy

xy
dt
dx −=−−=−=

Let the initial value be [0.0031, 0.1928, 0.4208]. Take 0.1 as the

length of step of t. Collect a one-dimensional time sequence. Take 300

data starting from 100th data. The first 280 data form the training

samples and the rest 20 data form testing samples. For forecasting the

sequence, we need to reconstruct the phase space and take 3 as the

embedding dimension. In addition, in order to improve quality of the

training samples, we select samples which are close to the testing

samples as the training set for every forecasting, and the select standard

is those samples whose Euclidean distance is less than ( ).0>δ  Here we

set .10=δ  Meanwhile let every training sample be the center of the

radial basis function, with same standard deviation ,5.10=σ  and

parameters .001.0,100000 =ε=C

Take the mean square error as the testing index:

( ) ( ) ,ˆ1

1

2∑
=

−=
K

i
ii XX

K
MSE

where iX  is the real value, iX̂  is the forecasted value, K is the number of

the testing samples. The forecasted result calculated by this algorithm is

.0913.0=MSE  Using the same data and parameters, regarding all the

testing samples as centers, and working out the weights of RBF networks

by the method of least squares, we can also get the forecasted result,

which is .6893.0=MSE  Additionally, if we forecast the same data by the

RBF networks tool box of Matlab 6.1, the result will be .6059.1=MSE

This example implies that the generalization ability of the RBF
networks based on the structural risk function exceeds that of the
traditional RBF networks greatly.

5. Conclusions

Since the global optimal solutions can be found using the support
vector machine algorithm, the algorithm has many advantages in other
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problems and has successful applications in many fields. This paper
applies the structural risk function to the RBF networks. From the
example of the chaos time sequence forecasting, we see that the method
improves the generalization ability of RBF networks. Furthermore, this
paper shows the relationship between support vector regression model
and RBF networks, and indicates that the ideas of constructing both of
them are identical.

References

[1] C. J. C. Burges, A tutorial on support vector machines for pattern recognition, Data
Mining and Knowledge Discovery 2(2) (1998), 121-167.

[2] C. Cortes and V. Vapnic, Support-vector networks, Machine Learning 20(3) (1995),
273-297.

[3] B. Scholkopf et al., Comparing support vector machines with Gaussian kernels to
radial basis function classifiers, IEEE Trans. Signal Process. 45(11) (1997), 2758-
2765.

[4] A. J. Smola and B. Scholkopf, A tutorial on support vector regression, Neuro COLT
TR NC-TR-98-030, Royal Holloway College University of London, UK, 1998.

[5] V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

[6] N. Y. Zhang and P. F. Yan, Neural Networks and Fuzzy Control, Tsinghua
University Press, Beijing, 1998.

Zhengwei Shen and De-Shan Sun
Mathematics School
Liaoning Normal University
Dalian 116029, P. R. China
e-mail: szw1229@163.com

Hong-Liang Zheng
School of Computer and Information Technology
Liaoning Normal University
Dalian 116029, P. R. China


