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Abstract

Two-stage randomization designs are becoming popular in cancer, AIDS

and psychiatric clinical trials. In this article we review available

methods for statistical inference for survival data from a two-stage

randomization design. We present a simulation study comparing all

available methods. Directions on future research are also presented in

the discussion.

1. Introduction

Two-stage randomization designs are special cases of sequential

randomization schemes in dynamic treatment regimes. Dynamic

treatment regimes, consisting of two or more stages of therapies are used

for treating patients with complex diseases such as cancer, AIDS,

hepatitis and depression. In most cases, administration of a therapy in
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one stage depends on the intermediate outcome observed as a result of

therapies received in prior stages. The goal is to achieve the largest

benefit with the treatment strategy at the individual level. An example

might be the case where patients are treated according to one of several

available treatments (or different doses of same drug) for a fixed period of

time and then based on

Figure 1. A typical two-stage randomization design: full circles,
rectangles and arched rectangles represent, respectively, the time of
randomization, available treatment arms and the intermediate outcome.

the intermediate response are switched to a different treatment (see, for
instance, Rush et al. [12]). Randomized clinical trials comparing
treatment strategies with randomization being done upfront to all
possible strategies require large number of patients, even when the
number of stages and the number of treatment choices at each stage are
small. For instance, a clinical trial comparing treatment strategies with
three stages and two possible treatment options at each stage requires

randomization to 823 =  possible regimes. By considering the natural

course of treatment, one could randomize patients at the beginning of
each stage once they become eligible. For example, to compare treatment
strategies for a dynamic treatment regime with two stages and two
treatment options at each stage, patients are randomized to one of two
possible therapies and depending on the intermediate response, are
randomized to further therapies at stage two. A pictorial representation
of a standard two-stage design is given in Figure 1. The treatment options

jB  and 2,1, =′ jBj  may be same or different depending on specific

clinical trials. Unlike the situation described in Figure 1, where every
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patient receives some sort of therapy at each stage, there may be cases
where therapy may be stopped after the first stage if certain clinical
conditions are not met. In CALGB clinical trial described below, the non-
responding patients did not receive any further treatment in the second
stage. Most of the methods discussed in this article are based on a two-
stage design where therapy is stopped for patients not responding to the
initial treatment. For such designs, the branches involving ,jB′  2,1=j

in Figure 1 will not exist.

Clinical trials employing two-stage randomization designs are
commonly implemented in biomedical research. We describe two such
clinical trials that motivated the methodologies described in this article.

1.1. CALGB 8923 trial

Cancer and Leukemia Group B (CALGB) conducted a two-stage
clinical trial (Protocol 8923) to investigate the combination of different
induction and maintenance therapies. As reported by Stone et al. [13],
388 AML (acute myelogenous leukemia) patients 60 years of age or older
participated in this double-blind, placebo controlled trial. Following
standard chemotherapy, in the first stage, 195 of these patients were
randomly assigned to receive placebo and 193 receive granulocyte-
macrophage colony-stimulating factor (GM-CSF). 79 in the GM-CSF
group and 90 in the placebo group achieved complete remission and
consented to further treatment. In the second stage, 37 GM-CSF and 45
placebo patients were randomly assigned to receive intensification
therapy I, and the rest 42 GM-CSF patients and 45 placebo patients to
intensification therapy II. The purpose of the trial was to examine the
effects of infusions of GM-CSF after initial chemotherapy for elderly
patients with AML.

1.2. E4494 clinical trial

The E4494 clinical trial conducted by the Eastern Cooperative
Oncology Group (ECOG), CALGB and the Southwest Oncology Group
(SWOG) and reported by Habermann et al. [3] is another example of
TSRD. This study was aimed to address the impact of the addition
of rituximab to standard cyclophosphamide, doxorubicin, vincristine
and prednisone (CHOP) therapy during induction with a second
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randomization to maintenance rituximab (MR) or observation on early
and late treatment failures in diffuse large B-cell lymphoma (DLBCL) in
elderly patients. Among the 632 previously untreated patients 60 years
of age or older with DLBCL, 318 were randomized to the induction
treatment with addition of rituximab (R) to CHOP, and 314 to standard
CHOP. In the second stage, out of 415 responding patients, 207 were then
randomized to MR and 208 to observation. After ineligibility exclusion,
there were 267 R-CHOP and 279 CHOP patents in the induction stage,
174 MR and 178 observation patients in maintenance stage. The goal of
the study was to compare the risk of treatment failure, time-to-treatment
failure and overall survival among different treatment policies.

2. Motivation and Purpose

Traditional methods for analyzing data from two-stage trials

separate the two stages, for example, first estimate and compare the

survival distributions between two induction treatments for all patients

in the study, ignoring the maintenance therapy, then for all responding

patents, estimate and compare their survival distributions between two

maintenance therapies conditioning on the response, regardless of the

induction therapy they had received. The outcome of interest in the

second stage is usually taken as the length of time from receiving the

maintenance therapy to death or failure. Contrary to implementing

intention-to-treat analysis which will be addressed in this article, such

methods discard information from the patients who could have

potentially received the therapy and consequently reduces the effective

sample size and makes the analysis inefficient. More importantly,

such methods of analysis are limited to comparing different induction

treatments or maintenance treatments, without being able to address the

question of finding the best combination of induction and maintenance

therapies.

