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Abstract

In this work we are concerned with the operator, called generalized Airy
operator, studied recently in great detail by Cholewinsky and Reneke
[Electron. J. Differential Equations 2003(87) (2003), 1-64]. We complete
the analysis presented by the previous authors and give special
attention for some integral equations associated with this operator in
establishing the correspondent transmutation theory in a suitable space.
As application we introduce the generalized translation and the
convolution product related to this operator.

1. Introduction

The generalized Airy operator is third singular differential operator

given by
_d( -3v.d  3v i)
Ly = dx (x dx X dx
3 2
& v 3vd o
dx® % dx? x2 dx
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where v 1s a nonnegative real number. When v =0, this operator
becomes the third derivative operator for which some analysis were
studied by Widder [15] and for some special value of v the operator L,

appeared as a radial part of the generalized Airy equation of a nonlinear

diffusion type partial differential equation in R”.

Recently, in a nice and longer paper, Cholewinski and Reneke [2]

study and extend, for the operator t,, the well known theory related to

some singular differential operator of second order for which the
literature is extensive. The authors establish many notions related to this
operator such that the eigenfunctions, the generalized translation, the

heat equation, the heat polynomaials,... .
This work 1s devoted to present the analysis related to the operator
L, in same manner as in ([4], [12], [7]). We begin by recalling the notion

of the 3-even trigonometric functions (see [3] for more information) and

show that they are linked with the eigenfunction of t, via an integral

representation of Mehler type. This is useful for establishing the

3
transmutation operator between t, and d—S and play a central role for
dx

the study of the so called Riemann-Liouville and Weyl transformations in
suitable spaces. As application we study the generalized translation,
product convolution and Fourier transform. Some other properties of the

operator t, are given such that the integral representation of Sonine

type and some recursive relations which will be used for the study of the

perturbed operator in t, + y(x), where y(-) is an analytic function in a

coming paper.

2. The 3-trigonometric Functions and the Eigenfunctions of t,

Putting p = ei”/?’, wy, = eQi’T(k_l)B; k=123 and ] =1, 2, we begin

by recalling the following definition:
Definition 2.1. A function f(z) is called 3-even if

flwyz) = f(2) (2.1)
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and 3-odd of order [ if
f(2) = wif (we2). 2.2)

We define the 3-trigonometric cosine function which is 3-even by

m m
cos(2) = Z( 1) (3 ), = C1"bu(2) 2.3)
m>0
and the 3-trigonometric sine functions of order [ which are 3-odd by
sing(z) = Z( (3m - l)' (2.4)
m=0

These functions are entire. (For more information the reader can
consult [3].) Using the fact that

3 e
Z ()" = 3 form d1v1s1?¥e ‘by 3, 2.5)
0 for m not divisible by 3

and the fact that

3
S LS e Loy 9ef2 oo 13
coss(z) = 3 k_le = 3(6 + 2e*“ cos 5 %)

we deduce

3
L wRIF R Py
S§Ze <ed?l n=0,1,2 .. (2.6)

‘d—ncos3(z)
z

Finally note that, for a complex number 2, the function coss(Az) is

the unique solution of the equation

3
d—3 u=-2u 2.7
dx
under the initial conditions
u(0)=1, u'(0)=0, u"(0)=0. (2.8

The Frobenius method leads that, for A complex, the fundamental

solutions of the equations
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_d (. -3v(d 3vdY) _ ,3
Lvu—dx(x (dxx deu— u (2.9)

are

o0 3n
606) - Y (= 2x)

=33 (1/3), (v + 2/3),,

01?2[1/3, vt 2/3|(_;xﬂ,

2) . :x2 S (_ 7\.3C)3n
W)= oo a9,

5/3, v+4/3|(_;xﬂ,

) S
Y 331 (4/3 - V), (2/3 - V),

— )3
_ gl 01?{4/3 v, 2/3-v| (ij ]

The reader notices that for the third solutions we need 4/3 — v, 2/3 — v =

= x%)Fy

0, -1, -2, ... and it is easy to show that the radius of convergence of these

seriesis R = .

