\mathbb{R} -LINEAR HOMOMORPHISMS BETWEEN BAIRE CLASSES

HAMID REZA SHATERY and MOSTAFA MIRBOD

(Received September 11, 2005)

Submitted by K. K. Azad

Abstract

The aim of this note is to prove that any multiplicative \mathbb{R} -linear operator between complex valued Baire- α classes, defined on two perfectly normal topological spaces, is characterized by a \mathbb{C} -linear between them.

1. Introduction

We know that

any multiplicative \mathbb{R} -linear operator between the rings of complex valued continuous functions, defined on two connected topological spaces, is \mathbb{C} -linear.

The above fact is due to Krein and Krein [5]. A generalization of this theorem was given by Kaplansky [4]. The other useful related papers are [8, 9]. We are going to prove this theorem for Baire classes.

Throughout this paper, X is a perfectly normal topological space ([1], [3], [6]). A topological space X is perfectly normal, if it is Hausdorff and every closed subset is the zero set of some real continuous function.

2000 Mathematics Subject Classification: Primary 46H10; Secondary 26A21.

Keywords and phrases: ring homomorphism, R-linear, C-linear, Baire classes.

© 2006 Pushpa Publishing House

For a finite ordinal number α , we denote the Borel sets of multiplicative (additive) class α by \mathcal{P}_{α} (\mathcal{S}_{α}), beginning with $\mathcal{P}_{0} = \mathcal{F}$ ($\mathcal{S}_{0} = \mathcal{G}$), as the followings [6]:

$$\mathcal{P}_{\alpha}: \mathcal{F}, \mathcal{G}_{\delta}, \mathcal{F}_{\sigma\delta}, \dots$$

$$S_{\alpha}: \mathcal{G}, \mathcal{F}_{\sigma}, \mathcal{G}_{\delta\sigma}, \dots$$

As X is perfectly normal, so the \mathcal{P}_{α} 's $(\mathcal{S}_{\alpha}$'s) form a chain and $\mathcal{F} \subseteq \mathcal{G}_{\delta}$, similar to the metric case (see [6]).

For each $A \in \mathcal{P}_{\alpha}$, there exists a sequence $(G_n)_{n=1}^{\infty} \subseteq \mathcal{S}_{\alpha-1}$ such that

$$A = \bigcap_{n=1}^{\infty} G_n$$
.

For additive sets, " \mathcal{S} ", " \mathcal{P} ", and " \cap " are replaced respectively by " \mathcal{P} ", " \mathcal{S} ", and " \cup ". See [6, Section 30] for details.

The ambiguous set of class α is denoted by \mathcal{H}_{α} [6] and defined as follows:

$$\mathcal{H}_{\alpha} = \mathcal{S}_{\alpha} \cap \mathcal{P}_{\alpha}.$$

Lemma 1.1. Here we mention some facts about perfectly normal spaces.

(a) Every set in S_{α} ($\alpha \geq 1$) is the union of some countable disjoint sets in \mathcal{H}_{α} .

The proof is similar to that of metric spaces. See [6, Section 30, V, Theorem 1].

(b) For each sequence $(G_n)_{n=1}^{\infty} \subseteq \mathcal{S}_{\alpha}$ ($\alpha \geq 1$), there exists a mutually disjoint sequence $(H_n)_{n=1}^{\infty}$ in \mathcal{S}_{α} such that $\bigcup_{n=1}^{\infty} H_n = \bigcup_{n=1}^{\infty} G_n$ and $H_n \subseteq G_n$ for each n. In addition, if $X = \bigcup_{n=1}^{\infty} H_n$, then H_n 's belong to \mathcal{H}_{α} .

The proof is similar to that of metric spaces. See [6, Section 30, VII, Theorem 1].