Thall et al. [14] discussed a statistical framework including a family
of generalized logistic regression models and an approximate Bayesian
method to evaluate each combination of two-stage treatment and select
the best strategy. The trial that motivated their methodology involved
AML patients who previously achieved a complete remission (CR) but
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then relapsed in less than 24 months. At the first stage, all patients were
randomized to either the standard chemotherapy: idarubicin + high-dose
cytosine arabinoside (IDA), or one of the two experimental treatments:
IDA + mylotarg (M) and IDA + topotecan (T). At the second stage, the
patients who failed in the IDA group in the first stage were randomly
assigned to either IDA + M or IDA + T, while the ones who failed in the
IDA + M or IDA + T groups in the first stage were all assigned to receive
IDA. For each stage, there were three possible outcomes: CR, death and
failure (patient survived without responding). A real-valued objective
function was constructed to quantify the trade-off between the probability
of response and the risk of death. In the duration of any therapy, interim
looks were made to drop the treatment if it was inferior to the others
within a subgroup, which made this conduct outcome-adaptive. On the
completion of the trial, selection of the best treatment strategy might also
be based on the posterior probabilities of the objective function of the two
treatment strategies. In this article we focus mainly on estimating
survival distributions for specific treatment policies and hence do not
elaborate on this study any further.

For the cases where the outcome of the study is survival time,
Lunceford et al. [7] proposed a class of consistent, asymptotically normal
estimators for the survival distribution of treatment policies. Their
framework allowed consistent estimation of survival distributions under
intent-to-treat treatment policies. However, these estimators were not
efficient and failed to use the auxiliary information collected in the
form of covariates. Wahed and Tsiatis [15] obtained the most efficient
semi-parametric regular asymptotically linear estimators for survival
distribution and related quantities borrowing the idea of semi-parametric
theory from Robins et al. [9]. The estimators proposed incorporated
auxiliary time independent and time dependent covariates to gain
efficiency. The cases of where the data may be right censored, were
incorporated in Wahed and Tsiatis [16]. Considering the impractical
nature of the most efficient estimator, they also proposed estimators
that are easy to compute but are more efficient than Lunceford et al.
estimators. Lokhnygina and Helterbrand [6] employed Cox’s proportional
hazard model to derive a consistent estimator and score test for the log
hazard ratio. Guo and Tsiatis [2] proposed a weighted risk set estimator
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(WRSE) for the survival distribution with right censoring using the
concepts of counting process and risk sets described by Fleming and
Harrington [1].

The goal of this article is to provide an exhaustive and comparative
review of analytical approaches available for the two-stage randomization
designs with survival time as the primary outcome. The aim also is to
familiarize the reader with these methods and to point to areas of further
methodological research area in this field. We introduce the notations of
a typical two-stage randomized design in Section 3. In Section 4, we
review some recently developed inferential procedures for estimating the
survival distributions of treatment policies in two-stage designs. We
compare the performance of different estimators in Section 5 and finish
with a conclusion and possible future work in Section 6.

3. Model Framework and Notation

Let us consider a two-stage clinical trial similar to the CALGB 8923
study, where the induction treatment is A, with levels 1A  and ,2A  and

the maintenance treatment is B, with levels 1B  and .2B  The objective is

to compare the survival distributions for different treatment policies
,2,1,, =kjBA kj  where kjBA  stands for “treat with jA  followed by kB

if the patient is eligible and consents to subsequent maintenance
therapy.” Since the data from patients receiving induction treatment 1A

are independent of those from patients with induction treatment ,2A  in

line with most of the papers reviewed here, we focus only on the data
from patients who received ,1A  that is, patients with treatment policies

11BA  and .21BA  The methods for policies 12BA  and 22BA  follow

analogously.

Let us assume that each patient i has an associated set of random

variables, also referred to as potential outcomes, { ( ) ,,1, 0
R
iiiii TRTRR −

},,, 21 iiiii VTRTR ∗∗  where iR  is the indicator of the eligible/consent status

of patient i on treatment 1,1 =iRA  if patient i was eligible and would

consent to subsequent maintenance treatment, 0=iR  otherwise; iT0  is
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the survival time of patient i if s/he was not eligible or refused subsequent

maintenance treatment; R
iT  is the time from initial randomization to the

time s/he receives maintenance therapy; ( )∗∗
ii TT 21  is the survival time of

patient i if s/he was eligible and consented to receive maintenance

treatment and received ( ) iVBB ;21  is a vector of auxiliary covariates

including relevant baseline characteristics for patient i. From the

definition above, we can see that R
iT  is defined only for those with

,1=iR  and all of the three variables ∗
ii TT 10 ,  and ∗

iT2  cannot be observed

for the same patient since a patient cannot respond and not respond at
the same time and can receive only one of the two maintenance
treatments if s/he responds in the 1st stage. These variables, for such
reason, are referred to as counterfactuals (Rubin [10] and Holland [4]) or
potential random variables.

With the above notations, the survival time for patient i who received

treatment policy kBA1  would be ( ) .1 0
∗+−= kiiiiki TRTRT  Notice that

when 2,1,,1 == kTR kii  are also potential outcomes since only one of

them can be observed based upon the maintenance treatment the patient

actually received. Due to the fact that some patients eligible for

maintenance therapy kB  may not consent to further treatment or may be

randomized to the maintenance therapy ,2,1,3 =− kB k  the inference on

features of these distributions addresses directly the “intent-to-treat”

question of interest. With the above conceptualization, the primary goal

is to estimate parameters and draw inference on the distribution of ,kT

.2,1=k  Specifically, we consider the problem of estimating ( ) =tSk

( ) ( ){ },Pr tTIEtT kk >=>  the survival probability beyond time t for

treatment policy .1 kBA  In other cases, possible parameters of interest

can be the mean or median restricted survival time.

