THE EXISTENCE FOR PERIODIC SOLUTIONS OF SECOND-ORDER SYSTEM

YIXIA SHI

(Received December 15, 2005)

Submitted by K. K. Azad

Abstract

In this paper, by using the saddle point theorem in Critical Point Theory, the existence theorems are obtained for periodic solutions of a class of nonautonomous second-order systems with a potential which is a sub-quadratic function.

1. Introduction

Consider the second-order system

$$
\left\{\begin{array}{l}
\ddot{u}(t)+A \dot{u}(t)+\nabla F(t, u(t))=h(t), \tag{1}\\
u(0)-u(t)=\dot{u}(0)-\dot{u}(t)=0
\end{array}\right.
$$

where $T>0$ and $F:[0, T] \times R^{n} \rightarrow R$ satisfies the following assumption:
(A) $F(t, x)$ is measurable in t for every $x \in R^{n}$ and continuously differentiable in x for a.e. $t \in[0, T]$ and there exist $a \in C\left(R^{+}, R^{+}\right)$, $b \in L^{1}\left([0, T] ; R^{+}\right)$such that

$$
|F(t, x)| \leq a(|x|) b(t),|\nabla F(t, x)| \leq a(|x|) b(t)
$$

2000 Mathematics Subject Classification: 34C25.
Keywords and phrases: periodic solutions, second-order Hamilton systems, saddle point theorem, Sobolev's inequality, Wirtinger's inequality.
for all $x \in R^{n}$ and a.e. $t \in[0, T]$.
For (1), the corresponding functional on H_{T}^{1} given by

$$
\begin{aligned}
J(u)= & \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t+\frac{1}{2} \int_{0}^{T}(A u(t), \dot{u}(t)) d t \\
& -\int_{0}^{T} F(t, u(t)) d t+\int_{0}^{T}(h(t), u(t)) d t,
\end{aligned}
$$

where

$$
\begin{array}{r}
H_{T}^{1}=\left\{u:[0, T] \rightarrow R^{n} / u\right. \text { absolutely continues, } \\
\left.u(0)=u(T) \text { and } \dot{u} \in L^{2}\left(0, T ; R^{n}\right)\right\}
\end{array}
$$

is a Hilbert space with the norm defined by

$$
\|u\|=\left(\int_{0}^{T}|u(t)|^{2} d t+\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{1 / 2}
$$

for $u \in H_{T}^{1}$. Under assumption (A) and some other suitable conditions, many results are obtained about the existence of periodic solutions by minimax methods in [1]-[9]. However those results for system (1) is few. In this paper, we will give some main results about system (1) by using the minimax methods.

2. Theorem and Proof

Theorem. Assume that $F(t, x)$ satisfying assumption (A), A is an inverse symmetric matrix, moreover $\|A\|<1$, and satisfying the following condition:

$$
\begin{equation*}
F(t, x) \rightarrow+\infty, \quad(|x| \rightarrow+\infty), \tag{2}
\end{equation*}
$$

uniformly for a.e. $t \in[0, T]$.
Further, there exist $0<\gamma<2, M>0$ such that

$$
\begin{equation*}
(\nabla F(t, x), x) \leq \gamma F(t, x),|x| \geq M \text {, a.e. } t \in[0, T] . \tag{3}
\end{equation*}
$$

Then the system (1) has at least one solution.

Proof. For convenience to prove, we let $T=2 \pi$. For $u \in H_{2 \pi}^{1}$, let $\bar{u}=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(t) d t$ and $\widetilde{u}(t)=u(t)-\bar{u}$. Then one has

$$
\|\tilde{u}\|_{\infty}^{2} \leq \frac{\pi}{6} \int_{0}^{2 \pi}|\dot{u}(t)|^{2} d t \quad \text { (Sobolev's inequality) }
$$

and

$$
\int_{0}^{2 \pi}|\widetilde{u}(t)|^{2} d t \leq \int_{0}^{2 \pi}|\dot{u}(t)|^{2} d t \quad \text { (Wirtinger's inequality). }
$$

Lemma 1 [8]. Suppose that F satisfies (A) and (2), then there exists a real function $g \in L^{1}(0, T)$ and $G \in C\left(R^{n}, R\right)$ which is sub-additive, that $i s$,

$$
G(x+y) \leq G(x)+G(y), \quad x, y \in R^{n}
$$

for all $x, y \in R^{n}$ and coercive, that is,

$$
G(x) \leq|x|+4, \quad x \in R^{n}
$$

for all $x \in R^{n}$, such that

$$
F(t, x) \geq G(x)+g(t),
$$

for all $x \in R^{n}$ and a.e. $t \in[0, T]$.
Lemma 2 [9]. Suppose that Fsatisfies (A) and (3), then there exists

$$
a_{0}=\max _{|x| \leq M} a(|x|),
$$

such that

$$
F(t, x) \leq a_{0} b(t)\left((|x| / M)^{\gamma}+1\right)
$$

for all $x \in R^{n}$ and a.e. $t \in[0, T]$.
Proof of Theorem. By the saddle point theorem (see Theorem 4.6 in [5]), we need to prove
(A1) $J(u) \rightarrow+\infty$, as $\|u\| \rightarrow \infty$ in $\widetilde{H}_{2 \pi}^{1}$, and
(A2) $J(u) \rightarrow-\infty$, as $\|u\| \rightarrow \infty$ in R^{n}.

