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Abstract

In this work we are concerned with the operator, called generalized Airy
operator, studied recently in great detail by Cholewinsky and Reneke
[Electron. J. Differential Equations 2003(87) (2003), 1-64]. We complete
the analysis presented by the previous authors and give special
attention for some integral equations associated with this operator in
establishing the correspondent transmutation theory in a suitable space.
As application we introduce the generalized translation and the
convolution product related to this operator.

1. Introduction

The generalized Airy operator is third singular differential operator
given by
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where ν  is a nonnegative real number. When ,0=ν  this operator

becomes the third derivative operator for which some analysis were

studied by Widder [15] and for some special value of ν the operator νL

appeared as a radial part of the generalized Airy equation of a nonlinear

diffusion type partial differential equation in .nR

Recently, in a nice and longer paper, Cholewinski and Reneke [2]

study and extend, for the operator ,νŁ  the well known theory related to

some singular differential operator of second order for which the
literature is extensive. The authors establish many notions related to this
operator such that the eigenfunctions, the generalized translation, the
heat equation, the heat polynomials,... .

This work is devoted to present the analysis related to the operator

νL  in same manner as in ([4], [12], [7]). We begin by recalling the notion

of the 3-even trigonometric functions (see [3] for more information) and

show that they are linked with the eigenfunction of νŁ  via an integral

representation of Mehler type. This is useful for establishing the

transmutation operator between νŁ  and 
3

3

dx

d  and play a central role for

the study of the so called Riemann-Liouville and Weyl transformations in
suitable spaces. As application we study the generalized translation,
product convolution and Fourier transform. Some other properties of the

operator νŁ  are given such that the integral representation of Sonine

type and some recursive relations which will be used for the study of the

perturbed operator in ( ),xχ+νŁ  where ( )⋅χ  is an analytic function in a

coming paper.

2. The 3-trigonometric Functions and the Eigenfunctions of νŁ

Putting ,3π=µ ie  ( ) ;312 −π= ki
k ew  ,3,2,1=k  and ,2,1=l  we begin

by recalling the following definition:

Definition 2.1. A function ( )zf  is called 3-even if

( ) ( )zfzwf k = (2.1)
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and 3-odd of order l if

( ) ( ).zwfwzf k
l
k= (2.2)

We define the 3-trigonometric cosine function which is 3-even by

( ) ( ) ( ) ( ) ( )∑ ∑
≥ ≥

−=−=
0 0

3

3 1
!3

1cos
m m

m
m

m
m zb

m
zz (2.3)

and the 3-trigonometric sine functions of order l which are 3-odd by

( ) ( ) ( )∑
≥

+

+
−=

0

3

3 .
!3

1sin
m

lm
m

lm
zz (2.4)

These functions are entire. (For more information the reader can
consult [3].) Using the fact that

( )∑
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=

3

1
3bydivisiblenotfor0

,3bydivisiblefor3

k

m
k m

m
w (2.5)

and the fact that

( ) ∑
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we deduce

( ) ∑
=

=≤≤
3

1
3 ....,2,1,0,

3
1

cos
k

zz
n

n

neez
dz

d
(2.6)

Finally note that, for a complex number λ, the function ( )zλ3cos  is

the unique solution of the equation

uu
dx

d 3
3

3
λ−= (2.7)

under the initial conditions

( ) ( ) ( ) .00,00,10 =′′=′= uuu (2.8)

The Fröbenius method leads that, for λ complex, the fundamental

solutions of the equations
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uu
dx
dx

dx
dx

dx
du 333 λ−=
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The reader notices that for the third solutions we need ≠ν−ν− 32,34

...,2,1,0 −−  and it is easy to show that the radius of convergence of these

series is .∞=R

In the remainder only the first solution is considered and noted
( ).1
νν = GG  We have ( ) ( )xx 30 cos=G  and for λ complex, the function

( )xx λ→ νG  is 3-even and it is the unique solution of the problem

( ) ( )
( ) ( ) ( )





=′′=′=

λ−=ν

.00,00,10

3

uuu

xuxuL
(2.10)

3. Integral Representations of Mehler and Sonine Type of ( )xλνG

We rewrite the entire function ( )xλνG  with the help of the following

functions ( )xbn ν,  which is crucial in establishing the generalized
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translation related to the operator :νŁ

( ) ( )
( ) ( ) ( )∑

∞

=
ν

+ν

λ
−=λ

0
3

33

323113
1

n nnn
n

nn
n x

xG

( ) ( )∑
∞

=
ν λ−=

0

3
, ,1

n

n
n

n xb (3.1)

where

( )
( ) ( ) ( )