Since in most clinical trials total follow-up time is limited, only

restricted survival time up to time L can be considered, where L is some

value less than the maximum follow-up time for all patients in the

sample, in such cases, kT  will actually represent ( ).,min LTk



w
w

w
.p

ph
m

j.c
om

WENTAO FENG and ABDUS S. WAHED124

If there is no censoring, the observed data can be represented as a

set of i.i.d random vectors { } ,...,,1,,,,, 1 niTXRVTRR iiii
R
iii =  where

,iR  ,RiT  iV  are as defined before, and iX1  denotes the B treatment

assignment indicator, defined only if ,1=iR  where 11 =iX  if assigned

to treatment 0, 11 =iXB  if assigned to treatment ,2B  and iT  is the

observed survival time for patient i. Following stable unit treatment
value assumption (Rubin [11]), we assume that the observed survival
time for patient i is related to the potential outcomes through the relation

( ) { ( ) },11 210
∗∗ −++−= iiiiiiii TZTZRTRT (1)

that is, if a patient is observed to be a non-responder, then his/her
observed survival time iT  is equal to the corresponding potential survival

time ;0iT  on the other hand if the patient is observed to be a responder

and received treatment ( ),21 BB  then his/her observed survival time

iT  is equal to the corresponding counterfactual survival time ( ).21
∗∗
ii TT  In

the presence of right censoring, the observed data can be summarized

as the collection of i.i.d random vectors { ( )},,, i
H
iii UGU ∆  ,...,,1 ni =

where ( ),,min iii CTU =  ( ),iii CTI ≤=∆  iC  is the censoring time and

( ) ( ) ( ) ( ){ },,,, 1 uxxVxTIRXxTIRUG iiiiiii
H
i ≤≤≤=  where ( ),xVi  similar

to the iV  defined before, is a vector of auxiliary variables that may

additionally be collected on patient i at time x. Thus ( )iH
i UG  represents

data-history collected on individual i prior to time u, which contains the
information of the eligibility/consent status, the time of response if
responded, the assignment of maintenance treatment and other auxiliary
variables of interest of patient i.

4. Inferences

4.1. Naïve estimator

To estimate ( )tSk  for the policy ,1 kBA  a naïve method is to construct

an estimator only using the data from those patients who are consistent

with that policy. If there was no censoring, this would mean that one
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could average the indicator function ( )tTI i >  over all the patients in the

set: { },11: =+− kiii XRRi  to get

( ) ( )
1

1

1ˆ
−

= 











+−= ∑
n

i
kiii

VEINA
k XRRtS

( ) ( )∑
=

>+−×
n

i
ikiii tTIXRR

1

.1 (2)

This naïve estimator takes into account the patients who did not respond

and those who were assigned to maintenance treatment .kB  However,

it neglects those patients who responded and were randomized to

treatment ,2,1,3 =− kB k  as a result, the naïve estimator is expected

to underestimate ( )tSk  by overestimating the contribution of the

non-responders to the survival distribution. Besides, the group of

patients that has been used is no longer a random sample from those who

could potentially follow the policy .1 kBA  In the cases where their data

is censored, Kaplan-Meier estimator for the survival distribution from

the group { }11: =+− kiii XRRi  could be used to calculate the naïve

estimator.

4.2. Consistent and asymptotically normal estimators

In order to make more efficient use of the information from patients

who are inconsistent with the policy ,1 kBA  Lunceford et al. [7] proposed

three forms of consistent and asymptotically normal estimators. Assume

that the assignment of B treatment is conditionally independent of the

potential survival time given the induction treatment and the data

collected prior to observing the response. Let the probability of

randomization to the 1B -treatment be denoted by ( ).1111 =|==π ii RXP

Then this assumption could be interpreted as ( ),, 211
R
i

H
iiii TGTTX |⊥ ∗∗

.1=iR  This, in turn, implies that ( ( ) ) ==|= ∗∗ 1,,,1Pr 211 i
R
i

H
iiii RTGTTX

( ) .11Pr 11 π==|= ii RX  This assumption is the “sequential randomization

assumption” or the assumption of “no unmeasured confounders” as
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discussed in Robins [9]. The probability kπ  can be allowed to depend on

the data-history prior to the randomization including the induction

treatment, but for simplicity, we avoid discussing it here. To be

consistent with the examples in the Section 1, we take 1π  to be known by

design. Let us define ( ) ( ),11Pr10Pr1 2112 =|===|==π−=π iiii RXRX

where .1 12 ii XX −=  Let ( ) ( )uCuK i >= Pr  denote the survival distribution

for the censoring time .iC  Assume also that the censoring time is

independent of the observed data and counterfactuals.

The first estimator in the sequel of three is defined as the weighted

average of the patients who are consistent with the treatment policy.

