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Abstract

This paper discusses a stochastic representation, the moment generating
function, and a likelihood ratio test for a distribution family that extends
the skew normal model by embodying a distortion parameter. An
application of the new test in interpreting the distribution of microarray
gene expression data on blood stem cells is included for illustration
purpose.

1. Introduction

Let ( )⋅φ  and ( )⋅Φ  be the pdf and cdf of the standard normal

distribution. For any ,R∈λ  the skew normal model ( )λSN  refers to the

random variable following the density function (Azzalini [2]):

( ) .,12 Rx
xx

xf ∈







σ
µ−λΦ








σ
µ−φ

σ
= (1)
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Notice that the normal model ( )σµ,~ NX  uses µ and σ to measure the

mean and scale of the variability of the data, and ( )λSN  extends the

( )σµ,N  model by introducing a new parameter λ. This λ elegantly allows

the model to catch the asymmetric property of the data, and measures
the skewness for the underlying distribution of the data. When ,0=λ  (1)

becomes the normal model.

For the extension of the skew normal model into multivariate
scenario, Azzalini and Dalla Valle [4] discussed a multivariate version of
the skew normal distribution, which was refined by another version of
multivariate skew normal model that has coherency property (Gupta and
Chen [11]). Branco and Dey [5] proposed a multivariate skew elliptical
distribution. For a skew normal random sample, Chen et al. [7] derived
the distribution of the sample mean.

The skew normal model has applications in many disciplines. For
example, Azzalini and Capitanio [3] discussed the application of the
multivariate skew normal model; Gupta and Chen [9] analyzed goodness-
of-fit methods for fitting epidemiology data into the skew normal model;
Chen et al. [8] applied the skew normal model to stock market data for
the investigation of sell prices in a bull or (bear) market; and Kim and
Mallick [12] discussed a method of Bayesian prediction using the skew
normal model, among many others.

One of the remaining problems with the skew normal distribution in

modeling is that the skew factor λ, in some cases may not be able to

completely reflect the skewness conveyed by the variability of the data.

Notice that in (1), when λ varies, ( )xλΦ  is not sensitive to the change of

x, especially when x is large enough. In other words, λ cannot reflect the

shape of the tail for the distribution of the data. Under this scenario, it is

natural to consider another parameter that can sensitively model the tail

of the distribution of the data. This leads to the following model:

( ) ,





 +

σ
µ−λΦ








σ
µ−φ= b

xx
cxf (2)

where the parameter b contained in model (2) serves as another

dimension to model the data. In Section 2, we review the plausibility of
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model (2). We then provide a probability interpretation or stochastic
representation of the model in Section 3, which is then followed by
Section 4 describing properties of the new model. Section 5 especially
addresses a likelihood ratio test, which is applied to modeling microarray
gene expression data on blood stem cell studies in Section 6.

2. Distorted Normal Model

In this section, we discuss a definition of the distorted normal family.

In the sequel we denote ( )σφ ,x  and ( )σΦ ,x  the pdf and cdf of a normal

random variable with mean 0 and variance ,2σ  respectively.

Definition. If a continuous random variable X has the density

( ) ( ) ( )σ+λΦσφ= ∗ ,, bxxcxf (3)

for any RRb ∈λ∈>σ ,,0  and ,0>∗c  then X is called a distorted

normal random variable with skew factor λ and distortion factor b.

The following observation shows that the function ( )xf  specified in

the definition is eligible for being a density function when the constant,

,∗c  takes certain value.

Proposition 1. Let ( )xf  be the density of a distorted normal random

variable defined in (3), when [ ( )] .1, 12 −∗ λ+σΦ= bc  Then

( )∫
∞

∞−
= .1dxxf (4)

The skew parameter λ and the distortion factor b in the model (3)

measure the skewness of the shape of the density, and the quantity σ

models the population variability.

Proposition 2. When the distortion factor is set to zero ( ),0=b  the

distorted normal distribution becomes the skew normal distribution:

( ) ( ) ( ).12 σλΦσφ
σ

= xxxf
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The proof of Proposition 2 is self-evident by the fact that ( ) .
2
10 =Φ

Specifically, when the parameter b is 0, for any 0>σ  the distorted

normal distribution defined by (1) becomes the general skew normal

distribution with pdf ( ) ( ) ( ).,,2,; σλΦσφ=σλ xxxf  When b is 0 and σ is

1, the distorted normal distribution becomes the skew normal

distribution with pdf ( ) ( ) ( ),2; xxxf λΦφ=λ  which has been extensively

studied by Azzalini [2], Gupta and Chen [9, 10], among others. When

both b and λ are set to 0, the distorted normal distribution defined in (1)

becomes the normal distribution with mean 0 and variance .2σ  It is

therefore evident that the distorted normal distribution family embraces

the normal distribution family and the skew normal distribution family.

