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Abstract

In this paper, we reconsider the problem of boundary layer free

convection flow along a vertical flat plate with a power law surface

temperature and embedded in a fluid-saturated porous medium. By

using similarity analysis, the partial differential equations governing

the flow are transformed into a boundary value problem (BVP)

containing nonlinear ordinary differential equation. The resulting

ordinary differential equation is solved numerically through the Quintic

B-spline collocation method in combination with Quasilinearization. The

accuracy of the method is discussed and the numerical solutions are

found to be in excellent agreement with theoretical predictions of Banks

[Theor. Appl. 2 (1983), 375].

1. Introduction

During the past two decades, tremendous progress has been made in
the field of convective flow in saturated porous media as evidenced by the
literature published in the recent book by Nield and Bejan [18]. Thus a
major interest has existed to obtain solutions to the problem of boundary
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layer free convection from a vertical surface with variable surface
temperature or variable surface heat flux embedded in a fluid saturated
porous medium. The first work on this problem has been made by Cheng
and Minkowycz [9] for a heated surface with the wall temperature

proportional to ,mx  where x is the distance measured along the surface

and m is a constant. Numerical solutions were obtained in [9] for the

resulting ordinary differential equation for .10 ≤≤ m  The same

equation was solved by Na and Pop [17] using the method of perturbation
series in combination with Shanks transformation [21].

In this paper, we study a collocation method to compute the
numerical solution of (scalar) third order two-point BVPs described by
differential equation and boundary conditions of the form

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ,,, IbaxxfxuxrxuxqxuxpxuuL =∈=+′+′′+′′′= (1.1)

( ) ( ) ,, ba vbBuvaBu == (1.2)

where ( )xu  is an unknown function, av  and bv  are given, ( ) ( ) ( )xrxqxp ,,

and ( )xf  given functions and B is a differential operator (e.g.,

( ) ( )aucaBu ′=  etc.).

In general, collocation proceeds as follows. We first choose an

approximating space X of dimension n and a basis ( ) ( ) ( ){ }xxx nφφφ ...,,, 21

for X such that any ,XW ∈∆  where ∆ is the uniform partition of I, can be

written as ( )∑
=

∆ φ=
n

i
ii xcW

1
,  where the ic ’s are scalars referred to as

coefficients or degrees of freedom. Note that the basis functions ( ),1 xφ

( ) ( )xx nφφ ...,,2  are user chosen and thus known, while the degrees of

freedom are unknown. Then a set T of data points called collocation

points is selected, where BL TTT U=  with { }., baTB =  In the standard

formulation of collocation methods we determine the degrees of freedom

nici ...,,2,1, =  and then the approximation ∆W  to the solution u of the

BVPs by forcing ∆W  to satisfy conditions

( ) ( ) LTxxfxLW ∈=∆ ;
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( ) ( ) .; LTxxgxBW ∈=∆

These conditions, called collocation conditions, give rise to a linear
system with respect to the unknown degrees of freedom. The sets LT  and

BT  are chosen so that the collocation conditions give rise to a uniquely

solvable linear system. The choice of approximating space, basis
functions and collocation points plays an important role in the
calculations, especially those associated with the resulting linear system.
The approximating space we choose is the space of quintic splines with
respect to a partition ∆ of I, that is, the space of piecewise quintic

polynomials with 4C  continuity defined with respect to ∆, with quintic B-

splines as basis functions. It is quite common in the literature, to pick as
data points the grid points of the partition, when odd degree splines are
used and the midpoints of the subintervals of ∆ when even degree splines
are used. See, for example, [10], [15] and [23].

In this paper, we present accurate numerical solutions of the
governing equation given in [9] using the collocation method based on
Quintic B-spline functions through the Quasilinearization technique [5].
B-splines are well known and are described in detail in text such as Farin
[11] and Hoschek and Lasser [12]. The method of cubic B-spline is
successfully used by Joshi and Doctor [14] for some specific flow and heat
transfer problems. More information about the spline collocation methods
is found in the references [7, 8, 15, 19, 22, 23]. Numerical results are
presented in tabular form for various values of the parameter m. We
believe that these results serve as a reference against which other
approximate solutions for the present problem can be compared in the
future. In addition, this method can be applied to solve variety of
problems in the field of Applied Mathematics.

2. Basic Equation

Referring to a Cartesian system of coordinates ( ),, yx  the boundary

layer equations which govern the free-convection boundary layer flow
over vertical flat plate embedded in a porous medium are

,0=
∂
∂+

∂
∂

y
v

x
u (2.1)
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( ),∞−
υ
βκ= TTgu (2.2)

,,0 wTTv == (2.3)

where 0=y  is the plate, x is measured in the direction of the boundary

force, and u and v are respectively the velocity components in the

directions of x and y increasing. Also T, g, β, κ, υ and α are respectively

the temperature, acceleration due to gravity, coefficient of thermal
expansion, permeability of the saturated porous medium, kinematics’

viscosity and thermal diffusivity, respectively; the suffix ∞ indicates

conditions in the ambient fluid far from the plate. It is assumed here that
Boussinesq approximation and Darcy’s law are applicable, and that the
Rayleigh number is large.