In the remainder only the first solution is considered and noted
g, = g(vl). We have Gg(x) = cosz(x) and for A complex, the function

x — G, (Ax) is 3-even and it is the unique solution of the problem

Y
Lyu(x) = -)’u(x) ©.10)
uw(0) =1, u'(0)=0, u"(0)=0.
3. Integral Representations of Mehler and Sonine Type of G, (Ax)

We rewrite the entire function G, (Ax) with the help of the following

functions b, ,(x) which is crucial in establishing the generalized
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translation related to the operator t,:

xBn}\‘Bn

37(1),1/3),(v + 2/3),

6,6:)= 3 1
n=0

=S b @R,
n=0

where

x3n
) =, e+ 209,

Here we have used the Pochammer symbol (a), =1, (a), =

n=12, ...
The b, ,(x) are C” functions and satisfy for n = 1, 2, ...

bO,v(x) =1, bn,v(o) =0, van,v(x) S bnfl,v(x)

b (v +2/3)
_ 3n n,v+p n
b, (%) = by, ()™, byy  (v+p+2/3),

3n
0< bn,v(x) < @ = n,O(x) = bn(x)

We conclude this section by giving the two important
representation.

307

3.1)

(3.2)

[(a + n)

3.3)

(3.4)

(3.5)

integral

Proposition 3.1. For v > 0 and p =1, 2, ... the function G, (Ax) has

the integral representations

(1) of Mehler type

3r(v +2/3) (!

TEB)ITO) Jo t(1 - 13)"" cosg(zt)dt

gv(z) =

Gu(x) = S H 0 [y - 5 cosgly)dy

(3.6)

3.7
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(2) of Sonine type

1
Gyyp(x) = %fm Ot3v+1(1 —- 371G, (xt)dt. (3.8)

Proof. We give just the proof of (2) because that of (1) is similar.

Taking account of the expansion (2.3) the second member of (3.6) becomes

SF(V 2/3) 1 v _ - n n,3n
F(V:Z—I/JS;F(p) Ot3 t1 -3y 1,;)(— 1)"b, , ()™t dt

< 1\ n 1 n+v+1/3 4 - F(V+p+2/3)
nZ:O( 1) by, (1) J.O(tg) -y s (v + 2/3)[(p)

r;)(_ a7 F(: + ;/3) I(n f : + ;/3 + D)

Z(_ 1)nbn,v+p(1)x3n = gv+p(x)-
n=0

This follows from (3.4). The calculus is valid since the radius of

convergence of the series is oo and we integrate on [0,1].

As a consequence of (3.6) we obtain

dan . 3C(v + 2/3) NEL
o] T &9
and
x 3n
b (o) = SO I 0 [y - 30 (3.10)

4. t,-Riemann-Liouville Integral Transformation

Notation. We denote by E£.(R) the space of the C” and 3-even
functions defined on R, equipped with the topology of uniform

convergence for the functions on compact supports and its derivatives.
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Our objective in this section is to construct the integral transformation

called the Riemann-Liouville integral transformation which transmutes

3
t, and d—
dx®

Definition 4.1. We define on £.(R), the Riemann-Liouville integral

transformation associated with the operator L, by
SO LA 0 ) )y i x> 0
X(f)(x) = { T(2/3)0(v) 0 B CHY
£(0) if x =0.

Theorem 4.1. The transformation X is an isomorphism of &.(R)

3

transmuting the operator t.,, and d—3 in the following sense:
dx

L ()= XD*(f), f < £.(R),
X(f)(0) = f(0), f < EL(R). 4.2)
Proof. Note that W, (¢) = t(1 — t°)" . For f e £,.(R), we can rewrite

KO@ = e[ Wlo) fatydt = e 0= flat)a,

where we have kept

_3r(v +2/3)
“ = TEEIrW) (4.3)
Put
I(x) = %(vam (x) - X D3(f) (x)).
We have

I(x) = - j :(1 _ YW, (6) D3 (xt)dt + ?;_V j Olwv(t)D,%f(xt)dt

3v !
- j RAORNIEE
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Using the fact that
D - 2)W, ()] = (1 -17) - 3vePW, (¢)

on two integrations by parts of the first quantity of the second member

we obtain
tDyf(xt) = xDy f(xt); t*D7f(xt) = x*DFf(xt)
and
Df(0) = 0; D?f(0) = 0.
This shows that for x € R*, I(x) = 0.