For all $u(t) \in H_{2 \pi}^{1}, u(t)$ is expressed as

$$
\bar{u}=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(t) d t ; \quad \int_{0}^{2 \pi} \widetilde{u}(t) d t=0
$$

Hence $H_{2 \pi}^{1}=\bar{H}_{2 \pi}^{1} \oplus \tilde{H}_{2 \pi}^{1}$ and $\operatorname{dim} \bar{H}_{2 \pi}^{1}=n<+\infty$.
(i) For all $u \in \bar{H}_{2 \pi}^{1},\|u\| \rightarrow \infty$, by Lemmas 1 and 2, we have

$$
\begin{aligned}
J(u) & =-\int_{0}^{2 \pi} F(t, u) d t \leq-\int_{0}^{2 \pi} G(u) d t-\int_{0}^{2 \pi} g(t) d t \\
& \leq-2 \pi G(u) \rightarrow-\infty
\end{aligned}
$$

which implies (A1).
(ii) $u \in \widetilde{H}_{2 \pi}^{1}$, by Lemmas 1 and 2 , we have

$$
\begin{aligned}
J(u(t))= & \frac{1}{2} \int_{0}^{2 \pi}|\dot{u}(t)|^{2} d t+\frac{1}{2} \int_{0}^{2 \pi}(A u(t), \dot{u}(t)) d t \\
& -\int_{0}^{2 \pi} F(t, u(t)) d t+\int_{0}^{2 \pi}(h(t), u(t)) d t \\
\geq & \frac{1}{2}(1-\|A\|)\|\dot{u}\|_{L^{2}}^{2}-\int_{0}^{2 \pi} a_{0} b(t)(|u| / M)^{\gamma} d t-a_{0} \int_{0}^{2 \pi} b(t) d t \\
& +\int_{0}^{2 \pi}(h(t), u(t)) d t \\
= & \frac{1}{2}(1-\|A\|)\|\dot{u}\|_{L^{2}}^{2}-1 / M^{\gamma} \int_{0}^{2 \pi} a_{0} b(t)|u|^{\gamma} d t-a_{0} \int_{0}^{2 \pi} b(t) d t \\
& +\int_{0}^{2 \pi}(h(t), u(t)) d t \\
\geq & \frac{1}{4}(1-\|A\|)\|u\|_{L^{2}}^{2}-c_{1}\|u\|_{L^{2}}^{\gamma}-c_{2}
\end{aligned}
$$

for some constants $c_{1}, c_{2}>0$. The above inequality implies that there exists some real constant $R>0$ by $0<\gamma<2,1-\|A\|>0$ such that

$$
\sup _{u \in \bar{s}_{R}} J(u)<\inf _{u \in \widetilde{H}_{2 \pi}^{1}} J(u)
$$

where $\bar{s}_{R}=\left\{u\left|u \in \bar{H}_{2 \pi}^{1},|u|=R\right\}\right.$.

Now by saddle point theorem we only need to prove that $J(u)$ satisfy condition (C) in [1], that is, $\left(u_{k}\right)$ has a convergent sequence in $H_{2 \pi}^{1}$ whenever $J\left(u_{k}\right)$ is bounded and $\left\|J^{\prime}\left(u_{k}\right)\right\|\left(1+\left\|u_{k}\right\|\right) \rightarrow 0$, as $k \rightarrow+\infty$.

Let $\left\{u_{k}(t)\right\} \in H_{2 \pi}^{1} \quad$ satisfying that $J\left(u_{k}\right)$ is bounded, $\left\|J^{\prime}\left(u_{k}\right)\right\|$ $\left(1+\left\|u_{k}\right\|\right) \rightarrow 0$, as $k \rightarrow+\infty$. Then there exists some constant c such that

$$
\begin{equation*}
\left|J\left(u_{k}\right)\right| \leq c, \quad\left\|J^{\prime}\left(u_{k}\right)\right\|\left(1+\left\|u_{k}\right\|\right) \leq c \quad\left(k \geq k_{0}\right) \tag{4}
\end{equation*}
$$

So we have by assumption (A) and (3)