(c) For every sequence $(F_n)_{n=1}^{\infty}$ in \mathcal{P}_{α} ($\alpha \geq 1$) such that $\bigcap_{n=1}^{\infty} F_n = \varnothing$, there exists a sequence $(E_n)_{n=1}^{\infty}$ in \mathcal{H}_{α} such that $\bigcap_{n=1}^{\infty} E_n = \varnothing$ and $F_n \subseteq E_n$ for each n. Therefore, if A and B are two disjoint \mathcal{P}_{α} sets, then there exists E in \mathcal{H}_{α} such that $A \subseteq E$ and $B \cap E = \varnothing$. That is, if $A \in \mathcal{P}_{\alpha}$, $C \in \mathcal{S}_{\alpha}$ and $A \subseteq C$, then there exists $E \in \mathcal{H}_{\alpha}$ such that $A \subseteq E \subseteq C$.

See [6, Section 30, VII, Theorem 2].

Definition 1.2. Let X be a topological space and $\beta_0(X) = C(X)$ be the set of all real valued continuous functions on X. Then for each ordinal α , we define Baire functions of class α as follows:

$$\beta_{\alpha}(X) = \{ f : X \to \mathbb{R} : \text{ there exists } (f_n)_{n=1}^{\infty} \subseteq \beta_{\alpha-1}(X)$$
 such that $\lim f_n(x) = f(x)$, for each $x \in X \}$.

We also define Borel functions of class α as follows:

$$B_{\alpha}(X) = \{ f : X \to \mathbb{R} : \text{ for each closed set } F \text{ in } \mathbb{R}, f^{-1}(F) \in \mathcal{P}_{\alpha} \}.$$

When X is a perfectly normal space, then by the same induction as in [7], $\beta_{\alpha}(X) \subseteq B_{\alpha}(X)$. It is obvious that $B_{\alpha}(X) \subseteq B_{\alpha+1}(X)$.

For a Banach space E, suppose that $C^{\circ}(X, E)$ is the set of all E-valued continuous functions with relatively compact ranges.

Definition 1.3. We define

$$\beta_0^{\circ}(X, E) = C^{\circ}(X, E),$$

 $\beta_{\alpha}^{\circ}(X, E) = \{f : X \to E : f \text{ is the pointwise limit of some sequence}$ in $\beta_{\alpha-1}(X, E)$ and range of f is relatively compact $\}$,

 $B_{\alpha}^{\circ}(X, E) = \{ f : X \to E : f^{-1}(F) \in \mathcal{P}_{\alpha} \text{ for each } F, \text{ closed in } E \text{ and }$ range of f is relatively compact $\}$.

1.1. Some results on Baire classes. In this part we obtain some results about Baire classes for using in the next section. Here first we give a Baire- α characterization of \mathcal{H}_{α} elements in X.

Lemma 1.4. Let X be a perfectly normal space and E be a Banach space with $0 \neq e \in E$. Then we have $H \in \mathcal{H}_{\alpha}$ if and only if $e\chi_H \in \beta_{\alpha}(X, E)$.

Proof. We prove by induction. Suppose that H is in \mathcal{H}_{α} . As X is perfectly normal, then it is normal. Suppose that the statement holds for $(\alpha - 1)$. Then by Lemma 1.1 (b), there are a nondecreasing sequence $(F_n)_{n=1}^{\infty}$ of elements $\mathcal{P}_{\alpha-1}$ in X and a nonincreasing sequence $(G_n)_{n=1}^{\infty}$ of elements $\mathcal{S}_{\alpha-1}$ in X such that

$$\bigcup_{n=1}^{\infty} F_n = H = \bigcap_{n=1}^{\infty} G_n.$$

For each positive integer n, $F_n \subseteq G_n$. By use of induction, there is an $H_n \in \mathcal{H}_{\alpha-1}$ such that $f_n = e\chi_{H_n} \in \beta_{\alpha-1}(X, E)$, $f_n(F_n) = \{e\}$ and $f_n(G_n^c) = \{0\}$. Obviously, $e\chi_H$ is the pointwise limit of f_n . The proof of the other side is obvious and is omitted.

