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Abstract

The aim of this note is to prove that any multiplicative R -linear
operator between complex valued Baire-a classes, defined on two
perfectly normal topological spaces, is characterized by a C -linear

between them.
1. Introduction

We know that

any multiplicative R -linear operator between the rings of
complex valued continuous functions, defined on two
connected topological spaces, is C -linear.

The above fact is due to Krein and Krein [5]. A generalization of this
theorem was given by Kaplansky [4]. The other useful related papers are

[8, 9]. We are going to prove this theorem for Baire classes.

Throughout this paper, X is a perfectly normal topological space
([11, [3], [6]). A topological space X is perfectly normal, if it is Hausdorff
and every closed subset is the zero set of some real continuous function.

2000 Mathematics Subject Classification: Primary 46H10; Secondary 26A21.

Keywords and phrases: ring homomorphism, R-linear, C-linear, Baire classes.

© 2006 Pushpa Publishing House



294 HAMID REZA SHATERY and MOSTAFA MIRBOD

For a finite ordinal number «, we denote the Borel sets of
multiplicative (additive) class a by P, (S,), beginning with Py = F
(Sg = G), as the followings [6]:

Pa . .7:, gﬁ, fcﬁ’
So Gy Foy Gsgs -oe-
As X is perfectly normal, so the P,’s (S, ’s) form a chain and F < Gs,

similar to the metric case (see [6]).

For each A e P,, there exists a sequence (G,),_; < S,_1 such that

A = ﬂor(;zlGn.

For additive sets, “S”, “P”, and “1” are replaced respectively by “P”,
“S” and “U”. See [6, Section 30] for details.

The ambiguous set of class o is denoted by H, [6] and defined as

follows:
Hy = So NPy

Lemma 1.1. Here we mention some facts about perfectly normal
spaces.

(a) Every setin S, (o > 1) is the union of some countable disjoint sets

in Hy.

The proof is similar to that of metric spaces. See [6, Section 30, V,
Theorem 1].

(b) For each sequence (G,), _; = Sy (o 2 1), there exists a mutually
disjoint sequence (H,)._, in S, such that Us_ H, = U;_ G, and
H, c G, for each n. In addition, if X = U;,_1 H,, then H),’s belong to
H,.

The proof is similar to that of metric spaces. See [6, Section 30, VII,
Theorem 1].
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(c) For every sequence (F,),_; in Py (o > 1) such that N5_1 F, = &,

there exists a sequence (E,) . in H, such that ;1 E, =@ and
F, c E,, for each n. Therefore, if A and B are two disjoint P, sets, then
there exists E in H, such that Ac E and BNE =O. That is, if
AeP,, CeS, and A c C, then there exists E € H, such that
AcFEcC.

See [6, Section 30, VII, Theorem 2].

Definition 1.2. Let X be a topological space and By(X) = C(X) be the

set of all real valued continuous functions on X. Then for each ordinal o,

we define Baire functions of class a as follows:
Bo(X)=1{f: X > R: there exists (f,),_; < By_1(X)
such that lim f, (x) = f(x), for each x € X}.
We also define Borel functions of class a as follows:
By(X)={f: X - R : for each closed set Fin R, f1(F) e P, }.

When X is a perfectly normal space, then by the same induction as in [7],
By (X) < By(X). It is obvious that B,(X) < B,,1(X).

For a Banach space E, suppose that C°(X, E) is the set of all

E-valued continuous functions with relatively compact ranges.

Definition 1.3. We define

Bo(X, E) = C'(X, E),

B (X, E)={f : X > E : f is the pointwise limit of some sequence
in B,_;(X, E) and range of f is relatively compact},

B.(X,E)={f:X > E: f}(F) e P, for each F, closed in E and

range of fis relatively compact}.
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1.1. Some results on Baire classes. In this part we obtain some
results about Baire classes for using in the next section. Here first we

give a Baire-a characterization of H, elements in X.

Lemma 1.4. Let X be a perfectly normal space and E be a Banach
space with 0+#eec E. Then we have HeH, if and only if

exyg € BOL(X, E)

Proof. We prove by induction. Suppose that H is in H,. As X is

perfectly normal, then it is normal. Suppose that the statement holds for

(o —1). Then by Lemma 1.1 (b), there are a nondecreasing sequence

(Fy),_, of elements P, ; in X and a nonincreasing sequence (G,),_; of

elements S,_; in X such that

Un=1Fn = H = N3=1 Gy
For each positive integer n, F, < G,. By use of induction, there is an
H, € Hyqy such that f, = exy, €Bo1(X, E), f,(F,)={e} and f£,(Gy)

= {0}. Obviously, ey g is the pointwise limit of f,. The proof of the other

side is obvious and is omitted.

We define

n
Yo E = {ZeiXHi :neN, e € E and H; € H, for each L}.
=1

In the following theorem we give an approximation theorem for Baire
functions by simple functions.

Theorem 1.5. For a Fréchet space E, the uniform closure of X, g is
Bo (X, E).

Proof. Suppose that E is a Banach space. As the range(f) is
relatively compact, therefore there exists a countable set Z < E such
that the range(f) is in the norm closure of Z. For each positive integer n,

let C, be the collection of open balls of radius 1/n in E with members of
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Z as their centers. Hence the range(f) is covered by finite members of

C,,, denoted by B,,, labeled by the finite set I,,. Set B, = f_l(Bn). Thus
B}, is a cover of X and each of its elements belongs to S,. Hence, its
members are H, and by Lemma 1.1 (b), X has a finite refinement,
consists of mutually disjoint elements of H, sets. Therefore, A, =

{A; , 1 i € I,} is a refinement of B), with H, sets. We can suppose that

forany n > 2, A, refines A, ;.