Since by definition, non-responders are consistent to the policy ,1 kBA

they were given unit weight in the construction. Responders who were

assigned to kB  with randomization probability kπ  are also consistent

with the policy. But, due to the fact that some of the responders were

randomized to the other B treatment, each patient receiving kB

represents 11 −
πk

 other similar patients who could have potentially be

assigned to 1B  treatment, and thus received the weight .1

kπ
 Combining

both, the weight function takes the form .2,1,1 =
π

+−= k
XR

RQ
k

kii
iki

Additionally, since patients may be censored at any time, a second form

of weighting was applied to account for the censored patients. Each

uncensored patient with survival time iU  represents ( ) 11 −
iUK

prognostically similar patients who survived beyond time iU  and thus

receives a weight of ( ) .1

iUK
 Thus the combined weight for a patient with

complete survival time iU  becomes ( ) .
i

kii
UK
Q∆

 Since ( )uK  is unknown, it is

usually estimated by the Kaplan-Meier estimator of the censoring

survival curve ( ) { ( ) ( )}∏ ≤
−=

tu
c uYuNUK ,d1ˆ  with ( ) (∑ =

≤= n
i i

c uUIuN
1

,
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)0=∆i  and ( ) ( )∑ =
≥= n

i i uUIuY
1

,  resulting in an estimated weight

function ( ).ˆ
ikii UKQ∆  The estimator for the survival function ( )tSk  is

then defined as

( )
( )

( )∑
=

− =≤
∆

−=
n

i
i

i

kiiIPMW
k ktUI

UK

Q
ntS

1

1 .2,1,
ˆ

1ˆ (3)

It was shown that if the true ( )⋅K  is substituted in the above equation,

then ( )tS IPMWk
ˆ  is unbiased for ( ).tSk  ( )tS IPMWk

ˆ  in equation (2) is an

example of an inverse-probability-of-missing-weighted (IPMW) estimator
(Horvitz-Thompson estimator, Horvitz and Thompson [5]). The second
estimator was obtained by averaging using a probabilistically adjusted
sample size, i.e.,

( )
( ) ( )

( )∑∑
=

−

=

=≤
∆











 ∆

−=
n

i
i

i

kii
n

i i

kiiPA
k ktUI

UK

Q

UK

Q
tS

1

1

1

2,1,
ˆˆ

1ˆ (4)

Lunceford et al. observed that both ( )tS IPMWk
ˆ  and ( )tSPAkˆ  are solutions of

the equations of the form 
( )

( ) ( ) ( ){ }∑ =
−α−−+≤

∆n
i kikkiki

i

i QtStUIQ
UK1

11
ˆ

0=  with kα  set to 0 and ( ),1 tSk−  respectively. Thus the third estimator

was constructed by choosing the kα  that minimizes the variance among

all solutions. To be specific, the third estimator has the form

( )
( )

( )
( )

( )∑ ∑
= =

−− =−
∆

α+≤
∆

−=
n

i

n

i
ki

i

i
ki

i

kiiLDT
k kQ

UK
ntUI

UK

Q
ntS

1 1

11 ,2,1,1
ˆ

ˆ
ˆ

1ˆ (5)

where

( ) ( )
( )

( ){ ( ) ( )} { ( )}











+

≥
−∆=α ∑ ∫

=

α−−
n

i

L

k
c

i

i
kikiik utLEuYuKuN

VK

uUI
QQn

1 0 1
11 ,ˆˆd

ˆ
1ˆ

( ) ( ) { ( ) ( )} { ( )} ,ˆˆd1
1 0

121












+−÷ ∑ ∫

=

α−−
n

i

L

k
c

ki uGEuYuKuNQn
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with

{ ( )} { ( ) ( )}∑
=

−α −≤∆=
n

i
kikiik utGtUIQnutLE

1
1

1 ,ˆ,ˆ

{ ( )} ( )
( )

,
ˆ

ˆ1
i

i
Qki

UK

uUI
uGQ

k

≥
−−×

{ ( )} { ( )} ( )
( )∑

=

−α ≥
−−∆=

n

i i

i
Qkiik UK

uUI
uGQnuGE

k
1

21 ,
ˆ

ˆ1ˆ

( ) { ( )} ( ) ( )
( )∑

=

− ≥
−∆=

n

i i

i
kiikQ

UK

uUI
QuSnuG

k
1

1 ,
ˆ

1ˆˆ

( ) { ( )} ( ) ( )
( )∑

=

− ≥
≤∆=

n

i i

i
ikiikk

UK

uUI
tUIQuSnuG

1

1
1 .

ˆ
ˆˆ

The three estimators ( ),ˆ tS IPMWk  ( )tSPAkˆ  and ( )tSLDTk
ˆ  are consistent and

asymptotically normal. For details on the asymptotic property of these

estimators we refer our readers to Lunceford et al. [7]. These estimators

were defined on an ad hoc basis and the formal efficiency issue was not

discussed.

4.3. Semi-parametric efficient estimator

Under the same framework, assumptions and objective of study, for

data without censoring, Wahed and Tsiatis [15] used the semi-parametric

theory of missing data described in Robins et al. [9] to characterize the

most efficient regular asymptotically linear (RAL; Newey [8]) estimator.