Now we put

d d

dx® - 3x2dx

and we introduce the space
M = {f € E.R) fCP(0) =0, k e N}.

We attempt to give explicitly X ~1. To this end we proceed as in [12] in

establishing the following lemma.

Lemma 4.2. The operator Qy,, k € N, defined on E,(R) by
3 t
QuA0) = 5 [ 7 =5 F)ay (4.9

is bijective on the space £,(R) of C” functions on R, having derivatives
f(n)(O) =0,n =0,1, ..., 3k. Moreover the inverse operator is given by
k+1
1 d
%0 -{-%] (Do,
dt
Proof. Put

Fo(t) = tf @)
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For k=1, 2, ...

B0 = 2] Fa@du, B0 = Fia0)

SO

d k
(%) (Fp)@) = tf(t). k=0,1,2, ..,

hence the operator @ becomes

QN0 = 5 [ 36° = 37 fl0)ay

k
IS y3)k(y2dd y} (Fe) (2)dy

and k integrations by parts give

‘ k
R N b GRS R LAY

-3 (E) ).
This gives that
d k+1
0 --4 ] aun.

Theorem 4.3. The operator x1is given as follows:

DIfv=Fk+r,keN,0<r<l,thenfort >0,

~ ~ d R+l oy y3v+1
0= 5] [t

where

3r(2/3)T(v - k)
LT TOT(v + 23 -v)°

311



312 A. FITOUHI, M. S. BEN HAMMOUDA and W. BINOUS

@ Ifv=k+1, keN, thenfort >0,

k+1
X)) = 02{01%] EF2(7) 1),

where
_ T/’
27 T(v+2/3)

Proof. We need to solve the integral equation with f as an unknown

function
t
cvt173VJ.0 y(t3 - y3)v_1f(y)dy = g(t): f. 8 € 5*(R)’ (4.5)

where ¢, is given by (4.3).

We proceed step by step
1) For0<v<l
[ ( [Tuty - ug)”f(u)dujdy S
0" —y°)" \Jo I %)
By the use of the Fubini theorem, we obtain
3v+1

[, Uu ¢ - 50" - u3)v_13y2dny(u)u du = [ ooy £

since

[L@ - 0® - uty sty = ra - vre),

0 iy [ #0)

T(v+2/3)LA-v) dt|Jo (i3 — ,?)
@Ifv=Fk+r,keN,0<r<l1, then we have for ¢ > 0:

The integral equation (4.5) can be rewritten:

t
g(t) = cvtl_?’v_[o @ - Yy f()dy,  f, g € ELR),
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integration by parts give
v+ Q) st syt d )
ettt € - @)y = £0)

using (1) we have

_3[(v - k)T(2/3) t g3Vt
@WNO = 75 2 ST ), &y S

The result is then the consequence of Lemma 4.2

B3)If v =Fk+1, since
t
KO = epnt ™[ 56 =) 1)y

k! _ap_
=5 Cril F2Qu(F) ).
Lemma 4.2 gives the result.

5. Weyl Integral Transformation associated with t,

Notation. We denote by

e D,(R) the space of C” functions on R, 3-even with compact
support. It is known that
D.(R) = | Da(R),
a>0
where D, (R) is the space of C” functions on R, 3-even with support in
[~ a, a], a > 0 equipped with the topology defined by the sequence of

semi-norms.

an(f) = sup ]| D*f(x)].