.
3231133

3

,
nnn

n

n

n
xxb

+ν
=ν (3.2)

Here we have used the Pochammer symbol ( ) ,10 =a  ( )
( )
( ) ,
a

na
a n Γ

+Γ
=

....,2,1=n

The ( )xbn ν,  are ∞C  functions and satisfy for ...,2,1=n

( ) ( ) ( ) ( )xbxbbxb nnn ν−νννν === ,1,,,0 ,00,1 Ł (3.3)

( ) ( ) ( )
( )n

n

n

pnn
nn pb

b
xbxb

32
32

,1
,

,3
,, ++ν

+ν
==

ν

+ν
νν (3.4)

( ) ( ) ( ) ( ).
!3

0 0,

3

, xbxb
n

xxb nn

n

n ==≤≤ ν (3.5)

We conclude this section by giving the two important integral
representation.

Proposition 3.1. For 0>ν  and ...,2,1=p  the function ( )xλνG  has

the integral representations

(1) of Mehler type

( ) ( )
( ) ( ) ( ) ( )∫ −ν

ν −
νΓΓ

+νΓ=
1

0
3

13 cos1
32

323 dtztttzG (3.6)

( ) ( )
( ) ( ) ( ) ( )∫ −νν−

ν −
νΓΓ

+νΓ=
x

dyyyxyxx
0

3
13331 cos

32
323G (3.7)
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(2) of Sonine type

( ) ( )
( ) ( ) ( ) ( ) .1

32
323 1

0

1313∫ ν
−+ν

+ν −
Γ+νΓ

++νΓ= dtxttt
p

px p
p GG (3.8)

Proof. We give just the proof of (2) because that of (1) is similar.

Taking account of the expansion (2.3) the second member of (3.6) becomes

( )
( ) ( ) ( ) ( ) ( )∫ ∑

∞

=
ν

−ν −−
Γ+νΓ

++νΓ 1

0 0

33
,

133 111
32

323

n

nn
n

np dttxbttt
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0

3
, .11

n
p

n
pn

n xxb G

This follows from (3.4). The calculus is valid since the radius of

convergence of the series is ∞ and we integrate on [0,1].

As a consequence of (3.6) we obtain

( ) ( )
( ) ( )

z
n

n
ez

dz

d
νΓΓ

+νΓ≤ν 32
323G (3.9)

and

( ) ( )
( ) ( ) ( ) ( ) .

!332
323

0

3
13331

, ∫ −νν−
ν −

νΓΓ
+νΓ=

x n

n dy
n

yyxyxxb (3.10)

4. νŁ -Riemann-Liouville Integral Transformation

Notation. We denote by ( )R∗E  the space of the ∞C  and 3-even

functions defined on ,R  equipped with the topology of uniform

convergence for the functions on compact supports and its derivatives.
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Our objective in this section is to construct the integral transformation

called the Riemann-Liouville integral transformation which transmutes

νŁ  and .
3

3

dx

d

Definition 4.1. We define on ( ),R∗E  the Riemann-Liouville integral

transformation associated with the operator νŁ  by

( ) ( )
( )
( ) ( ) ( ) ( )

( )





=

>∫ −
νΓΓ

+νΓ
=

−νν−

.0if0

,0if
32

323
0

13331

xf

xdyyfyxyxxf
x

X (4.1)

Theorem 4.1. The transformation X  is an isomorphism of ( )R∗E

transmuting the operator νŁ  and 
3

3

dx

d  in the following sense:

( ) ( ) ( ),,3 R∗ν ∈= EXX ffDfŁ

( ) ( ) ( ) ( ).,00 R∗∈= EX fff (4.2)

Proof. Note that ( ) ( ) .1 13 −ν
ν −= tttW  For ( ),R∗∈ Ef  we can rewrite

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ −ν
ννν −==

1

0

1

0

13 ,1 dtxtfttcdtxtftWcxfX

where we have kept

( )
( ) ( ) .

32
323
νΓΓ

+νΓ=νc (4.3)

Put

( ) ( ( ) ( ) ( ) ( )).1 3 xfDxf
c

xI XX −= ν
ν

Ł

We have

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ νν
ν+−−=

1

0

1

0

233 31 dtxtfDtW
x

dtxtfDtWtxI x

( ) ( )∫ ν
ν−

1

02
.3 dtxtfDtW

x
x



w
w

w
.p

ph
m

j.c
om

A. FITOUHI, M. S. BEN HAMMOUDA and W. BINOUS310

Using the fact that

[( ) ( )] ( ) ( )tWtttWtDt ν
ν

ν ν−−=− 233 311

on two integrations by parts of the first quantity of the second member

we obtain

( ) ( ) ( ) ( )xtfDxxtfDtxtfxDxtftD xtxt
2222; ==

and

( ) ( ) .00;00 2 == fDDf

This shows that for ( ) .0, =∈ ∗ xIx R

Now we put

dxx

d

dx

d
23 3

=

and we introduce the space

{ ( ) ( )( ) }.,00; 3 NR ∈=∈= ∗ kff kEM

We attempt to give explicitly .1−X  To this end we proceed as in [12] in

establishing the following lemma.