They observed that any RAL estimator can be characterized by its

influence function and their approach was to find the most efficient

influence function for all RAL estimators of ( ).tSk  However, the most

efficient influence function for this problem contains a nuisance

parameter in the form of the conditional expectation ( ,,Pr i
R
iki VTtT |>

).1,1 == kii XR  One way to construct useful estimators from the most
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efficient influence function is to approximate these conditional probability

based on patient data history leading to locally efficient estimators. A

natural way of estimating ( )1,1,,Pr ==|> kiii
R
iki XRVTtT  is to use a

logistic regression of the binary outcome ( )tTI i >  on the covariates iV

and R
iT  within the subgroup of patients with 1=R  and .1=kx  For

instance, a logistic regression model

( )
( )

( )γ=
+

===|>
γ+γ+γ−

;,
1

11,1,,Pr
210

i
R
iVT

kiii
R
iki VTg

e
XRVTtT

i
TR

i

will give rise to the locally efficient estimator

( ) ( ) ( )∑
=





 γ








π
π−

−>








π
+−=

n

i
i

R
i

k

kki
ii

k

kii
i

LE
k VTg

X
RtUI

XR
R

n
S

1

ˆ;,11ˆ (6)

for .2,1=k  This estimator remains consistent even if the function form

( )⋅g  is not correctly specified, but if the regression relationship was

incorrectly specified, then the gain of efficiency over the IPMW or LDT

estimator could not be guaranteed. In the presence of right censoring, an

inverse probability weighted version of the locally efficient estimator (6)

is given by

IPCWLE
kŜ

( )
( ) ( ) ( )∑

=




 γ








π
π−

−>








π
+−

∆
=

n

i
i

R
i

k

kki
ii

k

kii
i

i

i VTg
X

RtUI
XR

R
UKn

1

ˆ;,1
ˆ

1 (7)

for .2,1=k  We will refer to it as the Inverse Probability of Censoring

Weighted Local Efficient (IPCWLE) estimator. The properties of this

estimator have not been investigated in previous studies. This estimator

is asymptotically unbiased. In addition, in our simulation studies

presented later, we find that the relative efficiency of this estimator over

IPMW, PA or LDT estimator is close to unity. But this estimator also

depends on the specification of the model g and therefore, is subjected to

model misspecification.
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Wahed and Tsiatis [16] then extended the semi-parametric method to

obtain the most efficient estimator in the presence of right censoring. In

order to avoid cumbersome calculation in the construction of most

efficient estimator, they restricted the search for the optimal estimator to

a subclass of the RAL estimators that contains the existing estimators.

Letting

( ) ( ) ( ) ( ),,,,min uUIuYTCITCU ii
R
iii

R
iii ≥=<=∆= ∗∗

( ) ( ) ( ) ( )∑ =
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2211 uEuUIRLuEXuUIRL iiikkiiii −<−=π−<= ∗∗  a

simplified version of the regular asymptotic linear efficient (RALE)

estimator is given by
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where ,ˆ 1βα=γ −  ,ˆ 1
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The estimator RALE
kŜ  is consistent and asymptotically normal and is

guaranteed to be asymptotically more efficient than the IPMW and LDT
estimators since it is the most efficient estimator among a class of
estimators including the IPMW and LDT estimators. For details on the
proof of asymptotic properties, variance estimates, and the estimates of

covariance between ( )tSRALE1
ˆ  and ( ),ˆ

2 tSRALE  we refer the readers to

Wahed and Tsiatis [16].
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4.4. Weighted risk set estimator

Guo and Tsiatis [2] derived the Weighted Risk Set Estimator (WRSE)

using the concepts of counting process and risk sets, which is an

extension of the Aalen-Nelson estimator. This estimator is more intuitive

and easier to compute than the above ones. The intention was to use

Aalen-Nelson estimator to estimate the cumulative hazard function,

however, due to the property of two-stage design, not all counting

processes ( ) ( )1, =∆≤= iii uUIuN  and at risk process ( ) ( )uUIuY ii ≥=

could be observed, so a time-varying weight function was defined:

( ) =uWi  ( ) ( ) ,1 ziii ZuRuR π+−  where ( ) ( )uTIRuR R
iii ≤=  is the

indicator of response at time u for patient i. With this weight function,

the extended Aalen-Nelson estimator for the cumulative hazard under

policy 11BA  is defined as

( )
( ) ( )

( ) ( )
∫ ∑
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=

==∆
t

n

i ii

n

i ii

uYuW
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1

1
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d
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and the corresponding estimator for the survival function follows as
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It has been shown that WRSE is consistent and asymptotically normal.

Detailed proof of the consistency and asymptotically normality of the

WRSE is given in Guo and Tsiatis [2].

4.5. Cox proportional hazard model

Because of the wide use of Cox regression model in the analysis of

survival data, Lokhnygina and Helterbrand [6] derived a consistent

estimator for the log hazard in the Cox model. Here we use ( )10=iX  to

denote the randomization for patient i to ( ).21 BB  In addition to the

sequential randomization assumption and the assumption of independent

censoring, this construction like other applications using Cox model,
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requires the proportional hazard assumption between two treatment

policies. As in a usual Cox proportional hazard model, consider the

hazard corresponding to policy 11 +jBA  be ( ),jXt =|λ  ,1,0=j  where

( ) ( ) ( ).exp0 βλ=|λ XtXt  The estimate of β can be obtained by solving the

pseudo-score equation

( ) { ( )} ( )∑ ∫
=

∞
=β−=β

n

i
iwiiwn uNuXXwU

1 0
,0d, (11)

where ( ) ( ) ( )ziiii ZuRRw π−−+−= 111  acts as an inverse probability

weight, and
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( ) ( )
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exp
,

1

1

∑
∑

=

=
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β
=β

n

j jjj

n

j jjjj

w
XuYw

XuYXw
uX

Lokhnygina and Helterbrand [6] showed that the estimator of β is

consistent and asymptotically normal. This estimator is easier to

implement with available software and intuitively appealing.