We define

$$\Sigma_{lpha,E} = igg\{ \sum_{i=1}^n e_i \chi_{H_i} : n \in \mathbb{N}, e_i \in E \text{ and } H_i \in \mathcal{H}_lpha \text{ for each } i igg\}.$$

In the following theorem we give an approximation theorem for Baire functions by simple functions.

Theorem 1.5. For a Fréchet space E, the uniform closure of $\Sigma_{\alpha, E}$ is $\beta_{\alpha}^{\circ}(X, E)$.

Proof. Suppose that E is a Banach space. As the range(f) is relatively compact, therefore there exists a countable set $Z \subseteq E$ such that the range(f) is in the norm closure of Z. For each positive integer n, let \mathcal{C}_n be the collection of open balls of radius 1/n in E with members of

\mathbb{R} -LINEAR HOMOMORPHISMS BETWEEN BAIRE CLASSES 297

Z as their centers. Hence the range(f) is covered by finite members of \mathcal{C}_n , denoted by \mathcal{B}_n , labeled by the finite set I_n . Set $\mathcal{B}'_n = f^{-1}(\mathcal{B}_n)$. Thus \mathcal{B}'_n is a cover of X and each of its elements belongs to \mathcal{S}_α . Hence, its members are \mathcal{H}_α and by Lemma 1.1 (b), X has a finite refinement, consists of mutually disjoint elements of \mathcal{H}_α sets. Therefore, $\mathcal{A}_n = \{A_{i,n} : i \in I_n\}$ is a refinement of \mathcal{B}'_n with \mathcal{H}_α sets. We can suppose that for any $n \geq 2$, \mathcal{A}_n refines \mathcal{A}_{n-1} .

Now, for each $n \geq 1$ and for each $i \in I_n$, choose $y_{i,n} \in f(A_{i,n})$. Let $x \in X$ and for each $n \geq 1$ let $i(x,n) \in I_n$ be such that $x \in A_{i(x,n),n}$. If $m \geq n$, then $A_{i(x,m),m} \subseteq A_{i(x,n),n}$. Consequently, since $f(A_{i(x,n),n})$ has diameter at most 2/n, $\{y_{i(x,n),n} : n \geq 1\}$ is a Cauchy sequence.

We define

$$g(x) = \lim_{n \to \infty} y_{i(x,n),n}.$$

Notice that

$$||g(x)-y_{i(x,n),n}|| \le 2/n$$
.

If $x' \in A_{i(x,n),n}$, then i(x, n) = i(x', n) and so

$$\|g(x) - g(x')\| \le \|g(x') - y_{i(x,n),n}\| + \|g(x) - y_{i(x,n),n}\| \le 4/n$$
.

If $x \in A$, then for each $n \ge 1$, $x \in A_{i(x,n),n}$ and therefore

$$||g(x)-f(x)|| \le 4/n$$
.

Hence g = f. Now, for each $n \in \mathbb{N}$, we define

$$f_n = \sum_{i \in I_n} y_{i,n} \chi_{A_{i,n}}.$$

It is obvious that f_n 's are in $\beta_{\alpha}^{\circ}(X, E)$, and f = g is the uniform limit of f_n 's.

Now, suppose that E is a Fréchet space. It is enough to work with a countable collection of semi-norms that introduce its topology.

In the sequel we use the notation of [2, Chapter I] to obtain the dual of $\beta_{\alpha}^{\circ}(X)$. We denote by $VM(\mathcal{H}_{\alpha}, E)$, the space of all bounded finitely additive vector measures, $F:\mathcal{H}_{\alpha}\to E$ provided by semi-variation norm. Therefore, every F in $VM(\mathcal{H}_{\alpha}, E)$ is related to a T in $\mathcal{L}(\beta_{\alpha}^{\circ}(X), E)$ with the following correspondence:

$$T_F(f) = \int_X f dF$$

for every f in $\beta_{\alpha}^{\circ}(X, E)$.

In the particular case when $E=\mathbb{R}$, we have the following representation of the dual of $\beta_{\alpha}^{\circ}(X)$.