Lemma 4.2. The operator ,, N∈kQk  defined on ( )R∗E  by

( ) ( ) ( ) ( )∫ −=
t k

k dyyfyty
k

tfQ
0

33
!

3 (4.4)

is bijective on the space ( )R∗E  of ∞C  functions on ,R  having derivatives

( )( ) .3...,,1,0,00 knf n ==  Moreover the inverse operator is given by

( ) ( ) ( ) ( ).
1

3
1 tf

dt

dttfQ
k

k

+
− 
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Proof. Put

( ) ( ).0 ttftF =
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For ...,2,1=k

( ) ( ) ( ) ( )∫ −− ==
t

kkkk tFtF
dtt

d
duuFttF

0
121

2 ,

so

( ) ( ) ( ) ...,,2,1,0,
2

==







kttftF

dtt

d
k

k

hence the operator kQ  becomes

( ) ( ) ( ) ( )∫ −=
t k

k dyyfyty
k

tfQ
0

33
!

3

( ) ( ) ( )∫ 







−=

t

k

k
k dyyF

dyy

dyt
k 0 2

33
!

3

and k integrations by parts give

( ) ( ) ( ) [( ) ] ( ) ( )∫ −







−=

t

k
k

k
k

k dyyFyt
dyy

d
k

tfQ
0

33
2!

31

( ) ( )∫+=
t

k
k dyyF

0

1 .3

This gives that

( ) ( ) ( ).
1

3
tfQ

dt

dttf k

k+







=

Theorem 4.3. The operator 1−X  is given as follows:

(1) If ,10,, <<∈+=ν rkrk N  then for ,0>t

( ) ( )
( )

( )( )∫ −






=

+ν+
−

t

r

k
dyyf

yt

y

dt

dtCtf
0 33

131

31
1 ,X

where

( ) ( )
( ) ( ) ( ) .

132
323

1 ν−Γ+νΓνΓ
−νΓΓ

=
k

C
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(2) If ,,1 N∈+=ν kk  then for ,0>t

( ) ( ) ( ( ) ( )),23
1

32
1 tft

dt

d
tCtf k

k
+

+
−









=X

where

( )
( ) .

32
32

2 +νΓ
Γ=C

Proof. We need to solve the integral equation with f as an unknown
function

( ) ( ) ( ) ( )∫ ∗
−νν−

ν ∈=−
t

gftgdyyfytytc
0

13331 ,,, RE (4.5)

where νc  is given by (4.3).

We proceed step by step

(1) For 10 <ν<

( )
( ) ( )

( )
( )∫ ∫∫ ν

+ν

ν

−ν
ν −

=







−

−

t ty
dyyg

yt

y
c

dyduufuyu
yt

y
0 0 33

13

0

133
33

2
.313

By the use of the Fubini theorem, we obtain

( ) ( ) ( )
( )

( )∫ ∫∫ ν

+ν

ν

−νν−

−
=








−−

t tt

u
dyyg

yt

y
c

duuufdyyuyyt
0 0 33

13
213333 313

since

( ) ( ) ( ) ( ),13 213333∫ νΓν−Γ=−− −νν−t

u
dyyuyyt

( ) ( )
( ) ( ) ( )

( ) .
132

32
0 33

13












−ν−Γ+νΓ
Γ= ∫ ν

+νt
dyyg

yt

y
dt
dtft

(2) If ,10,, <<∈+=ν rkrk N  then we have for :0>t

The integral equation (4.5) can be rewritten:

( ) ( ) ( ) ( )∫ ∗
−+ν−

ν ∈−=
t kr gfdyyfyyttctg
0

13331 ,,, RE
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integration by parts give

( )( )
( )( ) ( ) ( ) ( ) ( )( ) ( )∫ =−

−νΓΓ
2+νΓ −ν−

t

k
r tgdyyfQ

dy
dytt

k 0

13331
32

3

using (1) we have

( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

( )∫ −ν−ΓνΓ+νΓ
Γ−νΓ=

+νt

rk dyyg
yt

yktfQ
0 33

13
.