5. Simulation Study

To evaluate the performance of the methods reviewed in the previous
section, several simulations were carried out following Lunceford et al.
[7] strategy. We only simulated data for policy 1AB  and 2AB  since the

data from 1A  and 2A  are independent. All simulations were based on a

2.5-year study for 200=n  and 500 subjects. For each individual,

censoring time C was generated as uniform (0, 2.5) independent of all
other variables. Remission/consent status R were sampled from Bernoulli
( ).Rπ  Two values of the response rate 4.0=πR  and 6.0=πR  were used

in this simulation. The B treatment indicators were generated from
Bernoulli (0.5) distribution. For non-responders ( ),0=R  a survival

time ∗
λT  was generated from exponential ( ),λ  where λ was taken to be

2.22 so that ( ) ,3.0=∗
λ LTE  where 5.1=L  was the upper limit of the

restricted observed lifetime. For responders, a remission/consent time
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RT  was drawn from exponential (α). We take ( ) ~,~ 21
1 ∗∗β∗∗ TeEXPT

( ),121
∗∗β+β TeEXP  where ∗∗

1T  and ∗∗
2T  are post-remission survival time

under 1B  and ,2B  respectively. The parameters ,α  1β  and 2β  were

chosen to be 6.67, 0.29 and –0.67, respectively, so that ( ) ,1.0=LTE R

( ) ,5.01 =∗∗ LTE  and ( ) .0.12 =∗∗ LTE  The potential restricted survival

times were calculated as {( ) ( ) }LTTRTRT R ,1min 11
∗∗∗

λ ++−=  and

{( ) ( ) }.,1min 22 LTTRTRT R ∗∗∗
λ ++−=

Table 1. Monte Carlo means, relative biases (bias as a percentage of the

true value) and mean squared errors (MSE, expressed as multiples of

)103  for estimation of survival probabilities based on 1000 data sets of

sizes 200 each. The true values were ( ) ,450.05.01 =S  ( ) ,492.05.02 =S

( ) ,196.00.11 =S  ( ) 261.00.12 =S  for 40% response and ( ) ,511.05.01 =S

( ) ,575.05.02 =S  ( ) ,240.00.11 =S  ( ) 339.00.12 =S  for 60% response

4.0=πR 6.0=πR

Policy 1AB Policy 2AB Policy 1AB Policy 2AB

t(years) Estimator ( )tŜ Bias(%) MSE ( )tŜ Bias(%) MSE ( )tŜ Bias(%) MSE ( )tŜ Bias(%) MSE

0.5 IPMW 0.452 0.4 4.28 0.493 0.2 4.42 0.511 0.0 5.48 0.578 0.5 5.93

PA 0.450 0.0 2.44 0.492 0.0 2.38 0.511 0.0 2.73 0.575 0.0 2.56

LDT 0.447 0.7(–) 2.11 0.489 0.6(–) 2.00 0.508 0.6(–) 2.41 0.571 0.7(–) 2.23

IPCWLE 0.450 0.0 2.18 0.492 0.0 2.03 0.510 0.2(–) 2.51 0.574 0.2(–) 2.27

WRSE 0.453 0.7 1.91 0.495 0.6 1.93 0.514 0.6 2.20 0.578 0.5 2.15

RALE 0.446 0.9(–) 2.07 0.489 0.6(–) 1.98 0.508 0.6(–) 2.35 0.572 0.5(–) 2.18

1.0 IPMW 0.197 0.5 2.84 0.263 0.8 3.58 0.239 0.4 3.84 0.341 0.6 4.81

PA 0.196 0.0 2.29 0.262 0.4 2.65 0.238 0.8(–) 2.93 0.338 0.2(–) 3.17

LDT 0.193 1.5 2.03 0.259 0.8(–) 2.20 0.237 1.3(–) 2.62 0.335 1.2(–) 2.75

IPCWLE 0.194 1.0(–) 2.13 0.261 0.0 2.36 0.238 0.8(–) 2.72 0.337 0.6(–) 2.92

WRSE 0.200 2.0 1.71 0.267 1.5 2.00 0.243 1.3 2.25 0.343 1.2 2.53

RALE 0.192 2.0(–) 1.87 0.259 0.8(–) 2.09 0.236 1.7(–) 2.41 0.336 0.9(–) 2.60
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Table 2. Monte Carlo means, relative biases (bias as a percentage of the

true value) and mean squared errors (MSE, expressed as multiples of

)103  for estimation of survival probabilities based on 1000 data sets of

sizes 500 each. The true values were ( ) ,450.05.01 =S  ( ) ,492.05.02 =S

( ) ,196.00.11 =S  ( ) 261.00.12 =S  for 40% response and ( ) ,511.05.01 =S

( ) ,575.05.02 =S  ( ) ,240.00.11 =S  ( ) 339.00.12 =S  for 60% response

4.0=πR 6.0=πR

Policy 1AB Policy 2AB Policy 1AB Policy 2AB

t(years) Estimator ( )tŜ Bias(%) MSE ( )tŜ Bias(%) MSE ( )tŜ Bias(%) MSE ( )tŜ Bias(%) MSE

