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Abstract

The aim of this note is to prove that any multiplicative R -linear

operator between complex valued Baire-α classes, defined on two

perfectly normal topological spaces, is characterized by a C -linear

between them.

1. Introduction

We know that

any multiplicative R -linear operator between the rings of

complex valued continuous functions, defined on two

connected topological spaces, is C -linear.

The above fact is due to Krein and Krein [5]. A generalization of this
theorem was given by Kaplansky [4]. The other useful related papers are
[8, 9]. We are going to prove this theorem for Baire classes.

Throughout this paper, X is a perfectly normal topological space

([1], [3], [6]). A topological space X is perfectly normal, if it is Hausdorff
and every closed subset is the zero set of some real continuous function.
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For a finite ordinal number α, we denote the Borel sets of

multiplicative (additive) class α by αP  ( ),αS  beginning with FP =0

( ),0 GS =  as the followings [6]:

...,,,: σδδα FGFP

....,,,: δσσα GFGS

As X is perfectly normal, so the αP ’s αS( ’s) form a chain and ,δ⊆ GF

similar to the metric case (see [6]).

For each ,α∈ PA  there exists a sequence ( ) 11 −α
∞
= ⊆ SnnG  such that

.1 nn GA ∞
== I

For additive sets, “ S ”, “P ”, and “I ” are replaced respectively by “P ”,

“ S ”, and “U ”. See [6, Section 30] for details.

The ambiguous set of class α is denoted by αH  [6] and defined as

follows:

.ααα = PSH I

Lemma 1.1. Here we mention some facts about perfectly normal

spaces.

(a) Every set in ( )1≥ααS  is the union of some countable disjoint sets

in .αH

The proof is similar to that of metric spaces. See [6, Section 30, V,
Theorem 1].

(b) For each sequence ( ) ( ),11 ≥α⊆ α
∞
= SnnG  there exists a mutually

disjoint sequence ( )∞=1nnH  in αS  such that U U∞
=

∞
==1 1n n nn GH  and

nn GH ⊆  for each n. In addition, if U∞
== 1 ,n nHX  then nH ’s belong to

.αH

The proof is similar to that of metric spaces. See [6, Section 30, VII,
Theorem 1].
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(c) For every sequence ( )∞=1nnF  in ( )1≥ααP  such that I∞= ∅=1 ,n nF

there exists a sequence ( )∞=1nnE  in αH  such that I∞= ∅=1n nE  and

nn EF ⊆  for each n. Therefore, if A and B are two disjoint αP  sets, then

there exists E in αH  such that EA ⊆  and .∅=EB I  That is, if

,α∈ PA  α∈ SC  and ,CA ⊆  then there exists α∈ HE  such that

.CEA ⊆⊆

See [6, Section 30, VII, Theorem 2].

Definition 1.2. Let X be a topological space and ( ) ( )XCX =β0  be the

set of all real valued continuous functions on X. Then for each ordinal α,

we define Baire functions of class α as follows:

( ) { :: R→=βα XfX  there exists ( ) ( )Xf nn 11 −α
∞
= β⊆

                                such that ( ) ( ),lim xfxfn =  for each }.Xx ∈

We also define Borel functions of class α as follows:

( ) { :: R→=α XfXB  for each closed set F in ( ) }., 1
α

− ∈ PFfR

When X is a perfectly normal space, then by the same induction as in [7],

( ) ( ).XBX αα ⊆β  It is obvious that ( ) ( ).1 XBXB +αα ⊆

For a Banach space E, suppose that ( )EXC ,o  is the set of all

E-valued continuous functions with relatively compact ranges.

Definition 1.3. We define

( ) ( ),,,0 EXCEX oo =β

( ) { fEXfEX ::, →=βα
o  is the pointwise limit of some sequence

                       in ( )EX ,1−αβ  and range of f is relatively compact},

( ) { ( ) α
−

α ∈→= PFfEXfEXB 1::,o  for each F, closed in E and

                       range of f is relatively compact}.
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1.1. Some results on Baire classes. In this part we obtain some
results about Baire classes for using in the next section. Here first we

give a Baire-α characterization of αH  elements in X.