132
323

The result is then the consequence of Lemma 4.2

(3) If ,1+=ν k  since

( ) ( ) ( ) ( )∫ −= −−
+

t kk
k dyyfytytctf

0

3323
1X

( ) ( ).
3
! 23

1 tfQtc
k

k
k

k
−−

+=

Lemma 4.2 gives the result.

5. Weyl Integral Transformation associated with νŁ

Notation. We denote by

• ( )R∗D  the space of ∞C  functions on ,R  3-even with compact

support. It is known that

( ) ( )U
0

,
>

∗ =
a

a RR DD

where ( )RaD  is the space of ∞C  functions on ,R  3-even with support in

[ ] 0,, >− aaa  equipped with the topology defined by the sequence of

semi-norms.

( )
[ ]

( ) .sup
,,0

xfDfq k

aaxnk
n

−∈≤≤
=

• ( )R∗′D  the space of distributions 3-even on .R

• ( )R∗′E  the space of distributions 3-even on ,R  with compact

support.
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Our objective is to construct for the operator νŁ  an integral

transform noted ( ),⋅Xt  called of Weyl type. We denote by fT  the

distribution associated to the function f. As a direct consequence of the
Theorem 4.1 we have

Theorem 5.1. The operator ( )ftX  defined on ( )R∗′E  by

( )R∗∈= EXX gggt ;,T,T (5.1)

is an isomorphism of ( ).R∗′E

The following theorem explicates the expression of .Tf
tX

Theorem 5.2. For f in ( )R∗D  the distribution f
t TX  is defined by the

function ( )ftX  given by

( ) ( ) ( )
( ) ( ) ( ) ( )∫

∞
ν−−ν−

νΓΓ
+νΓ=

y

t dttftytyyf .
32

323 31133X (5.2)

Proof. For ( ),R∗∈ Eg  we have

gg ff
t XX ,T,T =

( ) ( ) ( )∫
∞

=
0

dttftgX

( ) ( ) ( )∫ ∫
∞ −νν−

ν 







−=

0 0

13331 dtdyygytytctf
t

( ) ( ) ( )∫ ∫
∞ ∞

ν−−ν
ν 








−=

0

31133 .dyygdttftytyc
y

From the dominated convergence theorem we deduce that the map

( ) ( )yfy tXa  is 3-even and continuous on [ [.,0 ∞

Remark 5.1. The integral transformation (5.2) is called the Weyl

transformation related with the operator .νŁ
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Theorem 5.3. For ( ),R∗∈ Df  the distribution ( ) f
t T1−X  defined by

the function ( ) ( )ft 1−X   given by

(1) If ,10,, <<∈+=ν rkrk N  then

( ) ( ) ( ) ( )
( )

( )( )∫
∞ ++ν

+− 







−
−=

y

k

r
kt dzzzf

dz

d

yz

yCyf .1
1

333

13

1
11X

(2) If ,,1 N∈+=ν kk  then

( ) ( ) ( ) ( ) ( )( ).1
1

3
23

2
11 yyf

dy

dyCyf
k

kkt
+

++−








−=X

The constants 1C  and 2C  are defined as in Theorem 4.3. On the other

hand, the function ( ) ( ) ( )yft 1−X  is continuous on ,R  3-even with compact

support.

Proof. (1) Let ,10,, <<∈+=ν rkrk N  and let ( ).R∗∈ Eg  Then

Theorem 4.3 gives

( ) ( ) gg f
t

f
t ,T,T 11 −− = XX

gf
1,T −= X

( )
( )

( )∫ ∫
∞ +ν+












−






=

0 0 33

131

31 .dzdyyg
yz

y

dz

dzzfC
z

r

k

On integration by parts, we obtain

( ) ( )
( )

( )( ) ( )∫ ∫
∞ ∞ ++ν

+−






















−
−=

0

1

333

13

1
11 .1,T dyygdzzzf

dz

d

yz

y
Cg

y

k

r
k

f
tX

So the distribution ( ) f
t T1−X   is well defined by the function

( ) ,1 ft −X  given by
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( ) ( ) ( ) ( )
( )

( )( )∫
∞ ++ν

+− 







−
−=

y

k

r
kt dzzzf

dz

d

yz

yCyf
1

333

13

1
11 1X

( ) ( )
(( ) )

( )( )∫
∞ ++ν

+









−
−=

1

1

3333

13

1
11 dvyyvyvf

dvy

d

yyv

yC
k

r
k

and the function ( ) ( )ft 1−X  is 3-even with compact support on .R

(2) If ,,1 N∈+=ν kk  then Theorem 4.3 and same argument as (1)

leads to the result.