Corollary 1.6.

$$Dual(\beta_{\alpha}^{\circ}(X)) = (\beta_{\alpha}^{\circ}(X))^{*} = VM(\mathcal{H}_{\alpha}, \mathbb{R}).$$

Proof. The proof is the same as that of Theorem 13 page 6 of [2].

2. Main Result

It is obvious that any ring isomorphism between rings of continuous functions is an algebra isometric isomorphism between them [3]. First we prove this result for Baire- α classes.

Theorem 2.1. Let $\phi: \beta_{\alpha}^{\circ}(Y) \to \beta_{\alpha}^{\circ}(X)$ be any ring homomorphism. Then ϕ is linear, $\|\phi\| = 1$ (unless $\phi = 0$).

Proof. We prove this theorem similar to that of ring of continuous functions. Denote $\phi(\hat{1}_Y) = e$. Then $e^2 = \phi(\hat{1}_Y\hat{1}_Y) = e$ and therefore e is an idempotent so by Lemma 1.4, $e = \chi_H$ for a certain ambiguous subset H of X $(H \in \mathcal{H}_{\alpha})$. If $g \in \beta_{\alpha}^{\circ}(Y, \mathbb{R}^+)$, then $g = h^2$ for a certain h in $\beta_{\alpha}^{\circ}(Y, \mathbb{R})$, and hence $\phi(g) = \phi(h^2) \geq 0$. If $\|g\| \leq 1$, then $-\hat{1}_Y \leq g \leq \hat{1}_Y$ and

 \mathbb{R} -LINEAR HOMOMORPHISMS BETWEEN BAIRE CLASSES 299 $|\phi(g)| \le e$; therefore $\|\phi(g)\| \le 1$. Thus ϕ is continuous and hence it is

Theorem 2.2. Let $\phi: \beta_{\alpha}^{\circ}(Y, \mathbb{C}) \to \beta_{\alpha}^{\circ}(X, \mathbb{C})$ be a nonzero multiplicative \mathbb{R} -linear operator. Then $\|\phi\| = 1$ and there exist disjoint \mathcal{H}_{α} sets, H_1 and H_2 of X and a multiplicative \mathbb{C} -linear operator $\psi: \beta_{\alpha}^{\circ}(Y, \mathbb{C}) \to \beta_{\alpha}^{\circ}(X, \mathbb{C})$ such that for every g in $\beta_{\alpha}^{\circ}(Y, \mathbb{C})$,

$$(\phi g)(x) = \begin{cases} (\psi g)(x) & x \in H_1 \\ 0 & x \in X - (H_1 \cup H_2) \\ \hline (\psi g)(x) & x \in H_2. \end{cases}$$

Proof. Denote $\phi(\hat{1}_Y) = e$. Then $e^2 = e$ and $e = \chi_H$ for an \mathcal{H}_{α} -subset H of X. Denote $u = \phi(i\hat{1}_Y)$. Then $u^2 = \phi(i^2\hat{1}_Y) = -e = -\chi_H$. Therefore, for $x \in H$, $u^2(x) = -1$ and thus u(x) = i or u(x) = -i. So there exist disjoint sets H_1 and H_2 such that

$$H_1 = u^{-1}(\{i\}), \quad H_2 = u^{-1}(\{-i\}).$$

For $x \notin H$, u(x) = 0, define

linear.

$$\psi(g+ih) = \phi(g) + i\phi(h), \quad \forall g, h \in \beta_{\alpha}^{\circ}(Y, \mathbb{R}).$$