For convenience, we will denote the family of distorted normal

distributions defined by (1) as ( ),,, σλbNSD  and denote the skew

normal distribution with pdf ( ) ( ) ( )xxxf λΦφ=λ 2;  as ( ).λNS

3. Probability Interpretation

In this section, we provide a probability interpretation for the model

discussed in Section 2. Recall that the stochastic representation of the

skew normal model is the following. If X and Y are two independent

random variables following the standard normal distribution, then for

any real number λ, the random variable YXZ
22 1

1

1 λ+
+

λ+

λ=

follows a skew normal distribution ( ).λSN  In the following discussion,

we start with two independent normal random variables to generate a

distorted normal model.

Theorem 1. Let U and V be two independent random variables,

( )2
1,0~ σNU  and ( ).,0~ 2

2σNV  Denote ,VUY −=  then the density of

Y when cU ≥  reads

( ) ( ) ( ) ,;; 2
2

2
1

2
2

2
1

212

12
2

2
1 






 σ+σσ+σ

σσ
−

σ
σ

Φσ+σφ= cyykyf
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where c is the threshold of truncation for the random variable U, the

coefficient .1,
1

1

−















σ
−Φ= ck

To prove Theorem 1, we need the following two results. First, notice
that for constants Rba ∈> ,0  and ,0>σ

( )∫
∞








σ
−σΦ=







 −

σ
−

σπc

acb
a

dxbax .1

2

1exp1
2
1 2

2
(5)

Next, we shall prove a lemma that will play a key role in the proof of
Theorem 1.

Lemma 1. For positive constants σ and ,xσ

( )∫
∞













σ
−

σπ











σ

−−
σπc xx

dxxxy
2

2

2

2

2
exp

2
1

2
exp

2
1

( ) ( ) ,;; 222222 





 σ+σσ+σ

σσ
−

σ
σ

Φσ+σφ= xx
x

x
x

cyy (6)

where ( )22; xy σ+σφ  and ( ) 





 σ+σσ+σ

σσ
−

σ
σ

Φ 2222 ; xx
x

x cy  are the

pdf and cdf of the normal distribution with mean 0 and variance 22
xσ+σ

at the points y and ( ),22
x

x

x cy σ+σ
σσ

−
σ
σ

 respectively.

Proof. The left hand side of (6) reads

( )∫
∞













σ
−

σπ











σ

−−
σπ

=∆
c xx

dxxxy
2

2

2

2

2
exp

2
1

2
exp

2
1

( ( ) )∫
∞







 σσ+σ+−

σ
−

σσ







π
=

c
xx

x
dxxxxyy 222222

2

2
2

2

1exp1
2
1

(( ) ( ))∫
∞







 σ+σσ+−σσ+σ

σ
−

σσ







π
=

c
xxxx

x
yxyx 22222222

2

2
2

2

1exp1
2
1

 ( ) .
2

1exp
2

1exp 2222
2

2
2

dxyy xx






 σ+σσ

σ







σ
− (7)
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(7) can be written as

( ( ))






 σ+σσ−

σ
−

σπ
=∆ 22222

22

1exp
2
1

xx
x

yy

( )∫
∞







 σ+σσ−σσ+σ

σ
−

σπc
xxxx dxyx .

2

1exp1
2
1 22222

2
(8)

By (5),

( ( )∫
∞







 σ+σσ−σσ+σ

σ
−

σπc
xxxx dxyx 22222

22

1exp1
2
1

.2222
22







 σ+σ

σσ
−σ+σ

σ
σ

Φ
σ+σ

σ
= x

x
x

x

x

x cy (9)

Thus putting (9) into (8) yields

( ( ))






 σ+σ−

σ+σπ
=∆ 222

22 2
1exp1

2
1

x
x

y







 σ+σ

σσ
−σ+σ

σ
σ

Φ 2222
x

x
x

x cy

( ) ( ) ,;; 222222 





 σ+σσ+σ

σσ
−

σ
σ

Φσ+σφ= xx
x

x
x

cyy (10)

which is the right hand side of (6).

With the above lemma, we are able to derive Theorem 1 as follows.