$$
\begin{aligned}
3 c \geq & \left\|J^{\prime}\left(u_{k}\right)\right\|\left(1+\left\|u_{k}\right\|\right)-2 J\left(u_{k}\right) \geq\left(J^{\prime}\left(u_{k}\right), u_{k}\right)-2 J\left(u_{k}\right) \\
= & -\int_{0}^{2 \pi}\left(A u_{k}(t), \dot{u}_{k}(t)\right) d t \\
& -\int_{0}^{2 \pi}\left(\nabla F\left(t, u_{k}(t)\right), u_{k}(t)\right) d t-\int_{0}^{2 \pi}\left(A u_{k}(t), \dot{u}_{k}(t)\right) d t \\
& +\int_{0}^{2 \pi} F\left(t, u_{k}(t)\right) d t-\int_{0}^{2 \pi}\left(h(t), u_{k}(t)\right) d t \\
= & \int_{0}^{2 \pi}\left[2 F\left(t, u_{k}(t)\right)-\left(\nabla F\left(t, u_{k}(t)\right), u_{k}(t)\right)\right] d t \\
& -\int_{0}^{2 \pi}\left(A u_{k}(t), \dot{u}_{k}(t)\right) d t-\int_{0}^{2 \pi}\left(h(t), u_{k}(t)\right) d t+\int_{0}^{2 \pi}\left(\dot{u}_{k}(t), A u_{k}(t)\right) d t \\
= & \int_{0}^{2 \pi}\left[2 F\left(t, u_{k}(t)\right)-\left(\nabla F\left(t, u_{k}(t)\right), u_{k}(t)\right)\right] d t-\int_{0}^{2 \pi}\left(h(t), u_{k}(t)\right) d t \\
\geq & (2-\gamma) \int_{0}^{2 \pi} F\left(t, u_{k}(t)\right) d t-c_{3}
\end{aligned}
$$

for some constant $c_{3}>0$, the above inequality implies

$$
\begin{equation*}
\int_{0}^{2 \pi} F\left(t, u_{k}(t)\right) d t \leq c_{4} \tag{5}
\end{equation*}
$$

for some constant $c_{4}>0$. By (4) and (5), we have

$$
c \geq J\left(u_{k}\right)=\frac{1}{2} \int_{0}^{2 \pi}\left|\dot{u}_{k}\right|^{2} d t+\frac{1}{2} \int_{0}^{2 \pi}\left(A u_{k}(t), \dot{u}_{k}(t)\right) d t
$$

$$
\begin{aligned}
& -\int_{0}^{2 \pi} F\left(t, u_{k}(t)\right) d t+\int_{0}^{2 \pi}\left(h(t), u_{k}(t)\right) d t \\
= & \frac{1}{2} \int_{0}^{2 \pi}\left|\dot{u}_{k}\right|^{2} d t-\int_{0}^{2 \pi}\left(A \dot{u}_{k}(t), u_{k}(t)\right) d t+c_{4} \\
\geq & \frac{1}{2}(1-\|A\|) \int_{0}^{2 \pi}\left|\dot{u}_{k}(t)\right|^{2} d t+c_{4} .
\end{aligned}
$$

Then we have

$$
\int_{0}^{2 \pi}\left|\dot{u}_{k}(t)\right|^{2} d t \leq c_{5}
$$

It follows from Wirtinger's inequality that

$$
\begin{equation*}
\left\|\tilde{u}_{k}\right\|_{\infty} \leq c_{5}, \tag{6}
\end{equation*}
$$

for some constant $c_{5}>0$. By (2) and Lemma 1,

$$
\begin{aligned}
c_{4} & \geq \int_{0}^{2 \pi} F\left(t, u_{k}(t)\right) d t \geq \int_{0}^{2 \pi} G\left(u_{k}\right) d t+\int_{0}^{2 \pi} g(t) d t \\
& =\int_{0}^{2 \pi} G\left(\bar{u}_{k}+\tilde{u}_{k}\right) d t-\int_{0}^{2 \pi} g(t) d t \\
& \geq 2 \pi G\left(\bar{u}_{k}\right)-\int_{0}^{2 \pi}\left(\left|\tilde{u}_{k}\right|+4\right) d t-\int_{0}^{2 \pi} g(t) d t \\
& \geq 2 \pi G\left(\bar{u}_{k}\right)-2 \pi\left(c_{4}+4\right)-\int_{0}^{2 \pi} g(t) d t
\end{aligned}
$$

which implies that $\left\{\bar{u}_{k}\right\}$ is bounded thus $\left\{u_{k}\right\}$ is bounded in $H_{2 \pi}^{1}$ by (6). Hence $J(u)$ satisfy condition (C). Theorem holds.

References

[1] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. TMA 7 (1983), 981-1012.
[2] Z. Q. Han, 2π-periodic solutions for Duffing type systems, J. Qingdao Univ. 7 (1994), 19-26 (in Chinese).
[3] Z. Q. Han, 2 π-periodic solutions to ordinary differential systems at resonance, Acta Math. Sinica 43 (2000), 639-644.
[4] Jian Ma and Chun-Lei Tang, Periodic solutions of some nonautonomous secondorder systems, J. Math. Anal. Appl. 275(2) (2002), 482-494.
[5] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[6] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31(2) (1978), 157-184.
[7] Chun-Lei Tang, Periodic solutions of nonautonomous second systems with sublinearity, Proc. Amer. Math. Soc. 126(11) (1998), 3263-3270.
[8] Chun-Lei Tang and X.-P. Wu, Periodic solutions of second systems with not uniformly coercive potential, J. Math. Anal. Appl. 259(1) (2001), 386-397.
[9] Chun-Lei Tang and Xing-Ping Wu, Notes on periodic solutions of subquadratic second order systems, J. Math. Anal. Appl. 285(1) (2003), 8-16.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong 524048
P. R. China