Lemma 1.4. Let X be a perfectly normal space and E be a Banach

space with .0 Ee ∈≠  Then we have α∈HH  if and only if

( )., EXe H αβ∈χ

Proof. We prove by induction. Suppose that H is in .αH  As X is

perfectly normal, then it is normal. Suppose that the statement holds for

( ).1−α  Then by Lemma 1.1 (b), there are a nondecreasing sequence

( )∞=1nnF  of elements 1−αP  in X and a nonincreasing sequence ( )∞=1nnG  of

elements 1−αS  in X such that

U I∞
=

∞
===1 1 .n n nn GHF

For each positive integer n, .nn GF ⊆  By use of induction, there is an

1−α∈HnH  such that ( ),,1 EXef
nHn −αβ∈χ=  ( ) { }eFf nn =  and ( )c

nn Gf

{ }.0=  Obviously, Heχ  is the pointwise limit of .nf  The proof of the other

side is obvious and is omitted.

We define

.eachforand,:
1

,












∈∈∈χ=∑ ∑
=

αα

n

i
iiHiE iHEene

i
HN

In the following theorem we give an approximation theorem for Baire
functions by simple functions.

Theorem 1.5. For a Fréchet space E, the uniform closure of E,α∑  is

( )., EXo
αβ

Proof. Suppose that E is a Banach space. As the ( )frange  is

relatively compact, therefore there exists a countable set EZ ⊆  such

that the ( )frange  is in the norm closure of Z. For each positive integer n,

let nC  be the collection of open balls of radius n1  in E with members of
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Z as their centers. Hence the ( )frange  is covered by finite members of

,nC  denoted by ,nB  labeled by the finite set .nI  Set ( ).1
nn f BB −=′  Thus

nB′  is a cover of X and each of its elements belongs to .αS  Hence, its

members are αH  and by Lemma 1.1 (b), X has a finite refinement,

consists of mutually disjoint elements of αH  sets. Therefore, =nA

{ }nni IiA ∈:,  is a refinement of nB′  with αH  sets. We can suppose that

for any ,2≥n  nA  refines .1−nA

Now, for each 1≥n  and for each ,nIi ∈  choose ( ).,, nini Afy ∈  Let

Xx ∈  and for each 1≥n  let ( ) nInxi ∈,  be such that ( ) .,, nnxiAx ∈  If

,nm ≥  then ( ) ( ) .,,,, nnximmxi AA ⊆  Consequently, since ( ( ) )nnxiAf ,,  has

diameter at most ,2 n  { ( ) }1:,, ≥ny nnxi  is a Cauchy sequence.

We define

( ) ( ) .lim ,, nnxi
n

yxg
∞→

=

Notice that

( ) ( ) .2,, nyxg nnxi ≤−

If ( ) ,,, nnxiAx ∈′  then ( ) ( )nxinxi ,, ′=  and so

( ) ( ) ( ) ( ) ( ) ( ) .4,,,, nyxgyxgxgxg nnxinnxi ≤−+−′≤′−

If ,Ax ∈  then for each ,1≥n  ( ) nnxiAx ,,∈  and therefore

( ) ( ) .4 nxfxg ≤−

Hence .fg =  Now, for each ,N∈n  we define

∑
∈

χ=

n

ni
Ii

Anin yf .
,,

It is obvious that nf ’s are in ( ),, EXo
αβ  and gf =  is the uniform limit of

nf ’s.
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Now, suppose that E is a Fréchet space. It is enough to work with a
countable collection of semi-norms that introduce its topology.

In the sequel we use the notation of [2, Chapter I] to obtain the dual

of ( ).Xo
αβ  We denote by ( ),, EVM αH  the space of all bounded finitely

additive vector measures, EF →αH:  provided by semi-variation norm.

Therefore, every F in ( )EVM ,αH  is related to a T in ( ( ) )EX ,o
αβL  with

the following correspondence:

( ) ∫=
X

F fdFfT

for every f in ( )., EXo
αβ

In the particular case when ,R=E  we have the following

representation of the dual of ( ).Xo
αβ

Corollary 1.6.

( ( )) ( ( )) ( )., Rα
∗

αα =β=β HVMXXDual oo

Proof. The proof is the same as that of Theorem 13 page 6 of [2].

2. Main Result

It is obvious that any ring isomorphism between rings of continuous
functions is an algebra isometric isomorphism between them [3]. First we

prove this result for Baire-α classes.

Theorem 2.1. Let ( ) ( )XY oo
αα β→βφ :  be any ring homomorphism.