The boundary conditions for the problem are,

,,0 wTTv ==      on   ,0=y (2.4)

,,0 ∞→→ TTu    as   .∞→y (2.5)

with ( ).xtTTw += ∞  The similarity solutions were investigated by Cheng

and Minkowycz [9] with ( ) ,maxxt =  where a is a constant. Equations

(2.1-2.3) admit similarity solutions of the form

( ) ( ) ( )ηθ+=η






+
α=ψ ∞ xtTTfRa

m x ,
1

2 21
21

(2.6)

and

,
2

1 212
1

x
yRam

x




 +=η (2.7)

where ψ is the stream function defined in the usual way

x
v

y
u

∂
ψ∂−=

∂
ψ∂= , (2.8)

and xRa  is the modified Rayleigh number for a porous medium defined

as

( )
.

v
xxtg

Rax α
βκ= (2.9)



w
w

w
.p

ph
m

j.c
om

B-SPLINE SOLUTION OF THE BOUNDARY LAYER FREE … 233

Substituting (2.6) and (2.7) into equations (2.2) and (2.3), we obtain

,02 =′β−′′+′′′ ffff (2.10)

where primes denote differentiation with respect to η and

.
1

2
m

m
+

=β (2.11)

The boundary conditions (2.4) and (2.5) become

( ) ( ) ( ) .0,10,00 =∞′=′= fff (2.12)

It is worth mentioning that equation (2.10) subject to the boundary

conditions (2.12) describes also the boundary layer on a stretching

surface, which stretches with a speed proportional to ,mx  where x is the

distance measured along the stretching surface, and the exponent m can

be regarded as materially dependent constant. Such stretching

boundaries occur in the manufacture of polymer sheeting as well as in

other real situations, see Banks and Zaturska [4]. Equation (2.10) has

been also solved numerically by Banks [3] for values of β in the range
.2029999.1 ≤β≤−

3. Solution by Quintic B-spline Collocation

In this section, we present quintic spline collocation method by

solving the BVP given in equations (2.10), (2.12). We consider the

uniform grid partition { }bttta n =<<<==∆ L10  of the interval

[ ],, baI =   and the set of data points nttt ...,,, 10  with ii tth −= +1  be

the mesh size of ∆.

Let ∆,5S  be the space of quintic splines with respect to ∆, that is, the

space of quintic piecewise polynomials with respect to ∆ and with

continuity ( ).4 IC  Note that ∆,5S  has dimension .5+N  In order to

represent any quintic spline ,,5 ∆∈ SS  we choose a set of quintic spline

basis functions, the quintic B-splines ( ) .2...,,1,0,1,2; +−−= NjtBj

The quintic B-splines ( )tBj  with additional grid points 123 −−− << ttt
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and nnnn tttt >>> +++ 123  are defined by

( ) [( ) ( ) ( ) ( )55
1

5
2

5
3

5 201561 iiiij tttttttthtB −−−+−−−= −−−

( ) ( ) ( ) ]5
3

5
2

5
1 615 +++ −+−−−+ iii tttttt (3.1)

with data points as .21012 ++−− <<<<<< nnn tttttt L  Then the set

{ ( )}tBj  forms a basis for .,5 ∆S  Any quintic spline ( ) ∆∈ ,5StS  can be

written as

( ) ( )∑
+

−=

=
2

2

,
N

j
jj tBctS (3.2)

where the scalars ,2...,,1,0,1,2, +−−= Njcj  are degrees of freedom

to be determined. The values of quintic B-spline ( )tBj  and its derivatives

at different grid points are computed from equation (3.1) by using the

function ( )+− ktt  defined by,

( ) ,kk tttt −=− +    if   ktt >

,0=          if   .ktt ≤

These values are shown in Table 3.1.

Table 3.1. Values of quintic B-splines at grid points

3−jt 2−jt 1−jt jt 3+jt 2+jt

( )tBj 0 1 26 66 1 0

( )tBj′ 0 h5 h50 0 h5− 0

( )tBj′′ 0 220 h 240 h 2120 h− 220 h 0

( )tBj′′′ 0 360 h 3120 h− 0 360 h 0

( )tBj ′′′′ 0 4120 h 4480 h− 4720 h 4120 h 0

Now we solve the problem given by equations (2.10), (2.12) by the
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collocation method based on spline function (3.1). For that we required
the linear form of the problem. We use the Quasilinearization technique
as discussed in [5, 16] to convert the nonlinear equation into linear
equation. Due to Quasilinearization technique the equations (2.10) and
(2.12) are transformed to

( ) ( )21111 iiiiiiiii ffffffffffL ′β−′′=′+′β−′′+′′′≡ ++++ (3.3)

with boundary conditions

( ) ( ) ( ) ,10,000 11 =′=≡ ++ ii ffBf (3.4a)

( ) ( ) .01 =∞′≡∞ +ifBf (3.4b)