Proof of Theorem 1. Notice that

( ) ( )cUyVUPyYP ≥|≤−=≤

( )∫ ∫
∞ −

∞− 











σ
−

σπ
=

c

xy

X dtdxxftk
2
2

2

2 2
exp1

2
1

( )∫ ∫
∞ −

∞−
σφ













σ
−

σπ
=

c

xy
dtdxxtk ,,

2
exp1

2
1

12
2

2

2
(11)

where ( )[ ] .1,
1

1

1

1

1
−−

−














σ
−Φ=













σ
−Φ=≥= cccUPk
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From (11), the density of Y reads

( ) ( ) ( )∫
∞

σφ












σ

−−
σπ

=
c

dxx
xy

kyf 12
2

2

2
,

2
exp1

2
1

( ) ( ) ,;; 2
2

2
1

2
2

2
1

212

12
2

2
1 






 σ+σσ+σ

σσ
−

σ
σ

Φσ+σφ= cyyk

by Lemma 1.

4. Properties of the Distorted Normal Distribution

We discuss various properties of ( )σλ,,bNSD  in this section. To

derive the moment generating function of ( ),,, σλbNSD  we need the

following result as in Zacks [15, pp. 53-54].

Lemma 2. Let random variable ( ).1,0~ NZ  Then

( )[ ] ( ),1 2hkkhZE +Φ=+Φ

for any Rkh ∈,  and ( )⋅Φ  is the CDF of ( ).1,0N

We can now state the second theorem.

Theorem 2. Let random variable ( ).,,~ σλbX NSD  Then the

moment generating function of X is given by

( ) {( ) }22 1
22

λ+σ+λσΦ= σ∗ btectM t
X (12)

for any Rt ∈  with ∗c  as given in Proposition 1.

Proof. With pdf given by (1), for any Rt ∈  the moment generating

function of X is

( ) ( ) ( )∫
∞

∞−

∗ σ+λΦσφ= dxbxxcetM tx
X ,,

( ) ( )∫
∞

∞−

σ∗ σ+λΦ












σ

σ−
−

πσ
= dxbx

tx
ec t ,

2
exp

2

1
2

22

2
222

( )∫
∞

∞−

−σ∗ σ+λσ+λΦ
π

= dybtyeec
y

t 22

2
22

2
1

{( ) },1 2222
λ+σ+λσΦ= σ∗ btec t

in view of Lemma 2.
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Using the moment generating function (12) of ( ),,, σλbNSD  after

some algebra, we obtain the first four non central moments of the

distorted normal random variable X as follows:

[ ] ,ηδσ= ∗cXE

[ ] ,222 σξηδ−σ= ∗bcXE

[ ] ,3 333233 σηδ−σηδ+ηδσ= ∗∗∗ ccbcXE

[ ] ξσηδ−ηδσ−ξσηδ−σ= ∗∗∗ 324353244 333 bcbcbcXE

,2 3424 ξσηδ+ξσηδ+ ∗∗ bcbc (13)

where

( [ ]),1 2λ+σφ=η b

,
1

1
2λ+

=ξ

.λξ=δ (14)

Also, the variance of the distorted random variable X is obtained as:

[ ] ( ) .1 22222 ξηδ−δη−σ= ∗∗ ccXVar

Next we summarize some statistical properties of the distorted

normal distribution ( )σλ,,bNSD  in this section. As introduced in

Section 2, the ( )σλ,,bNSD  contains the skew normal distribution and

normal distribution.

Theorem 3. If ( ),,,~ σλbX NSD  then the following holds:

(i) When ,1,0 =σ=b  then ( )λNS~X  and .~ 2
1

2 χX

(ii) When ,0,0 =λ=b  then ( ).,0~ 2σNX

(iii) As ( ) ( ) .0,,2,,, >σφ→σλ∞→λ xxbNSD

(iv) ( ),,,~ σλbX NSD  then ( ).,,~ σλ−− bX NSD
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The proof of Theorem 3 is self-evident.