Now, for each n > 1 and for each i € I,,, choose y; , € f(4; ). Let
x € X and for each n >1 let i(x, n) € I, be such that x € Ay p),- If
m 2 n, then Aj m)m S Ai(x,n)n- Consequently, since f(A;y n),) has
diameter at most 2/n, {¥j(x,n),» : 7 > 1} is a Cauchy sequence.

We define

g(x) = r}l_r)rio Yi(x,n),n-
Notice that
| &%) = Yicx, n),n < 2/n.
If x" € Aj(x,n),n> then i(x, n) = i(x', n) and so
| 8() = @) < 1 8(") = Yigw,n)n |+ 1 8) = Yiga,n)n 1< 4/m.

If x € A, then for each n 21, x € Aj(y ), and therefore

| g(x) - ()] < 4/n.

Hence g = f. Now, for each n € N, we define

fn = Z Yi,n XA -

iel,

It is obvious that f,,’s are in By (X, E), and f = g is the uniform limit of
fns.



298 HAMID REZA SHATERY and MOSTAFA MIRBOD

Now, suppose that E is a Fréchet space. It is enough to work with a

countable collection of semi-norms that introduce its topology.

In the sequel we use the notation of [2, Chapter I] to obtain the dual
of By (X). We denote by VM(H,, E), the space of all bounded finitely

additive vector measures, F' : H, — E provided by semi-variation norm.

Therefore, every F in VM(H,, E) is related to a T in L(B; (X), E) with

the following correspondence:

Te()= | fdF

for every fin B (X, E).
In the particular case when E =R, we have the following

representation of the dual of B, (X).

Corollary 1.6.
Dual(By(X)) = (Bo(X))" = VM(H,, R).

Proof. The proof is the same as that of Theorem 13 page 6 of [2].
2. Main Result

It is obvious that any ring isomorphism between rings of continuous
functions is an algebra isometric isomorphism between them [3]. First we

prove this result for Baire-a classes.

Theorem 2.1. Let ¢ : B, (Y) - By (X) be any ring homomorphism.
Then ¢ is linear, | ¢ | =1 (unless ¢ = 0).

Proof. We prove this theorem similar to that of ring of continuous
functions. Denote ¢(1y) = e. Then e = ¢(iyly) = e and therefore e is an

idempotent so by Lemma 1.4, e = yy for a certain ambiguous subset H of
X (H e H,). If g € B, (Y, R"), then g = h? for a certain k in B (Y, R),

and hence ¢(g)=¢(h%)=20. If |g|<1, then -1y <g<ly and

IA
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|0(g)| < e; therefore || ¢(g)| <1. Thus ¢ is continuous and hence it is

linear.

Theorem 2.2. Let ¢:B,(Y,C)— B (X,C) be a nonzero multiplicative
R -linear operator. Then || ¢| =1 and there exist disjoint H, sets, H,
and Hg of X and a multiplicative C -linear operator vy : B (Y, C) -
Be (X, C) such that for every g in B (Y, C),

(vg)(x) x e H;
(98)(x) = 10 xeX-(H UHy)

(vg)(x) x e Hy.

Proof. Denote ¢(1y) = e. Then e = ¢ and e = yy for an M, -subset
H of X. Denote u = ¢(ily). Then u? = ¢(i’ly) = —e = —x . Therefore, for
x € H, u*(x) = -1 and thus u(x) = i or u(x) = —i. So there exist disjoint
sets H; and Hy such that

Hy =u'({i}), Hy=u'({-3}).
For x ¢ H, u(x) = 0, define
y(g +ih) = d(g) + io(h), Vg, h e By (Y, R).

Straightforward verification shows that y is a multiplicative linear
operator from B (Y, C) into B (X, C); in particular, wy(if) = iy(f) for
each f e By (Y, C). It will be shown that |y | =1. If x € X, then the
functional n, = y*(5,) is multiplicative and linear on B (Y, C). Claim:
Inx | = 1. Indeed, if n,(iy) were equal to 0, n, would be identically 0.
Hence, n,(y)=n,(yly)=n.0y)* n.(dy) is equal to 1. Let

f e By(Y, C) such that ||f|=1. Suppose, if possible, that |n,(f)>1].
Denote a =n,(f) and
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Therefore <1, ' isin B, (Y, C) and bounded on Y. Consequently,

r
ne(n iy - L) -1

Therefore T]x(iy - 5) # 0; i.e., n.(f) # a. This contradiction shows that
ne(f)=1. Thus, if feBy(Y,C), then [yf-x[=|n()=]f]
Consequently |y | <1. Since |e] = y(y)|=1,]v]|=1 Now,let g e

Be (Y, R); it will be shown that y(g) is real-valued. If x € X — H, then

yg-x=0. Let x e H and yg-x = a +1ib, where a, b € R. For every
t e R,

a® + b2 + 26t + 12 =|\4/g~x+ite(x)|2
< (g +iddy) P
<|g+itly |
=gl +¢

Hence t may be an arbitrary number, b equals to 0; i.e., yg - x is real.

Consequently, if f and g are in B;, (Y, R), then rey(g + ih) = y(g). Thus,
o(g +ih) = ¢(g) + ip(h) = rey(g + ih) + iimy(g + ih),

for every g, h € By (Y, R). Therefore, y is the desired operator.
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