0.5 IPMW 0.451 0.2 1.54 0.494 0.4 1.71 0.512 0.2 2.10 0.576 0.2 2.23

PA 0.451 0.2 0.95 0.493 0.2 0.94 0.512 0.2 1.05 0.575 0.0 0.97

LDT 0.450 0.0 0.85 0.492 0.0 0.79 0.511 0.0 0.92 0.574 0.2 (–) 0.85

IPCWLE 0.450 0.0 0.85 0.493 0.2 0.80 0.511 0.0 0.97 0.576 0.2 0.85

WRSE 0.452 0.4 0.77 0.494 0.4 0.79 0.513 0.4 0.85 0.576 0.2 0.81

RALE 0.450 0.0 0.78 0.492 0.0 0.78 0.511 0.0 0.87 0.574 0.2 (–) 0.82

1.0 IPMW 0.197 0.0 1.07 0.263 0.8 1.36 0.241 0.4 1.50 0.341 0.6 1.89

PA 0.197 0.0 0.88 0.263 0.8 1.03 0.241 0.4 1.14 0.340 0.3 1.27

LDT 0.196 0.0 0.80 0.262 0.4 0.87 0.240 0.0 1.02 0.339 0.0 1.11

IPCWLE 0.197 0.5 0.87 0.263 0.8 0.89 0.241 0.4 1.09 0.340 0.3 1.14

WRSE 0.199 1.5 0.68 0.264 1.2 0.82 0.243 1.3 0.88 0.342 0.9 1.01

RALE 0.197 0.5 0.69 0.262 0.8 0.81 0.241 0.4 0.89 0.339 0.0 1.01

For each of 1000 Monte Carlo data sets, ( ) ,tTP k >  2,1=k  were

estimated at time point 0.5 year and 1.0 year, reflecting early and late

period of study. The mean squared errors were calculated from the bias of

the estimated mean probability and the variance of the 1000 estimates.

In calculating the IPCWLE and RALE estimators, the response time R
iT

was considered as the only auxiliary variable which the survival time

could depend upon. For IPCWLE, to model the conditional expectation of

survival probability among the responders who are consistent with the

policy, logistic regression of survival probability on the response time was
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fitted. We did not include the Lokhnygina and Helterbrand [6]’s Cox

regression method in our simulation because its distinct property makes

comparison less feasible.

Table 1 presents the mean, relative bias and mean squared errors for

survival probability estimates based on 1000 samples of size 200 each. As

shown in Table 1, almost all the relative biases, calculated as (bias/true

value) ,100×  were less than 2%. By closely examining the table we notice

that the relative biases were larger for 0.1=t  than ,5.0=t  that is, the

estimators were more biased for survival estimates at times towards the

end of the study when there were more censoring present. In comparing

the biases of different estimators in small samples, the PA estimator was

generally the least biased, followed by the IPCWLE and IPMW

estimators. LDT and RALE estimators always underestimated the true

values whereas WRSE estimator overestimated them.

Comparing the MSE’s, IPMW estimates were the least efficient as one

would expect since no information from the censored patients or any

auxiliary information is used in construction of such estimator. Among the

IPMW, PA, LDT and RALE estimates whose influence functions belong

to the same class, LDT estimates showed substantial gains in efficiency

relative to both the first two, and RALE estimates are more efficient than

LDT estimates in all scenarios, with the relative efficiency ranging from

1.01 to 1.18. The MSE of IPCWLE estimates were slightly larger than

that of LDT estimates but substantially smaller than that of IPMW or PA

estimates. In most instances WRSE estimator appeared to be the most

efficient among all the estimates. The relative efficiencies of WRSE

estimates with respect to LDT estimates ranged from 1.00 to 1.19 and the

gain is bigger when more censoring is present. In general, the MSEs

followed the pattern: IPMW ≥ PA ≥ IPCWLE ≥ LDT ≥ RALE ≥ WRSE.

Table 2 presents the mean, relative bias and mean squared errors for

survival probability estimates based on 1000 samples of size 500 each.

When the sample size was increased to 500, all the biases dropped to less

than 1% except for the WRSE estimator. It was not surprising since the

asymptotic unbiasness of WRSE estimator is achieved via the exponential

functional of the cumulative hazard function. When the sample size was
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increased from 200 to 500, the efficiency of all the estimators improved,

but the trend of relative efficiencies remained mostly unaffected.

6. Discussion

We have reviewed the theory and methods for the inferential
approaches in estimating the survival distribution of treatment
strategies in two-stage randomization designs. These designs can be
viewed as special cases of dynamic treatment regimes with two stages of
randomization. These designs are preferable to upfront randomization
designs when the number of patients available for randomization is small
and the assignment of the second treatment depends on the intermediate
outcome observed prior to the randomization. For more details on the
comparison between two-stage designs and upfront randomization
designs, see Wahed and Tsiatis [16].

Two-stage randomization designs are being broadly accepted in
clinical trials. While traditional methods of data analysis cannot make
efficient use of all the information obtained from such trials, recent
methodologies have shown considerable advancement in this area.
Lunceford et al. [7] first proposed methods for estimating survival
distribution and mean restricted survival time for two-stage
randomization designs. The inverse-probability-weighted estimators
proposed by them are consistent and asymptotically normal. However,
these estimators are not asymptotically efficient, mainly because they
fails to take into account the information from censored observations.
Nevertheless, their method was the first valid approach towards
statistical inference from two-stage designs. The estimators developed by
Wahed and Tsiatis [15, 16] improves efficiency over Lunceford et al.
estimators by taking into account auxiliary covariates, which provides
additional gain in efficiency when the covariates are prognostic of the
survival time among responders. These estimators are not as simple or
intuitive as the inverse-probability-weighted estimator or the weighted
risk set estimator defined by Guo and Tsiatis [2]. The weighted risk set
estimator defined as a natural extension of the Aalen-Nelson estimator is
more intuitive and easier to implement than other estimators such as
inverse-probability-weighted estimator or the regular asymptotically
linear efficient estimator. Our simulation study shows that weighted risk
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set estimator is the most efficient among the ones discussed in this paper,
however, the estimate of survival probability shows some bias in small
samples mainly because of its non-linear functional dependence on the
cumulative hazard function. The small-sample bias of this estimator is
larger than other estimates in most cases. The regular asymptotically
linear estimator is the most efficient in its class, as discussed in Wahed
and Tsiatis [16] although the idea is not as intuitive and computationally
involved.