Then φ is linear, 1=φ  (unless .)0=φ

Proof. We prove this theorem similar to that of ring of continuous

functions. Denote ( ) .1̂ eY =φ  Then ( ) ee YY =φ= 1̂1̂2  and therefore e is an

idempotent so by Lemma 1.4, He χ=  for a certain ambiguous subset H of

( ).α∈ HHX  If ( ),, +
αβ∈ RYg o  then 2hg =  for a certain h in ( ),, RYo

αβ

and hence ( ) ( ) .02 ≥φ=φ hg  If ,1≤g  then YY g 1̂1̂ ≤≤−  and
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( ) ;eg ≤φ  therefore ( ) .1≤φ g  Thus φ is continuous and hence it is

linear.

Theorem 2.2. Let ( ) ( )CC ,,: XY oo
αα β→βφ  be a nonzero multiplicative

R -linear operator. Then 1=φ  and there exist disjoint αH  sets, 1H

and 2H  of X and a multiplicative C -linear operator ( ) →βψ α C,: Yo

( )C,Xo
αβ  such that for every g in ( ),, CYo

αβ

( ) ( )
( ) ( )

( )
( ) ( )






∈ψ
−∈

∈ψ
=φ

.
0

2

21

1

Hxxg

HHXx

Hxxg

xg U

Proof. Denote ( ) .1̂ eY =φ  Then ee =2  and He χ=  for an αH -subset

H of X. Denote ( ).1̂Yiu φ=  Then ( ) .1̂22
HY eiu χ−=−=φ=  Therefore, for

,Hx ∈  ( ) 12 −=xu  and thus ( ) ixu =  or ( ) .ixu −=  So there exist disjoint

sets 1H  and 2H  such that

{ }( ) { }( )., 1
2

1
1 iuHiuH −== −−

For ( ) ,0, =∉ xuHx  define

( ) ( ) ( ) ( ).,,, RYhghigihg o
αβ∈∀φ+φ=+ψ

Straightforward verification shows that ψ is a multiplicative linear

operator from ( )C,Yo
αβ  into ( );, CXo

αβ  in particular, ( ) ( )fiif ψ=ψ  for

each ( )., CYf o
αβ∈  It will be shown that .1=ψ  If ,Xx ∈  then the

functional ( )xx δψ=η ∗  is multiplicative and linear on ( )., CYo
αβ  Claim:

.1=ηx  Indeed, if ( )Yx 1̂η  were equal to 0, xη  would be identically 0.

Hence, ( ) ( ) ( ) ( )YxYxYYxYx 1̂,1̂1̂1̂1̂ 2 ηη=η=η  is equal to 1. Let

( )C,Yf o
αβ∈  such that .1=f  Suppose, if possible, that ( ) .1>η fx

Denote ( )fa xη=  and

.
1̂

1

a
f

f

Y −
=′
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Therefore ,1<
a
f

 f ′  is in ( )C,Yo
αβ  and bounded on Y. Consequently,

( ) .11̂ =




 −ηη

a
ff Yxx

Therefore ;01̂ ≠




 −η

a
f

Yx  i.e., ( ) .afx ≠η  This contradiction shows that

( ) .1=η fx  Thus, if ( ),, CYf o
αβ∈  then ( ) .ffxf x =η=⋅ψ

Consequently .1≤ψ  Since ( ) .1,11̂ =ψ=ψ= Ye  Now, let ∈g

( );, RYo
αβ  it will be shown that ( )gψ  is real-valued. If ,HXx −∈  then

.0=⋅ψ xg  Let Hx ∈  and ,ibaxg +=⋅ψ  where ., R∈ba  For every

,R∈t

( ) 2222 2 xitexgtbtba +⋅ψ=+++

( ) 21̂Yitg +ψ≤

21̂Yitg +≤

.22 tg +=

Hence t may be an arbitrary number, b equals to 0; i.e., xg ⋅ψ  is real.

Consequently, if f and g are in ( ),, RYo
αβ  then ( ) ( ).re gihg ψ=+ψ  Thus,

( ) ( ) ( ) ( ) ( ),imre ihgiihghigihg +ψ++ψ=φ+φ=+φ

for every ( ).,, RYhg o
αβ∈  Therefore, ψ is the desired operator.
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