For the numerical study the outer boundary is set at 4=η∞  and

therefore the domain of the problem is restricted to [0, 4] and the end

condition (3.4b) is considered as

( ) ( ) .044 1 =′≡ +ifBf (3.4c)

Now the quintic spline interpolation to ( )ηf  of equations (3.3),

(3.4a, c) gives the collocation conditions:

( ) ( ),tLSLf ≡η (3.5)

( ) ( ) ( ) ( ){ },1,00 000 =′=≡≡ tststBSBf (3.6)

( ) ( ).4 NtBSBf ≡ (3.7)

Using Table 3.1 the above collocation conditions with ,8=N  give the

following collocation equations:

223
52060

−



 ′′+β++− iii cf

h
f

hh

123
265040120

−



 ′′+β+++ iii cf

h
f

hh

iii cff
h 



 ′′+−+ 66120

2
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123
265040120

+



 ′′+β−+−+ iii cf

h
f

hh

223
52060

+



 ′′+β−++ iii cf

h
f

hh

( ) ,8...,,1,0,2 =′β−′′= ifff iii (3.8)

,0266626 21012 =++++ −− ccccc (3.8a)

( ) ,15500505
21012 =+++−− −− c

h
c

h
cc

h
c

h
(3.8b)

( ) .05500505
109876 =+++−− c

h
c

h
cc

h
c

h
(3.8c)

From the above system we get twelve equations for thirteen

coefficients ( ).10...,,1,0,1,2 −−=jc j  So that we require one more

equation to complete the system. Numerical oscillation will occur if a
fourth equation is not properly chosen. Due to the physical behavior of

the flowing fluid, we may choose the additional condition as ( ) .04 =′′f

With the help of equation (3.5) and Table 3.1 this condition is written as

.020401204020
10292827262

=++−+ c
h

c
h

c
h

c
h

c
h

(3.8d)

Now the system given by equations (3.8), (3.8a, b, c, d) is a complete
system of thirteen equations for the solution of thirteen coefficients

( ).10...,,1,0,1,2 −−=jcj  Eliminating 10912 ,,, cccc −−  from this system

we get a system of nine equations in nine unknown ....,,, 810 ccc  The

coefficient matrix of which is a diagonally dominant five-band,
nonsingular matrix. Therefore the linear system has a unique solution.

By simple manipulation, we can calculate .,,, 10912 cccc −−  Hence there

exists a uniquely determined quintic spline interpolation S of f satisfying

(3.5)-(3.7). In order to obtain spline approximations begin with a curve

( ) η+η−=η 2
8
1

f  satisfying the condition (3.4a, b) as an initial guess. This

curve gives the values ( )nifff iii ...,,1,0,, =′′′  that are used in equation (3.8)
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for the initial iteration. For the second iteration the values iii fff ′′′,,  are

calculated from equation (3.2) and the iteration process is continued until
the two successive approximate solutions are agree well with each other.

4. Result and Discussion

The BVP (2.10), (2.12) was solved by the Quintic B-spline collocation

method. For the numerical study, the outer boundary is set at 4=η∞

with length of subinterval of [0, 4], taken as .5.0=h  For ,5.18.1 ≤β≤−

the values ( ),0f ′′  are calculated and presented in Table 4.1. For

comparison, the results of Banks [3] are also included in the table. It is

seen that these results are in excellent agreement. We have thus shown

that by using spline collocation to problem (2.10), (2.12) that the

applicability of the method can be extended to higher order nonlinear

boundary value problems. It is worth noticing that spline collocation uses

two data point per subinterval of the partition and the coefficient matrix

is a five band matrix, which shows that spline collocation gives rise to

smaller linear systems and therefore in that respect, is advantageous.

The quintic B-spline collocation is therefore further demonstrated as a

useful tool in the analysis of such problems.
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Table 4.1. Comparisons of values of ( )0f ′′  and ( )4=∞f

Banks (4) Present Method

β m ( )0f ′′ ( )4=∞f ( )0f ′′ ( )4=∞f

–1.8 – 0.47368 2.14633 2.20605 2.14739 2.20744

–1.6 – 0.44444 1.00913 1.83302 1.00956 1.83337

–1.4 – 0.41176 0.51774 1.63840 0.51790 1.63859

–1.1 – 0.35484 0.10053 1.45868 0.10058 1.45878

–1.0 – 0.33333 0.00000 1.41421 0.00004 1.41430

– 0.9 – 0.31034 – 0.08901 1.37475 – 0.08898 1.37482

– 0.5 – 0.20000 – 0.37039 1.25112 – 0.37308 1.25116

0.0 0.00000 – 0.62755 1.14277 – 0.62756 1.11280

0.5 0.333333 – 0.82995 1.06277 – 0.82996 1.06277

0.9 0.81818 – 0.96796 1.01151 – 0.96798 1.01149

1.0 1.0 – 1.00000 1.00000 – 1.00002 0.99999

1.1 1.22222 – 1.03119 0.08805 – 1.03121 0.98894

1.5 3.00000 – 1.14860 0.94827 – 1.14862 0.94871

g