Straightforward verification shows that ψ is a multiplicative linear operator from $\beta_{\alpha}^{\circ}(Y,\mathbb{C})$ into $\beta_{\alpha}^{\circ}(X,\mathbb{C})$; in particular, $\psi(if)=i\psi(f)$ for each $f\in\beta_{\alpha}^{\circ}(Y,\mathbb{C})$. It will be shown that $\|\psi\|=1$. If $x\in X$, then the functional $\eta_x=\psi^*(\delta_x)$ is multiplicative and linear on $\beta_{\alpha}^{\circ}(Y,\mathbb{C})$. Claim: $\|\eta_x\|=1$. Indeed, if $\eta_x(\hat{1}_Y)$ were equal to 0, η_x would be identically 0. Hence, $\eta_x(\hat{1}_Y)=\eta_x(\hat{1}_Y\hat{1}_Y)=\eta_x(\hat{1}_Y)^2$, $\eta_x(\hat{1}_Y)$ is equal to 1. Let $f\in\beta_{\alpha}^{\circ}(Y,\mathbb{C})$ such that $\|f\|=1$. Suppose, if possible, that $|\eta_x(f)>1|$. Denote $a=\eta_x(f)$ and

$$f' = \frac{1}{\hat{1}_Y - \frac{f}{a}}.$$

Therefore $\left\|\frac{f}{a}\right\| < 1$, f' is in $\beta_{\alpha}^{\circ}(Y, \mathbb{C})$ and bounded on Y. Consequently,

$$\eta_x(f)\eta_x\Big(\hat{1}_Y-\frac{f}{a}\Big)=1.$$

Therefore $\eta_x\Big(\hat{1}_Y-\frac{f}{a}\Big)\neq 0$; i.e., $\eta_x(f)\neq a$. This contradiction shows that $\eta_x(f)=1$. Thus, if $f\in\beta^\circ_\alpha(Y,\mathbb{C})$, then $\|\psi f\cdot x\|=\|\eta_x(f)\|=\|f\|$. Consequently $\|\psi\|\leq 1$. Since $\|e\|=\|\psi(\hat{1}_Y)\|=1$, $\|\psi\|=1$. Now, let $g\in\beta^\circ_\alpha(Y,\mathbb{R})$; it will be shown that $\psi(g)$ is real-valued. If $x\in X-H$, then $\psi g\cdot x=0$. Let $x\in H$ and $\psi g\cdot x=a+ib$, where $a,b\in\mathbb{R}$. For every $t\in\mathbb{R}$,

$$a^{2} + b^{2} + 2bt + t^{2} = |\psi g \cdot x + ite(x)|^{2}$$

$$\leq ||\psi(g + it\hat{1}_{Y})|^{2}$$

$$\leq ||g + it\hat{1}_{Y}||^{2}$$

$$= ||g||^{2} + t^{2}.$$

Hence t may be an arbitrary number, b equals to 0; i.e., $\psi g \cdot x$ is real. Consequently, if f and g are in $\beta_{\alpha}^{\circ}(Y, \mathbb{R})$, then $\text{re}\psi(g+ih) = \psi(g)$. Thus,

$$\phi(g+ih) = \phi(g) + i\phi(h) = \text{re}\psi(g+ih) + i\text{im}\psi(g+ih),$$

for every $g, h \in \beta^{\circ}_{\alpha}(Y, \mathbb{R})$. Therefore, ψ is the desired operator.

References

- [1] R. A. Alo and H. L. Shapiro, Normal Topological Spaces, Camb. Univ. Press, 1974.
- [2] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [3] L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand Co., Inc., Princeton, 1960.
- [4] I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954), 374-381.

\mathbb{R} -LINEAR HOMOMORPHISMS BETWEEN BAIRE CLASSES 301

- [5] M. Krein and S. Krein, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space, Comptes Rendus de l'Acad. Sci. URSS XXVII (1940), 427-430.
- [6] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.
- [7] I. P. Natanson, Theory of Functions of a Real Variable, Vol. II, Ungar, New York, 1960.
- [8] R. R. Phelps, Support cones and their generalization, Proc. Sympos. Pure Math., Vol. VII, pp. 393-401, Amer. Math. Soc., Providence, R.I., 1963.
- [9] R. R. Phelps, Extreme points in function algebras, Duke Math. J. 32 (1965), 267-277.

Department of Mathematics University of Isfahan Isfahan, 81745-163, Iran e-mail: shatery@math.ui.ac.ir

Department of Management Azad University of Dehaghan Dehaghan, 864-1611161, Iran e-mail: mirbod-332@yahoo.com