Theorem 4. If ( ),,,~ σλbX NSD  and ( ),,0~ 2σNZ  X and Z are

independent, then ( ) ( ),,,~2 σλ+ ∗bZX NSD  where .2δ=λ∗

Proof. Using the moment generating functions of ( )σδ,,bNSD  and

( ),,0 2σN  the moment generating function of ( ) 2ZX +  is

( ) ( ) ( ) ( )222 tMtMtM ZXZX ⋅=+

{( ) } 424 2222
12 tt ebtec σσ∗ ⋅λ+σ+λσΦ=

{( ) ( )},122 2222
λ+σ+λσΦ= σ∗ btec t

which is the MGF of ( ),,, σλ∗bNSD  with .2δ=λ∗

5. Likelihood Ratio Test

Assume that nXXX ...,,, 21  constitute a random sample. To test the

hypothesis that the data is from a distorted normal with specific
parameters ,, 11 λb  and ,1σ  we have

( ),,0~...,,,: 2
210 σNiidXXXH n

versus the alternative hypothesis

( ).,,~...,,,: 11211 σλbiidXXXH n NSD

Using (ii) of Theorem 3, testing the above null hypothesis 0H  versus the

alternative hypothesis 1H  is equivalent to testing the null hypothesis







=







λ 0

0
:0

b
H

versus the alternative hypothesis

,:
1

1
1 








λ

=






λ

bb
H

where 1b  and 1λ  are specified.
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A test statistic for testing 0H  versus 1H  can be constructed using

the likelihood ratio approach.

As the ratio of the likelihood functions under 1H  and 0H  is

( )
( )

( ) ( )

( )∏
∏

=

=
∗

σφ

σ+λΦσφ
=

σλ
σλ

n

i i

n

i ii

n

n

X

bXXc

bXXXf
bXXXf

1

1 11

0021

1121

,

,,

,,;...,,,
,,;...,,,

( )∏
=

σ+λΦ∝
n

i
i bX

1
11 .,

The test statistic is based on ( )∏ =
σ+λΦ

n
i i bX

1 11 ,  when σ is known. If σ

is unknown, then we may use the sample standard deviation, which is a

consistent estimator of σ in the test statistic. The rejection area is the set

where ( )∏ =
σ+λΦ

n
i i bX

1 11 ,  is greater than a constant, γ. Denote the order

statistics of nXXX ...,,, 21  as ( ) ( ) ( ).21 nXXX ≤≤≤  For convenience,

we consider the following two cases, separately.

Case (i). .01 >λ

In this case, we have

( ) ( ( ) )∏ ∏
= =

σ+λΦ≤σ+λΦ
n

i

n

i
ni bXbX

1 1
1111 ,,

( ( ) ).,11 σ+λΦ= bX n
n

We therefore construct an at most α-level test using ( ( ) ).,11 σ+λΦ bX n
n

When it is greater than some constant, then a decision of rejection of the

null hypothesis 0H  can be made according a significance level α.

Specifically, we reject ,0H  if

( ( ) ) ,,11 γ>σ+λΦ bX n
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or reject ,0H  if

( ) ,11 γ>







σ
+λ

Φ
bX n (15)

where γ is chosen such that

( ) .0
11 α=








|γ>








σ
+λ

Φ H
bX

P n

Observe that (15) is equivalent to

( )
( )

,
1

1
1

λ
−γΦσ

>
− b

X n

where γ is such that

( )
( )

.0
1

1
1

α=







|

λ
−γΦσ

>
−

H
b

XP n

Using the CDF of the order statistics ( )nX  under 0H  and after some

algebra ( )γΦ−1  is found to be

( ) [( ) ]
.

1 1
11

11
σ

+α−Φσλ
=γΦ

−
− bn

Therefore, we obtain the following decision rule:

Reject ,0H  if ( ) [( ) ],1 11 n
nX α−Φσ> − (16)

at the significance level up to α.

Case (ii). .01 <λ

In this case, we first have

( ) ( ( ) )∏ ∏
= =

σ+λΦ≤σ+λΦ
n

i

n

i
i bXbX

1 1
11111 ,,

( ( ) ).,111 σ+λΦ= bXn
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Similar to the development of case (i), we reject ,0H  if

( ( ) ) ,,111 τ>σ+λΦ bX

where τ is such that

( )
( )

.0
1

1
1

1 α=







|

λ
−τΦσ

<
−

H
b

XP

Using the CDF of the order statistics ( )1X  under 0H  and after some

algebra ( )γΦ−1  is found to be

( ) ( )
.1

11
11

σ
+αΦσλ

=γΦ
−

− bn

Therefore, we obtain the following rule:

Reject ,0H  if ( ) ( ),11
1

nX αΦσ< − (17)

at the significance level up to α.

