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Abstract

In this paper, by using the saddle point theorem in Critical Point
Theory, the existence theorems are obtained for periodic solutions of a
class of nonautonomous second-order systems with a potential which is a
sub-quadratic function.

1. Introduction

Consider the second-order system

{L’i(t) + Au(t) + VF(¢, u(t)) = h(t), O

u(0) — u(t) = u(0) - u(t) = 0,
where T' > 0 and F : [0, T]x R" — R satisfies the following assumption:
(A) F(t, x) is measurable in ¢ for every x € R" and continuously

differentiable in x for a.e. ¢ € [0, T] and there exist a € C(R*, R"),

b e I}[0, T} R") such that

| F(¢, x)| < al] x |)b(t), | VE(t, x)| < a(] x |)b(¢)
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forall x € R" and a.e. t € [0, T].

For (1), the corresponding functional on H % given by
1 LN 1 (T .
Jw)=<=| |u@)|"dt+=| (Aul(t), wt))dt
2Jo 2Jo

T T
—j Ft, ut)di + j (h(0), w(t))dt,
0 0

where

H% = {u: [0, T] > R"/u absolutely continues,
u(0) = w(T) and @ e I2(0, T; R™)}

is a Hilbert space with the norm defined by
ful = (], luoPar a0 Pae |
0 0

for u e H%w Under assumption (A) and some other suitable conditions,

many results are obtained about the existence of periodic solutions by
minimax methods in [1]-[9]. However those results for system (1) is few.
In this paper, we will give some main results about system (1) by using

the minimax methods.
2. Theorem and Proof

Theorem. Assume that F(t, x) satisfying assumption (A), A is an
inverse symmetric matrix, moreover | A | < 1, and satisfying the following

condition:
F(t, x) > +o, (x| —> +o0), (2)

uniformly for a.e. t € [0, T].
Further, there exist 0 <y < 2, M > 0 such that
(VF(¢, x), x) < yF(t, x), |x|2 M, ae. t [0, T] (3)

Then the system (1) has at least one solution.
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Proof. For convenience to prove, we let T = 2n. For u e H%n., let

_ 1 27 N B
U= 2_nf0 u(t)dt and @(t) = u(t) — w. Then one has

~ 12 T (2 . e , . .
lZ|, <= |u(t)|["dt  (Sobolev’s inequality)
6Jo

and

2n N 9 2n 9 o ) .
J |a() | dt < I |ut)["dt  (Wirtinger’s inequality).
0 0

Lemma 1 [8]. Suppose that F satisfies (A) and (2), then there exists a
real function g € L0, T) and G e C(R", R) which is sub-additive, that
is,

Glx+y)<Gx)+G(y), =x,yeR"
for all x, y € R" and coercive, that is,
Gx)<|x|+4, xeR"
for all x € R", such that
F(t, x) > G(x) + g(t),
forall x e R" and a.e. t € [0, T].

Lemma 2 [9]. Suppose that F satisfies (A) and (3), then there exists
a9 = max af x|)
|x[<M
such that

F(, %) < agh(o) (| x /M) +1)
forall x € R" and a.e. t € [0, T].

Proof of Theorem. By the saddle point theorem (see Theorem 4.6 in

[5]), we need to prove
(A1) J(u) - +o, as |u| — « in Hi,, and

(A2) J(u) > -, as || u| - « in R".
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For all u(t) e H., u(t) is expressed as
1 2n 2n
u = —J. u(t)dt; _[ u(t)dt = 0.
2n Jo 0

Hence H = Hi @ ﬁ%n and dim Hy, = n < +o.
(i) For all u € Hy, ||u| — «, by Lemmas 1 and 2, we have
2n 2n 2n
J() = - j F(t, u)dt < -J Gw)di - j g(t)dt
0 0 0
< -2nG(u) > —»
which implies (Al).

() u e ﬁ%ﬁ, by Lemmas 1 and 2, we have
1 2n 9 1 2n
Jlt) = 5 [ Ta) Pde+ [ (Aulo), i)
0 0

27 2
- j Ft, ut)dt + j (A(t), ult))dt
0 0
> La-papial, - [ a0 ulmtd - ao | b
27
+J0 (h(t), ult))dt

1 L2 v 2n ¥ 2n
= Sa-lAplal?, -yM j agb(t)| u| dt_aoj b(t)dt
0 0
2n
[ o), upar
0
1 2
> 0-1ADIul, ~alull, e

for some constants ¢, ¢ > 0. The above inequality implies that there

exists some real constant R > 0 by 0 <y <2,1—| A > 0 such that

sup J(u) < inf J(u),
UESR ueH%7T

where 5 = {u|u € Hy,, |u| = R}.
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Now by saddle point theorem we only need to prove that /(u) satisfy

condition (C) in [1], that is, (u;) has a convergent sequence in H%n

whenever J(u,) is bounded and | J'(uy,) | (L +||uy, |) = O, as & — +o.

Let f{u;(t)} € Hy, satisfying that oJ(uj) is bounded, |J'(up)]|

L+ up|) > 0, as & —> +x. Then there exists some constant ¢ such that

| J(p)| < e || () | (L +] g

)<c (k= k). 4)
So we have by assumption (A) and (3)
B¢ 2 [ J () [+ [ g ) = 2 () 2 (' (wg), up,) = 2 (uy,)

_ I j (Auy(t), 1y (0))dt
. 27
3 I (VE(t, up(t)), uy(t)dt —I (Auy(t), uy(t))dt
0 0

o 2n
+I0 F(t, uk(t))dt—_[o (h(t), up(t))dt
_ Ij 2F(t, up (1)) ~ (VF(t, wy(0)), wp(0))]de
o o 21
- [ @, @) [ 0. w@)de + [ ), Awy@)ds
0 0 0
. J.O2n [2F(t, uy, (1)) — (VE(, w (), up(t))]dt - J;n (R(2), up(t))dt

> @) [ R )i - e

for some constant cg > 0, the above inequality implies

Ijn F(t, u,(t))dt < ey, (5)

for some constant ¢, > 0. By (4) and (5), we have

1 2TE . 2 1 27[ .
ch(uk):§j0 iy, | dt+§I0 (Auy(t), iy, (0))dt
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21 21
- P w@)de + | (0, w @)
0 0
_lf2n|' 240 [ (4 d
=5 | i Pae = | (A0, w0)dt + ey

1 ZTII . 2
2 Q- AD[ " Jige)dt + ey

Then we have

21 ) 9
IO | 4 (t)|["dt < c5.

It follows from Wirtinger’s inequality that
I Nl < s 6)

for some constant ¢ > 0. By (2) and Lemma 1,
2n 2n 2n
Cq = I F(t, u,t))dt > J G(uy,)dt +I g(t)dt
0 0 0
2n 2n
= I G(uy, +uy,)dt —I g(t)dt
0 0
2n 2n
> 2nG(@),) - J (| | + 4)dt - j g(t)dt
0 0

27
> 9nG(@,) - 2n(cy + 4) - j PIOLY

which implies that {i} is bounded thus {z;} is bounded in H3_ by (6).
Hence J(u) satisfy condition (C). Theorem holds.
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