Lemma 5.4. For ( ),R∗∈ Df  the operators ftX  and ( ) ft 1−X  satisfy

the relations

,TT 3
f

tt D
f

XX =
ν−Ł

(( ) ) ( ) .TT 311
f

t
f

t D−−
ν− = XXŁ

Proof. From Theorem 4.1, we obtain

( ) ( ) ( ).,3 R∗ν ∈= EXX ggDgŁ

Then for ( )R∗∈ Df , we have

,,T,T,T ggg
ff

t
f ν−ν−

−=−=ν ŁŁŁ XXX

and

,,T,T,T 333 gDgDgD f
t

f
t

f XXX −==

hence

.TT 3
f

tt D
f

XX =
ν−Ł

A similar calculation shows that

( ) ( ) ,,T,T,T 111 ggg ff
t

f
t

ν
−

ν
−−

ν− −=−= ŁŁŁ XXX

and

( ) ( ) ,,T,T,T 131331 gDgDgD fff
t −−− −== XXX



w
w

w
.p

ph
m

j.c
om

ON A THIRD SINGULAR DIFFERENTIAL OPERATOR … 317

so

(( ) ) ( ) .TT 311
f

t
f

t D−−
ν− = XXŁ

Theorem 5.5. The Weyl integral transformation associated to :νŁ

( ),ff tX→

is an isomorphism of ( )R∗D  into itself.

Proof. From Theorems 5.2, 5.3 and Lemma 5.4 we deduce that for f

in ( ),R∗D  the functions ( ) ( )ftX  and ( ) ( )ft 1−X  belong in ( ).R∗D

Theorem 5.1 gives that the transformation ( ),ff tX→  is bijective. It

remains to show that it is continuous: For this, let f be a function of

( )R∗D  with compact support in [ ]., aa−  From Lemma 5.4, we have

( ) ( ) ( ) ( )yfyfD nttn
ν−= ŁXX3

so

( ) ( )
[ ]

( ( )) ( ) ( )∫ −≤ ν−−ν
ν−

−∈

a
y

n

aat

tn dttftytytfyfD 31133

,

3 sup ŁX

[ ]
( ( )) .sup

,
1 tfM n

aat
ν−

−∈
≤ Ł

Since

[ ]
( ( ))

[ ]
( ( ))tfDMtf k

aatnk

n

aat ,,30
1

,
supsup

−∈≤≤
ν−

−∈
≤Ł

we obtain

[ ]
( ) ( ) ( ),sup 32

3

,
fqMyfD n

tn

aay
≤

−∈
X

where 2M  is a constant and ( )fq n3  is the semi-norm defined previously.

This proves the continuity of the transformation ( )ff tX→  on

( ).R∗D  We conclude that the inverse transformation ( ) ( )ft 1−X  is

continuous.
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6. Fourier Transform of Distribution T on ( )R∗′E

In this section we denote by

• ∗H  the space of 3-even entire functions which decrease rapidly of

exponential type. We have

U
0

,H
>

∗ =
a

aH

with

( ) ( ) ( )



+∞<λψλ+=ψρ
= λ−

∈λ .1sup

,integerallforthatsucheven-3,functionsentire
3 Imam

m
a

e

m
H

C

We equip aH  with the topology defined by the sequence of the

semi-norms .mρ

• ∗H  the space of entire functions 3-even with slowly growth of

exponential type. This means that there exists a positive real number a

and an integer m such that

( ) ( ) .1sup 3 +∞<λψλ+ λ−−

∈λ

Imam e
C

Definition 6.1. (1) The Fourier transform related with νŁ  of a

distribution T of ( )R∗′E  is the function ( )TνF  defined by

( ) ( ) ( ) .,TT tλ=λ νν GF (6.1)

(2) The Fourier transform related with νŁ  of a function f of ( )R∗D  is

the function ( )fνF  defined by

( ) ( ) ( ) ( )∫
∞

νν λ=λ
0

.dtttff GF (6.2)

Noting that

( ) ( ) ( ) ( )∫
∞

λ=λ
0

30 cos dtttffF (6.3)

we obtain the following
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Theorem 6.1. The Fourier transform 0F  is a linear map bijective

and bicontinuous

(1) of ( )R∗D  on .H∗

(2) of ( )R∗′E  on .∗H

Now it is easy to obtain

Proposition 6.2. We have

( ) ( ) ( )
( ) ( ) ( ) ( )





=′∈

=′∈
−

ν∗

ν∗

.TT;T

,TT;T
1

0

0

XFFE

XFFE
t

t

for

for

o

o

R
R

(6.4)