0<k<n,xe[-a,

e D,(R) the space of distributions 3-even on R.

o &.(R) the space of distributions 3-even on R, with compact

support.
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Our objective is to construct for the operator t, an integral

transform noted tX(~), called of Weyl type. We denote by Ty the

distribution associated to the function f. As a direct consequence of the

Theorem 4.1 we have

Theorem 5.1. The operator ' X(f) defined on EL(R) by
(*XT, g) = (T, Xg) g e &(R) (5.1)
is an isomorphism of E.(R).
The following theorem explicates the expression of ‘X Ty.

Theorem 5.2. For f in D,(R) the distribution tXTf is defined by the

function 'X(f) given by

X0) = T A =T e 62

Proof. For g € £,(R), we have

<tXTf, g> <Tf’ Xg>

* 00

- [7 M@0

- J o[ - ety a

- [ EGE y3)V—1t1-3Vf(t)dtjg<y)dy.

From the dominated convergence theorem we deduce that the map

y ' X(f)(y) is 3-even and continuous on [0, w|.

Remark 5.1. The integral transformation (5.2) is called the Weyl
transformation related with the operator t,.
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Theorem 5.3. For [ € D.(R), the distribution (tX)_le defined by
the function (‘X)) (f) given by

ODIfv=k+r,keN,0<r<l1, then

1 ~ Bl o y3v+1 d k+1
(07N - 0| (Zg_yg)r[ L (e

@)Ifv=Fk+1,k eN, then
k+1
() ) = 1)’@“%”“{%} (F5)3).

The constants C; and Coy are defined as in Theorem 4.3. On the other
hand, the function (‘*X) (f)(y) is continuous on R, 3-even with compact
support.

Proof. (1) Let v=k+r,keN,0<r <1, and let g € £,(R). Then

Theorem 4.3 gives

(AT, &) =("(A)Ty, g)

= (T, ¥7'g)
® d Vi ez 3+l
= CIJO f(Z)Z(gj (Iomg(y)ddeZ-
On integration by parts, we obtain
(P Ty, g) = (- 1)’*’“01_[00“00 3y3v+13 . ( d3 )kﬂ(f(Z)Z)dZJg(y)dy.
0y (27 -y°) \dz

So the distribution (tXfl)Tf is well defined by the function

(tXfl)f, given by
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3v+1 ( d

k+1
) U@

(P =G

Bl 0 ( )3V+1 d k+1
= (D" Cljl ((yvj;g iy (y?)dvgj (f(yv)yv)y dv

and the function (!X)"!(f) is 3-even with compact support on R.

@) If v=~Fk+1, k e N, then Theorem 4.3 and same argument as (1)

leads to the result.

Lemma 5.4. For f € D,(R), the operators 'Xf and (!X71)f satisfy
the relations
¢ 3¢
XTva = D" "X Ty,
-1 -1
L (P DTy = (Px) DR
Proof. From Theorem 4.1, we obtain
L, X(g) = XD%(g), g < &R).
Then for f € D,(R), we have
<Tf’ Lng> = _<TL—vf’ Xg) = _<tXTI’__Vf7 g),
and
(Tf, ¥ D?g) = (*xT;, DPg) = (DY X'Ty, g),
hence
¢ 3t
XTLVf = DV XTy.
A similar calculation shows that
_1 -1 _
o ()T, @) = ~((PX) Ty, kyg) = (T, X ),

and

("2 DTy, (g)) = (DTy, X71g) = Ty, DPx71g),
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SO
(X)) = (L) Dy,

Theorem 5.5. The Weyl integral transformation associated to t.,:

f—tx(f),
is an isomorphism of D.(R) into itself.
Proof. From Theorems 5.2, 5.3 and Lemma 5.4 we deduce that for f
in D,(R), the functions (‘X)(f) and (‘A)'(f) belong in D.(R).