Readers familiar with Cox proportional hazard model can apply the
methodologies described in Lokhnygina and Helterbrand [6] to analyze
survival data from two-stage randomization designs. It is easy to
implement using common statistical software packages such as SAS and
S-Plus.

Overall, all of the recently developed estimators introduced in this
article have an intention-to-treat interpretation. Accordingly, all the
studies discussed treated the non-responders and non-consenters in a
similar fashion. One question remain unanswered is: “How to estimate
the causal effect of a treatment policy?” How could one estimate the
survival distribution of a population where every member of the
population is treated with say, 1A  and then if responded treated with

say, ?1B  Future work in this area also includes the development of

log-rank-type test procedures to test hypotheses regarding policy means.
There is also an opportunity to investigate this study from a likelihood
and Bayesian point of view.

References

[1] T. R. Fleming and D. P. Harrington, Counting Processes and Survival Analysis, John

Wiley & Sons, Inc., New York, 1991.

[2] X. Guo and A. Tsiatis, A weighted risk set estimator for survival distributions in two-

stage randomization designs with censored survival data, The International

J. Biostatistics 1 (2005), 1-15.

[3] T. M. Habermann, E. A. Weller, V. A. Morrison, P. A. Cassileth, J. B. Cohn, S. R.

Dakhil, R. D. Gascoyne, B. Woda, R. I. Fisher, B. A. Peterson and S. H. Horning,

Rituximab-chop vs. chop with or without maintenance rituximab in patients 60 years

of age or older with diffuse large b-cell lymphoma (dlbcl): an update, Blood 104:40a,

(2004), 127.



w
w

w
.p

ph
m

j.c
om

A REVIEW OF INFERENTIAL PROCEDURES FOR SURVIVAL … 139

[4] P. W. Holland, Statistics and causal inference, J. Amer. Statist. Assoc. 81 (1986),

945-960.

[5] D. G. Horvitz and D. J. Thompson, A generalization of sampling without replacement

from a finite universe, J. Amer. Statist. Assoc. 47 (1952), 663-685.

[6] Y. Lokhnygina and J. D. Helterbrand, Cox regression methods for two-stage

randomization designs, 2006, in review.

[7] J. K. Lunceford, M. Davidian and A. A. Tsiatis, Estimation of survival distributions

of treatment policies in two-stage randomization designs in clinical trials, Biometrics

58 (2002), 48-57.

[8] W. K. Newey, Semiparametric efficiency bounds, J. Applied Econometrics 5 (1990),

99-135.

[9] J. M. Robins, A. Rotnitsky and L. P. Zhao, Estimation of regression coefficients when

some regressors are not always observed, J. Amer. Statist. Assoc. 89 (1994), 846-866.

[10] D. B. Rubin, Estimating causal effects of treatments in randomized and

non-randomized studies, J. Educational Psychology 66 (1974), 688-701.

[11] D. Rubin, Discussion of “Randomization analysis of experimental data in the Fisher

randomization test,” by Basu, J. Amer. Statist. Assoc. 75 (1980), 591-593.

[12] A. J. Rush, M. Fava, S. R. Wisniewski, P. W. Lavori, M. H. Trivedi, H. A. Sackeim,

M. E. Thase, A. A. Nierenberg, F. M. Quitkin, T. M. Kashner, D. J. Kupfer,

J. F. Rosenbaum, J. Alpert, J. Stewart, P. J. McGrath, M. M. Biggs, K. Shores-

Wilson, B. D. Lebowitz, L. Ritz and G. Niederehe, Sequenced treatment alternatives

to relieve depression (STAR*D): rationale and design, Controlled Clinical Trials 25

(2004), 119-142.

[13] R. M. Stone, D. T. Berg, S. L. George, R. K. Dodge, P. A. Paciucci, P. Schulman, E. J.

Lee, J. O. Moore, B. L. Powell and C. A. Schiffer, Granulocyte-macrophage colony-

stimulating factor after initial chemotherapy for elderly patients with primary acute

myelogenous leukemia, The New England J. Medicine 332 (1995), 1671-1677.

[14] P. F. Thall, H.-G. Sung and E. H. Estey, Selecting therapeutic strategies based on

efficacy and death in multi-course clinical trials, J. Amer. Statist. Assoc. 97 (2002),

29-39.

[15] A. S. Wahed and A. A. Tsiatis, Optimal estimator for the survival distribution and

related quantities for treatment policies in two-stage randomization designs in

clinical trials, Biometrics 60 (2004), 124-133.

[16] A. S. Wahed and A. A. Tsiatis, Semiparametric efficient estimation of survival

distributions in two-stage randomization designs in clinical trials with censored

data, Biometrika 93 (2006), 163-177.

g