In summary, (16) specifies the rejection rule for the case of the given

01 >λ  at the significance level up to α; and (17) gives the rejection rule

for the case of 01 <λ  at the significance level up to α. In all cases, if σ is

unknown, it is replaced by the sample standard deviation S for large

sample size. In what follows, we will provide an example in accessing the

distorted normal feature of a gene expression data set.

6. Application: Modeling an Affymetrix Data Set

Recent advances in biomedical technology result in one of the
predominant devices – the microarray gene chip. Using a microarray
chip, biologists can simultaneously obtain thousands or tens of thousands
of numerical readings (gene expressions) for genes under investigation.
These gene expressions are obtained by hybridizing target experimental
units (containing abundant mRNA’s) with the probe sets pre-specified on
the microarray chip. The hybridization intensity at each gene location is
then read through a special software after normalization, giving the
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numerical expression for each gene. Using the expressions of the
thousands of genes in a living cell, biologist can grasp the numerical
aspects of the genes through gene profiling. One of the commercially
available arrays is the affymetrix microarray gene chip. The affymetrix
gene chip probe array provides an average difference (an expression
index) for each gene. That is, the average difference serves as an
indicator for the level of gene expression. It is then applied to determine
the change in the hybridization intensity of a given probe set. For
affymetrix gene chips, the reading (average difference in gene expression)
is calculated using the sum of the “perfect match-mismatch” for each
probe pair in
a probe set divided by the number of probe pairs used in the probe set.
That is

( )∑
∈

−=
Aj

jj MMPM
A

AvDiff ,1

where A is the subset of probes for which the ranges of jj MMPM −  are

within 3 SDs away from the average of ( ) ( ) ( )122 ...,, −− JPMMMPM

( )1−− JMM  with J being the number of probe sets used in the array, A

is the cardinality of set A, and ( ) ( )jj MMPM −  is the j-th smallest

difference. The average difference is given when processing the
hybridized experimental sample on the microarray chip via the software
of affymetrix gene chip data mode. It is observed that the affymetrix gene
expression (average difference) data for an experiment is usually not
symmetric. Could it be distorted normal?

To seek a legitimate assumption for the truncated model, we start
with the general assumption in Li and Wang [13] that the background
adjusted and normalized gene expression data follow a normal model.
Under the assumption that observations of a perfect match reading U
and a mismatch reading V follow two independent normal distributions,
we can apply the probability model discussed in Section 3 into this
scenario. Since the reading of PM is discarded or replaced by certain
threshold value when the reading is too low (for example, Akashi et al.
[1]), we consider the distribution of cUVUY ≥|−=  for a pre-specified

constant c.
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Now, according to Theorem 1 (with U and V being the perfect-match

and mismatch readings, respectively), the density of average differences

in the affymetrix gene expression data cUVUY ≥|−=  is a distorted

normal distribution defined in (1) with mean 0, variance ,2
2

2
1

2 σ+σ=σ

skew factor ,
2

1
σ
σ

=λ  and distortion parameter ( ),2
2

2
1

21
σ+σ

σσ
−= cb  where

( ) .1,
1

2 







σ
−Φ=λ+σΦ cb

Therefore, when the data of perfect match probe pairs are truncated

according to certain value, the underlying distribution of the truncated

data turns out to be a distorted normal distribution rather than being a

normal or log normal distribution. This conclusion can be further verified

by using the inference procedure proposed in Section 5 when a

microarray data set is available.

A microarray gene expression data on hematopoietic stem cell (HSC)

was obtained in Akashi et al. [1] for studying the development of blood

stem cells. There are 5253 gene expressions passed through initial

screening for further biological study. A histogram of the 5253 gene

expression data in HSC shows a clear skew trend. To investigate whether

the distribution of the gene expressions in HSC is normal or distorted

normal, as an example, we test the null hypothesis











=











λ 0

0
:0

b
H

versus the alternative hypothesis

,
5

208
:1 










=











λ

b
H

where the value of 2081 =b  and 5=λ  are pre-specified (see [1]).

Calculation shows that for the sample size 5253=n  and significance

level [( ) ] .2702.41%,5 11 =α−Φ=α − n  Also the sample standard deviation
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is obtained as .9.1158ˆ =σ  Then the right hand side of (16) is

[( ) ] [( ) ]nn S 1111 11 α−Φ=α−Φσ −−

( )2702.49.1158=

.7347.4948=

Since the test statistic value of ( )nX  is 19434.9, that is, ( )
1−Φσ>nX

[( ) ],1 1 nα−  we then conclude that 0H  should be rejected according to

(16) at significance level %.5=α
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