SPECTRUM PRESERVING MAPPINGS IN BANACH ALGEBRAS

ABDELAZIZ MAOUCHE

(Received February 19, 2006)

Submitted by K. K. Azad

Abstract

We give a new proof of a theorem stating that the socle of a Banach algebra is the largest algebraic (respectively, spectrum-finite) ideal. Then we prove that a surjective spectrum preserving map is linear on the socle of a Banach algebra.

1. Introduction

We assume throughout this paper that \mathbf{A} and \mathbf{B} are two complex semisimple Banach algebras. The socle of \mathbf{A}, denoted by $\operatorname{Soc}(\mathbf{A})$, is the sum of all minimal left ideals of \mathbf{A}. It is well known that the socle of \mathbf{A} is a two-sided ideal of \mathbf{A} and all its elements are algebraic. In fact we have the following characterization of the elements of the socle: $a \in \operatorname{Soc}(\mathbf{A})$ if and only if $\mathbf{S p}(x a)$ is finite for all $x \in \mathbf{A}$. We recall from [3] that rank one elements of \mathbf{A} are defined as the set $\mathcal{F}_{1}(\mathbf{A})=\{a \in \mathbf{A}: \mathbf{S p}(x a)$ contains at most one nonzero point for every $x \in \mathbf{A}\}$. This set $\mathcal{F}_{1}(\mathbf{A})$ is closed under multiplication by elements of \mathbf{A} and $\mathcal{F}_{1}(\mathbf{A}) \subset \mathbf{S o c}(\mathbf{A})$. Examples of rank one elements are given by the minimal projections of A. Furthermore,

2000 Mathematics Subject Classification: 46H70, 17A15.
Keywords and phrases: Banach algebra, spectrum preserving map, trace, socle, rank one element, minimal projection, spectrum-finite ideal.
every minimal left ideal of \mathbf{A} has the form \mathbf{A}_{p}, where p is a minimal projection, so $\operatorname{Soc}(\mathbf{A})$ is equal to the set of all finite sums of rank one elements of A. Now, if $a \in \operatorname{Soc}(\mathbf{A})$, then we define the trace of a as in [3] by $\operatorname{Tr} a=\sum_{\lambda \in \mathbf{S p} a} \lambda \cdot m(\lambda, a)$, where $m(\lambda, a)$ is the multiplicity of the spectral value λ. It is shown in [3] that $\mathbf{T r}$ is linear and nondegenerate on $\boldsymbol{S o c}(\mathbf{A})$, that is, if $a \in \mathbf{S o c}(\mathbf{A})$ and $\boldsymbol{\operatorname { T r }}(a x)=0$ for all $x \in \boldsymbol{\operatorname { S o c }}(\mathbf{A})$, then $a=0$. Moreover, this spectral trace coincides with the usual trace defined on matrices and extends the trace defined on the algebra $\mathcal{B}(\mathbf{X})$ of bounded linear operators on a Banach space \mathbf{X} (see [2] and [3] for more results and details).

2. The Socle is the Largest Spectrum Finite-ideal

We give in this section a new analytic proof of a theorem first proved in [6] saying that the socle of a semisimple Banach algebra \mathbf{A} is the largest spectrum-finite ideal of \mathbf{A}. It is easy to see that the socle is algebraic, so its elements have finite spectra. Our aim is to show that if \mathbf{I} is a spectrum-finite ideal of \mathbf{A}, then $\mathbf{I} \subseteq \operatorname{Soc}(\mathbf{A})$.

Theorem 2.1. Let A be a complex semisimple Banach algebra and \mathbf{I} be an algebraic (or spectrum-finite) ideal of \mathbf{A}. Then $\mathbf{I} \subseteq \operatorname{Soc}(\mathbf{A})$.