( ) ( ) ( )
( ) ( ) ( ) ( )





=∈

=∈
−

ν∗

ν∗

.;

,;
1

0

0

ffffor

ffffor
t

t

XFFD

XFFD

o

o

R
R

(6.5)

A consequence of Theorems 5.1, 5.5, 6.1 and Proposition 6.2 is

Theorem 6.3. The Fourier transform F  is a linear map bijective and

bicontinuous

(1) of ( )R∗D  on .H∗

(2) of ( )R∗′E  on .∗H

7. Translation Operator ν
xT  associated with νŁ

In this section we study the generalized translation operator

associated with the operator νŁ  in the Delsartes sense. We begin by

giving the following definition related to .
3

3
3

dx

dD =

Definition 7.1. The translation operator R∈τ xx ,  associated with

the third order derivative operator 3D  is defined for f in ( )R∗E  and

R∈y  by

( ) ( ) ( ) ( )∑
∞

=

=τ
0

3
0, .

n

n
nx xfDybyf (7.1)

The function ( ) ( )ybyb nn =0,  are given by (2.3).
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The reader can show easily that it preserves the 3-parity and we have

( ) ( ) ( )∑
=

−








=τ=τ

n

k

knk

k

nn
y

n
x xy

b

b
xy

0

33

0,

0,33

and

( ) ( )
( ) .
1

11

0,

0,0,

0,

0,

n

knk

k

n

b
bb

b

b −=







(7.2)

This translation operator acts on a function as

( ) ( ) ( ) ( )( ),
3
1

321 ywxfywxfywxffx +++++=τ

where kw  being the third roots of unity, and we have the product formula

( ) ( ) ( ) ( ).coscoscoscos 3333 xyyx yx λτ=λτ=λ⋅λ

Proposition 7.1. The operator xτ  satisfy

(1) For xx τ∈ ,R  belong in ( ( ) ( ))RR ∗∗ EEL ,

(2) The map xx τ→  is indefinitely differentiable, 3-even.

(3) We have

,0 operatorunity=τ

,33
xxxx DD τ=τ    where   .

dx
dD =

(4) For ( )R∗∈ Df  we have

( )( ) ( ) ( ) ( ) ( ).cos 030 λλ=λτ fxfx
t FF

Definition 7.2. The convolution product of two functions f and g of

( )R∗D  is defined by

( ) ( ) ( ) ( ) ( ) .
0 0∫ ∫
∞ ∞

τ=τ= dyygyfdyygyfxgf xx
t (7.3)
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Proposition 7.2. For f and g in ( ),R∗D

( ) ( ) ( ) ( ).000 gfgf FFF ⋅=λ (7.4)

These previous properties can be extended for the operator νL  which

suggest the following definition.

Definition 7.3. The operators ,T , R∈ν xx  defined on ( )R∗E  by

( ) ( ) ( ) ( ) ( )∑ ∈=
∞

=
νν

ν

0
, ,,T

n

n
nx yxfybyf RŁ (7.5)

are called generalized translation operators associated with ,νŁ  where

the functions ( )ybn ν,  are given by (3.1).

As a direct consequence of this definition we deduce that the function

( ) ( )n
x yyxu 3T, ν=  is the solution of

( ) ( ) ( )
( ) ( ) ( )





∈==

∈=

∗

∗νν

R
R

E

E
nnn

n
yx

yyyuxxu

xyxuyxu
333

3
,,

,0,0,

,,, ŁŁ
(7.6)

and

( )



















−

+ν

ν−+−+−−
=ν

3

23
33

32,31

31,32,
T

x
ynnn

Fxy nn
x

( ) ( )
( )

.4

32,31

,
2

1,2
233

3

23
33













++ν

ν+−−−+=
yx

xynnnFyx n (7.7)

When y is fixed and ,∞→x  we have (see [2, p. 4])

( ) ( ) .~T 333 nn
x yxy +ν

Now we prove the connection between the translate operator (7.5) and the
transmutation operator (4.1).

Proposition 7.3. For ( ) xf ,R∗∈ D  and ,R∈y

( ) [ ( )].T 1 yfyf xyxx
−ν τ= XXX
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Proof. This can be shown as follows

( ) ( ) ( ) ( )∑
∞

=
νν

ν =
0

,T
n

n
nx yfxbyf Ł

( ) ( ( )) ( )∑
∞

=

−
ν=

0

1

n
yy

n
nx yfxb XXX Ł

( ) ( ( )) ( ).
0

13 yfDxb
n

y
n

nyx∑
∞

=

−= XXX

We summarize the properties of ν
xT  in the proposition.