Theorem 5.1 gives that the transformation f — ‘X(f), is bijective. It

remains to show that it is continuous: For this, let f be a function of

D,(R) with compact support in [~a, a]. From Lemma 5.4, we have

D X(f)(y) = "X ) ()

S0

| DX (f) ()| < sup ]| 2 @) S = ¥ ) ()t

te|l-a, a
< M, sup ]I(’f-’fvf(t)) |
tel-a, a
Since
sup | (L2 f®)|< M, sup  |(DFFQ)|
te[-a,a] 0<k<3n,te[-a,al

we obtain

sup | DY LX(F)(v)| £ Mags(f),

ye[-a,a

where M, is a constant and g3,,(f) is the semi-norm defined previously.

This proves the continuity of the transformation f — ‘X(f) on

D,(R). We conclude that the inverse transformation (!X)l(f) is

continuous.
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6. Fourier Transform of Distribution T on &.(R)

In this section we denote by

e H. the space of 3-even entire functions which decrease rapidly of

exponential type. We have

H, = | JH,,

a>0

with

{entire functions, 3-even such that for all integer m,
a

—a| I
Pm(W) = suppec| (L + 2 Py y)e I | < oo,

We equip H, with the topology defined by the sequence of the

semi-norms p,y,.

e H, the space of entire functions 3-even with slowly growth of

exponential type. This means that there exists a positive real number a

and an integer m such that

sup| (1 + |2 [2) ™ y(h)e M| < oo,
reC

Definition 6.1. (1) The Fourier transform related with t, of a
distribution T of £4(R) is the function F(T) defined by
f\/(T) (7‘) = <T’ gv(xt»' (6-1)

(2) The Fourier transform related with t,, of a function f of D,(R) is
the function F, (f) defined by

Fun6) =[0G, 0o 62)
Noting that
Fo(N0) = [ 10)cosy(e)d 63)

we obtain the following
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Theorem 6.1. The Fourier transform Fq is a linear map bijective

and bicontinuous
(1) of D.(R) on H,.
(2) of EL(R) on H..
Now it is easy to obtain

Proposition 6.2. We have

{for T e E(R) Fy(T) = Fo o 'A(T), 6.4)
for T e EL(R), Fo(T) = F, o (*2)1(T). '
{mrfeDARxfxﬂ=Jbotxvx 6.5)
for f € Du(R) Fo(f) = Fy o (LX) (f).

A consequence of Theorems 5.1, 5.5, 6.1 and Proposition 6.2 is

Theorem 6.3. The Fourier transform F is a linear map bijective and

bicontinuous
(1) of D.(R) on H,.

(2) of E4(R) on H,.
7. Translation Operator T, associated with t,

In this section we study the generalized translation operator

associated with the operator t, in the Delsartes sense. We begin by

d3

giving the following definition related to D? = T
dx

Definition 7.1. The translation operator t,, x € R associated with

the third order derivative operator D? is defined for f in E+(R) and
y € R by

() (9) = Y ba0(y) D[ (x). (7.1)
n=0

The function b, o(y) = b,(y) are given by (2.3).
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The reader can show easily that it preserves the 3-parity and we have

n bn _
Tx(y?)n) _ _Cy(x?)n) _ Z|:bk,2i|y3kx3(n k)

k=0

and

r’rw} _ ok o®by-p,0@) (7.2)

bro| by, (1)

This translation operator acts on a function as

to(f) = 5 (F + 09) + Fox +w59) + flx +w3)),
where w;, being the third roots of unity, and we have the product formula
cosg(Ax) - cosg(Ly) = 1, cosg(hy) = T, cosg(hx).
Proposition 7.1. The operator t, satisfy
(1) For x € R, 1, belong in L(E.(R), £.(R))
(2) The map x — 1, is indefinitely differentiable, 3-even.
(3) We have

Tg = unity operator,

D3t =1,D2, where D = %.

(4) For f € D4(R) we have

Fo("1)(f) () = cos () Fo () (1).

Definition 7.2. The convolution product of two functions f and g of
D,(R) is defined by

frg) = [ nf0e0)dy = [ 0)se)d &
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Proposition 7.2. For f and g in D.(R),
Folf»8) () = Folf) Folg) (7.4)

These previous properties can be extended for the operator L, which

suggest the following definition.