Proof. Since \mathbf{I} is an algebraic ideal, its elements have finite spectra. Let $a \in \mathbf{I}$ and $\mathbf{A}_{n}=\{x \in \mathbf{A}: \# \mathbf{S p}(x a) \leq n\}$. By Newburgh's theorem, each \mathbf{A}_{n} is closed and $\mathbf{A}=\bigcup_{n=1}^{\infty} \mathbf{A}_{n}$. By Baire's category theorem there exists an $n_{0} \in \mathbf{N}$ such that $\mathbf{A}_{n_{0}}$ contains a nonempty open set Ω. Let $x \in \Omega$ and $y \in \mathbf{A}$ and consider the application $\mathbf{F}: \mathbf{C} \rightarrow \mathbf{A} a, \lambda \rightarrow$ $[(1-\lambda) x+\lambda y] a$. By the subharmonicity of $\log \delta_{n}$ and the fact that $\log \delta_{n}(\mathbf{F}(\lambda))=-\infty$ on the segment [0,1] which is of positive capacity, we deduce that $\delta_{n}(\mathbf{F}(\lambda))=0$, for all $\lambda \in \mathbf{C}$ (where δ_{n} denotes the n-th diameter (see [1])). In particular this is true for $\lambda=1$. Then the spectrum of each element of $\mathbf{A} a$ has at most n points. Let $b \in \mathbf{A}$ such that
$\# \mathbf{S p}(b a)=n$. Let p_{1}, \ldots, p_{n} be the Riesz projections associated to the nonzero spectral values of $\mathbf{S p}(b a)$. We intend to show that each projection p_{i} is minimal and $a=a p_{1}+\cdots+a p_{n}$. Suppose that p_{i} is not minimal. Then there exists another nontrivial projection $p_{i} z p_{i} \in p_{i} \mathbf{A} p_{i}$. Thus the set $\left\{p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}, p_{i} z p_{i}, p_{i}-p_{i} z p_{i}\right\}$ is composed of orthogonal projections of $\mathbf{A} a$. But this is in contradiction with the fact that the spectrum of every element of $\mathbf{A} a$ consists of at most n elements. Let $p=p_{1}+\cdots+p_{n}$ and suppose that $a \neq a p$. Then $\mathbf{A}(a-a p) \neq\{0\}$ and there exists a projection $q \in \mathbf{A}(a-a p)$, i.e., $q^{2}=q=l(1-p)$ with $l \in \mathbf{A} a$. We see that $q p_{i}=0$ for $i=1, \ldots, n$ because $q p_{i}=l(1-p) p_{i}=$ $l\left(p_{i}-p_{i}\right)=0$. Now if $d=p_{1}+2 p_{2}+\cdots+n p_{n}+(n+1) q$, then $d \in \mathbf{A} \alpha$ and $\{1,2, \ldots, n, n+1\} \subset \mathbf{S p}(d)$, but this contradicts $\# \mathbf{S p}(b a)=n$.

3. Spectrum Preserving Mappings

Let \mathbf{A} and \mathbf{B} be two semisimple Banach algebras and $\Phi: \mathbf{A} \mapsto \mathbf{B}$ be a surjective mapping such that $\mathbf{S p}(\Phi(a) \Phi(x))=\mathbf{S p}(a x)$. We show that Φ is linear on the socle of \mathbf{A}. Notice that unlike most authors who are interested in spectrum-preserving problems, we do not assume linearity or multiplicativity of Φ in advance (see [7]). Our results are similar to those obtained in [5] in the case of the algebra of linear bounded operators $\mathbf{B}(\mathbf{H})$, where \mathbf{H} is a Hilbert space.

Lemma 3.1. Let $a \in \operatorname{Soc}(\mathbf{A})$. If $\mathbf{S p}(a x)=\{0\}$ for all $x \in \mathcal{F}_{1}(\mathbf{A})$, then $a=0$ and Φ is injective.

Proof. If $\operatorname{Sp}(a x)=\{0\}$ for all $x \in \mathcal{F}_{1}(\mathbf{A})$, then $\operatorname{Tr}(a u)=0$ for all $u \in \mathcal{F}_{1}(\mathbf{A})$. Now if $y \in \mathbf{S o c}(\mathbf{A})$, then $y=\sum_{i=0}^{n} u_{i}$ with $u_{i} \in \mathcal{F}_{1}(\mathbf{A})$. So $\operatorname{Tr}(a y)=\operatorname{Tr}\left(a \sum_{i=0}^{n} u_{i}\right)=\sum_{i=0}^{n} \operatorname{Tr}\left(a u_{i}\right)=\sum_{i=0}^{n} 0=0 . \quad$ Since $\quad \operatorname{Tr} \quad$ is nondegenerate, we have $a=0$. Suppose that $\Phi(a)=0$. Then for each $x \in \mathcal{F}_{1}(\mathbf{A})$ we have $\mathbf{S p}(a x)=\mathbf{S p}(\Phi(a) \Phi(x))=\{0\}$ and $a=0$ by the first part of the proof.

Theorem 3.2. Let $\Phi: \mathbf{A} \mapsto \mathbf{B}$ be a surjective map preserving the spectrum in the sense $\mathbf{S p}(\Phi(a) \Phi(x))=\mathbf{S p}(a x)$ for every $a, x \in \mathbf{A}$. Then Φ is injective, $\Phi\left(\mathcal{F}_{1}(\mathbf{A})\right)=\mathcal{F}_{1}(\mathbf{B})$ and $\Phi(\mathbf{S o c}(\mathbf{A}))=\mathbf{S o c}(\mathbf{B})$.