Proposition 7.4. The operators ν
xT  satisfy

(1) For ν∈ xx T,R  in ( ) ( )( )RR ∗∗ EEL ,

(2) The map ν→ xx T  is infinitely differentiable, 3-even.

(3) For all functions f in ( ),R∗E

( ) ( );TT xfyf yx
νν =

( ) ( )yfyf =ν
0T

(4) For given f in ( ),R∗E  put

( ) ( ).T, yfyxu x
ν=

Then the function u is solution of the Cauchy problem:

( )
( ) ( )

( ) ( ) ( ) ( )






===

= νν

.00,;00,;0,

,,,

2

2
,,

xu
dy
dxu

dy
dxfxu

yxuyxu yx ŁŁ
I

(5) The product formula holds

( ) ( ) ( ) ( ).TT xyxy yx λ=λλ=λ ν
ν

ννν
ν GGGG (7.8)
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Proof. These results are consequences of the properties of the

operators ,X  1−X  and Proposition 7.1.

Theorem 7.5. For f in ( ),R∗D

( ) ( ) [ ( ) ( )],T 1 yfyf t
xy

t
xx

t XXX −
−ν τ=

where the operator x
t T  is the transposed of the operator .Tx

Proof. For f and g in ( ),R∗D

( ) ( ) ( ) ( ( )) ( )∑
∞

=

−ν =
0

13 ,,T
n

n
nyxx ygyfDxbygyf XXX

( ) ( ) ( ) ( )∑
∞

=

−−=
0

311,
n

y
tn

y
t

n
n

x ygDxbyf XXX

( ) ( ) ( )∑
∞

=

−−=
0

31,
n

y
tn

y
t

nx ygDxbyf XXX

and thus the result follows.

As an important deduction of the previous theorem we have the
following expression of the convolution product  related to the operator

.3D

Corollary 7.6. For ( )R∗∈ Df  and ,0>x

( ) ( ) [ ( ) ( )] ( ),,T 1 yxkfyf t
y

t
x

t ⋅= −ν XX (7.9)

where ( ) ( ) 13331, −νν−
ν −= ytytcytk  and νc  is given by (4.3).

Proof. Let f be in ( )R∗D  and .0>x  Then

( ) ( ) [ ( ) ( )]xfyf t
y

t
y

t
xx

t XXX τ= −ν 1T

( ) ( ) ( ) ( )∫ τ= −x
t

y
t

y
t duufuxk

0

1, XX
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( ) ( ) ( ) ( )∫ τ= − x
t

y
t

y
t duufuxk

0

1 , XX

( ) [ ( ) ( )] ( ).,1 yxkft
y

t ⋅= − XX

Corollary 7.7. Let f be in ( ).R∗D Then the function ( )yfy x
t ν→ T

belong in ( )R∗D  and

( ) ( ) ( ) ( ) ( ).T λλ=λ νν
ν

ν fxfx
t FGF (7.10)

Proof. Since ( ) ( )yfyft =ν
0T , the result follows by inspection for

.0=x  Let us prove the result for .0>x  From the Corollary 7.6 it is

easy to see that the function ( )yfy x
t ν→ T  belong in ( ).R∗D From

Theorem 6.1 and Corollary 7.6, we have

( ( )) [ ] ( )λ=λ νν
ν ff x

tt
x

t TT 0 XFF

[ ( ) ( )] ( )yxkft ⋅= ,0 XF

( )( ) ( ) ( ( )) ( )., 00 λ⋅λ⋅= fxk tXFF

It suffices to recall (3.7)

( )( ) ( ) ( )xxk λ=λ⋅ νGF ,0

to obtain the result.

Now we are able to define the convolution product related to the

operator .νŁ

Definition 7.4. The convolution product associated to νŁ  of two

functions f and g in ( )R∗D  is the function gf ν  defined by

( ) ( ) ( )∫
∞

ν
ν =

0
T dxxgxfygf y

( ) ( ) .T
0∫
∞

ν= dxxgxfy
t                           (7.11)
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In the following theorem we give the essential properties of this
convolution product.

Theorem 7.8. For f and g in ( ),R∗D

(1) [ ] ( ) ( )gfgf ttt XXX =ν

(2) ( ) ( ) ( ) ( )λλ=λ νννν gfgf FFF

(3) ( ) ( )ff t XFF o0=ν

(4) ( ) ( ).1
0 ff t −

ν= XFF o

Proof. For f and g in ( )R∗D  the proofs are consequences of previous

results.