Definition 7.3. The operators T) x € R, defined on £,(R) by

L) = T b)), vk (5

are called generalized translation operators associated with t,, where

the functions bn,v(y) are given by (3.1).

As a direct consequence of this definition we deduce that the function

u(x, y) = Ty (y>") is the solution of

Lx,vu(x, y) = Ly,vu(x’ y) xSn € 6*(R)7 (76)
u(x, 0) = x°", w0, y) =y ¥ € £.(R)
and
-n,-n+2/3, -n+1/3—-v 3
Ty (y7") = ™3 Fy / / - (K]
1/3, v +2/3 x
1-n 3
= (% PRy MR Ty Y —g(xy)S 5 | (7.7)
1/3, v +2/3 (x° +5°)

When y is fixed and x — o, we have (see [2, p. 4])
TY (y7") ~ (= + ¥°)".

Now we prove the connection between the translate operator (7.5) and the

transmutation operator (4.1).

Proposition 7.3. For f € D.(R), x and y € R,

Tg\c/f(y) = Xny[TxX_lf(y)]'
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Proof. This can be shown as follows

TYF(Y) = ) bay (@)L (3)
n=0

= ) b, ()R () ()

n=0
= 3 XX ,b, (x) DT ) (9).
n=0

We summarize the properties of Ty in the proposition.
Proposition 7.4. The operators Ty satisfy
(1) For x € R, Ty in L(E«(R), £.(R))
(2) The map x — T, is infinitely differentiable, 3-even.
(8) For all functions f in £,(R),
TYf(y) = Tyf(e):
Tof(y) = f(y)
(4) For given fin £.(R), put

u(x, y) = TYf(y).
Then the function u is solution of the Cauchy problem:

Lx,vu(x’ y) = l’—y,vu('%, y),
) ) @ Lo & _
u(x, 0) = f(x) d—yu(x, 0) = 0; dy—2u(x, 0) = 0.

(5) The product formula holds

Ta\c/gv(xy) = gv(xx)gv(x‘y) = Tg\//gv(}\'x) (7.8)
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Proof. These results are consequences of the properties of the

operators X, X 1 and Proposition 7.1.

Theorem 7.5. For f in D,(R),
"TYF(y) = X () () ),

where the operator th is the transposed of the operator T,.

Proof. For fand g in D.(R),

(Tyf(y), g(y)) = <X Xy Z b, (x) D> (X (), g(y)>
n=0

- <f<y>, XY (C1)by () 5 D txyg<y)>

n=0
= <f(y)a sz bn(_ x) tX;lDSn thg(y)>
n=0
and thus the result follows.

As an important deduction of the previous theorem we have the

following expression of the convolution product x related to the operator
D3
Corollary 7.6. For f € D,(R) and x > 0,
"TYF(y) = A [Px() * k(x, )](y), (7.9)
where k(t, y) = c,t* 3 y(t® - )Vt and ¢, is given by (4.3).

Proof. Let fbe in D,(R) and x > 0. Then

V() = X (P, ey () ()]

- :k(x, w) (")) X () () du
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X
- (tX);IJ.O k(x, u) ‘1, X(f) (w)du

= (P * Rlx, N ().
Corollary 7.7. Let f be in D,(R). Then the function y — '‘Tyf(y)
belong in D.(R) and

FO T () = Gy () F o (F) (). (7.10)

Proof. Since 'T)f(y) = f(y), the result follows by inspection for
x = 0. Let us prove the result for x > 0. From the Corollary 7.6 it is
easy to see that the function y — 'TVf(y) belong in D,(R). From
Theorem 6.1 and Corollary 7.6, we have

FOOTI() = Fol A1)
= Fol X(f) » k(x, )](v)

= Folk(x, ) @) Fo("X(F) (2).
It suffices to recall (3.7)
Fok(x, ))(A) = G, (x)
to obtain the result.

Now we are able to define the convolution product related to the

operator t,,.

Definition 7.4. The convolution product associated to t, of two

functions f and g in D,(R) is the function f x,, g defined by

frog0) = [ F@Tye()ax

_ j : LTV £(x) g (x) d. (7.11)
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In the following theorem we give the essential properties of this
convolution product.

Theorem 7.8. For fand g in D,(R),
(1) "X[f %, 8] = "x(f) « " x(g)

@) Fy(fx, 8) )= F f(A)F,8(1)
3) Fy(f) = Fo o X(f)

@ Folf) = F, o x7H(f).

Proof. For f and g in D,(R) the proofs are consequences of previous

results.
L fx, 8 ={f, Tyg) = X ("X, 11,  X(f), &)
= i, () (), g) = (), fX )

=t ML), T, g) = T TR )+ ().

2. F(F xy )00 = [ [ F) 5,0, 00)dsg5)dy
- [ 1@)6,0x)dx[ " (), )y
0 0
= Fyf(W)F,g(h).
3. Fo(f) (1) = j : £() X coss (1) dt
_ j: £(0) X coss(h)dt.
4 Fol)(0) = j : £(t)coss (1t)dt = I: FO)X71G, (h)dt

= I: Lx7H ()G, (h)dt.
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8. Application: Heat Equation

In this section we introduce the space LL(R*, dx) of functions f

satisfying
J | f(x)|G,(Ax)dx <o, v >0;A>0.
0

for v> 0;¢ > 0, x > 0. We consider the problem

bou(x, t) = %u(x, t)

a0 = fx) e LR, dx)
Du(0,t)| =0, DZu(0,¢) |=0
u(wex, t) = u(x, t), k=1,23,

where wy,’s are the third roots of unity.

To look for a solution of this problem, we put

U t) = Fy(ul; 1) (). (8.1)
Then
L UM, t) = =230, 1) (8.2)
and
U 0) = Fu(F) (). (8.3)
Hence
U t) = F o (f) (W) exp(- 27t). (8.4)

We obtain that the solution is given by

Proposition 8.1. We have

u(x; t) = (£,(, t)*, f)(x) (8.5)
with

1 9 L \Bv2 L V2
R ) = R v 75 (37) K1 gm) | ©9

where K, is the Mac-Donald function ([8], [13]).
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Note that the function F, (x, t) is 3-even in x.

Proof. We start by recalling the formula for B > 0 and B/2 -1 > 0

[13], we have

J' : WP (2u)du = S T(B/2)0(B/2 - 1),
We deduce for B = 2(n +1/3) and A = —(1/8 + v) that

I @K ys(2u) du = LT+ 1B+ v+ 2/3)
0

The last one with suitable change of variable lead to

% x 3" CT(n+1/3)0(n + v + 2/3)
JO By, tg)(ﬁj dx =t Ta/3)(v+2/3)

So

I: F,(x, t3)gV(Kx)dx

o (1) [ A\ T(1/3)T(v + 2/3)
};} = o B tg)(?j Gy 1;3)1"(71 = 273)

0 n
Z () 1') W33n — exp(— 2%3).
&l

This means

I: F,(x, t)G,(Ax)dx = exp(— 23¢t).

The function F,(x,t) plays the role of Gaussian kernel associated
with this heat equation. Contrary to the case of the kernel associated
with the second order operator, the previous function has oscillator
behavior when x tends to infinity. We can discover this phenomena as

follows.
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It is clear that K, = K_, and from the integral representation

[2, p. 252] valid for Re(v) > -1/2, x > 0

T(v+1/2) 2" (®

K,(x) = ) 2o cos(oxu) (1 + u2)_v_1/2du. (8.7

We deduce for v > 0 the following integral representation

) T(v +5/6) = v x V2
FV(x’t)_F(1/2)F(1/§)1"(v+2/3),|.0 1+u?) 5/6 cos 2(3t1/3) u |du. (8.8)

The function F,(x, t) is 3-even for x > 0 and v > 0.
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