1. ( ) gfgfgf t
y

t
y

t
xx ,T, 1 XXX τ== −ν

ν

( ) ( ) ( ) gfgxf x
tt

y
t

y
tt

y
t

xy
t XXXXXX ,, 11 τ=τ= −−

( ) ( ) ( )., 11 gfgf tt
y

t
x

tt
y

t
y

t XXXXXX −− =τ=

2. ( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞

ννν λτ=λ
0 0

dyydxgxxfgf y
t GF

( ) ( ) ( ) ( )∫ ∫
∞ ∞

νν λλ=
0 0

dyyygdxxxf GG

( ) ( ).λλ= νν gf FF

3. ( ) ( ) ( ) ( )∫
∞

ν λ=λ
0

3cos dtttff XF

( ) ( ) .cos
0

3∫
∞

λ= dtttf tX

4. ( ) ( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞

ν
− λ=λ=λ

0 0

1
30 cos dtttfdtttff GXF

( ) ( )∫
∞

ν
− λ=

0

1 .dtttft GX
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8. Application: Heat Equation

In this section we introduce the space ( )dxL ,1 ∗
+ν R  of functions f

satisfying

( ) ( )∫
∞

ν >λ>ν∞<λ
0

.0;0,dxxxf G

for .0,0;0 >>>ν xt  We consider the problem

( )

( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )












==

==

∈=

=
∗
+ν

ν

,3,2,1,,,

0,0,0,0

,;0,

,,

2

1

ktxutxwu

tuDtuD

dxLfxfxu

txu
dt
dtxu

k

xx

RII

Ł

where kw ’s are the third roots of unity.

To look for a solution of this problem, we put

( ) ( )( ) ( )..;; λ=λ ν tutU F (8.1)

Then

( ) ( )tUtU ;, 3 λλ−=λνŁ (8.2)

and

( ) ( ) ( ).0; λ=λ ν fU F (8.3)

Hence

( ) ( ) ( ) ( ).exp; 3tftU λ−λ=λ νF (8.4)

We obtain that the solution is given by

Proposition 8.1. We have

( ) ( )( ) ( )xftFtxu νν ⋅= ,; (8.5)

with

( ) ( ) ( )

( )
,

3
2

3

2
3231

1,
23

31
3
1

213

3131 

























+νΓΓ
=

−ν−

+ν

ν
t

xK
t

x

t
txF (8.6)

where νK  is the Mac-Donald function ([8], [13]).
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Note that the function ( )txF ,ν  is 3-even in x.

Proof. We start by recalling the formula for 0>β  and 02 >λ−β

[13], we have

( ) ( ) ( )∫
∞

λ
−λ−β λ−βΓβΓ=

0

1 .22
4
12 duuKu

We deduce for ( )312 +=β n  and ( )ν+−=λ 31  that

( )( ) ( ) ( ) ( )∫
∞

−ν−
ν+ +ν+Γ+Γ=

0
31

2 .3231
4
12 nnduuKu n

The last one with suitable change of variable lead to

( )
( ) ( )

( ) ( )∫
∞

ν +νΓΓ
+ν+Γ+Γ

=







0

3
3

3 .
3231

3231
3

,
nn

tdx
x

txF n
n

So

( ) ( )∫
∞

νν λ
0

3, dxxtxF G

( ) ( ) ( ) ( )
( ) ( )∑ ∫

∞

=

∞
ν +ν+Γ+Γ

+νΓΓ





 λ−=

0 0

3
3

3231
3231

3
,

!
1

n

nn

nn
dxxtxF

n

( ) ( )∑
∞

=

λ−=λ−=
0

3333 .exp
!

1

n

nn
n

tt
n

This means

( ) ( ) ( )∫
∞

νν λ−=λ
0

3 .exp, tdxxtxF G

The function ( )txF ,ν  plays the role of Gaussian kernel associated

with this heat equation. Contrary to the case of the kernel associated
with the second order operator, the previous function has oscillator

behavior when x tends to infinity. We can discover this phenomena as
follows.
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It is clear that ν−ν = KK  and from the integral representation

[2, p. 252] valid for ( ) 0,21Re >−>ν x

( ) ( )
( ) ( ) ( )∫

∞ −ν−
ν

ν

ν +
Γ
+νΓ=

0

212 .1cos2
21

21 duuxu
x

xK (8.7)

We deduce for 0>ν  the following integral representation

( ) ( )
( ) ( ) ( ) ( )∫

∞ −ν−
ν 
















+

+νΓΓΓ
+νΓ=

0

23

31
652 .

3
2cos1

323121
65, duu

t

xutxF (8.8)

The function ( )txF ,ν  is 3-even for 0>x  and .0>ν
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