Proof. (i) Let $u \in \mathcal{F}_{1}(\mathbf{A})$. Then $\# \mathbf{S p}(u x) \backslash\{0\}=1$ for all $x \in \mathbf{A}$. For each $y \in \mathbf{B}, \mathbf{S p}(\Phi(u) y)=\mathbf{S p}(\Phi(u) \Phi(x))=\mathbf{S p}(u x)$, for some x in \mathbf{A}. So $\Phi(u) \in \mathcal{F}_{1}(\mathbf{B})$. Similarly, we show that if $v \in \mathcal{F}_{1}(\mathbf{B})$, then there exists $u \in \mathcal{F}_{1}(\mathbf{A})$ such that $v=\Phi(u)$. Indeed, $\# \mathbf{S p}(v y) \backslash\{0\}=1$ for all $y \in \mathbf{B}$, $v=\Phi(u)$ and $y=\Phi(x)$ for u, x in \mathbf{A} because Φ is surjective. Then $\mathbf{S p}(v y)=\mathbf{S p}(\Phi(u) \Phi(x))=\mathbf{S p}(u x)$ for all $x \in \mathbf{A}$. Thus $u \in \mathcal{F}_{1}(\mathbf{A})$ and $\Phi\left(\mathcal{F}_{1}(\mathbf{A})\right)=\mathcal{F}_{1}(\mathbf{B})$.
(ii) Let $a \in \operatorname{Soc}(\mathbf{A})$. So $a=a x a$ for some $x \in \mathbf{A}$ because the socle is von Neumann regular. Then $\Phi(a)=\Phi(a x a) \in \mathbf{S o c}(\mathbf{B})$ since for an arbitrary $y \in \mathbf{B}$, there exists $z \in \mathbf{A}$ such that $y=\Phi(z)$, so $\mathbf{S p}(\Phi(a) y)=$ $\mathbf{S p}(\Phi(a) \Phi(z))=\mathbf{S p}(a z)$ is finite; then $\Phi(a) \in \mathcal{F}_{n}(\mathbf{B}) \subset \mathbf{S o c}(\mathbf{B})$ for some $n \in \mathbf{N}$. Conversely, if $y \in \mathbf{S o c}(\mathbf{B})$, then $y=\Phi(a)$ for some $a \in \operatorname{Soc}(\mathbf{A})$ for the same reason. Then $\Phi(\mathbf{S o c}(\mathbf{A}))=\mathbf{S o c}(\mathbf{B})$.

Theorem 3.3. Let $\Phi: \mathbf{A} \mapsto \mathbf{B}$ be a surjective map preserving the spectrum in the sense $\mathbf{S p}(\Phi(a) \Phi(x))=\mathbf{S p}(a x)$ for every $a, x \in \mathbf{A}$. Then $[\Phi(a+b)-\Phi(a)-\Phi(b)] \cdot y=0$ for all a, b in $\mathbf{A}, y \in \operatorname{Soc}(\mathbf{B})$ and Φ is linear on $\operatorname{Soc}(\mathbf{A})$.

Proof. Let $y \in \mathbf{S o c}(\mathbf{B})$, so $y=y_{1}+\cdots+y_{n}$, with $y_{i} \in \mathcal{F}_{1}(\mathbf{B})$. By the previous theorem there exists $u_{i} \in \operatorname{Soc}(\mathbf{A})$ such that $y_{i}=\Phi\left(u_{i}\right)$ and $y=\sum_{i=1}^{n} \Phi\left(u_{i}\right) \in \mathbf{S o c}(\mathbf{B})$. Consequently, $\operatorname{Tr}[(\Phi(a+b)-\Phi(a)-\Phi(b)) \cdot y]=\sum_{i=1}^{n} \operatorname{Tr}\left([\Phi(a+b)-\Phi(a)-\Phi(b)] \cdot \Phi\left(u_{i}\right)\right)=0$ because for $s \in \mathcal{F}_{1}(\mathbf{A})$ and by linearity of the trace we have:

$$
\begin{aligned}
\operatorname{Tr}[(\Phi(a)+\Phi(b)) \cdot \Phi(s)] & =\mathbf{T r}(\Phi(a) \Phi(s)+\Phi(b) \Phi(s)) \\
& =\operatorname{Tr}(\Phi(a) \Phi(s))+\mathbf{T r}(\Phi(b) \Phi(s))
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Tr}(a s)+\operatorname{Tr}(b s) \quad\left(\text { because } a s, b s \in \mathcal{F}_{1}(\mathbf{A})\right) \\
& =\operatorname{Tr}((a+b) s) .
\end{aligned}
$$

Then $\operatorname{Tr}[(\Phi(a)+\Phi(b)) \cdot(s)]=\mathbf{T r}[(a+b) s]=\mathbf{T r}[\Phi(a+b) \Phi(s)]$ and $\operatorname{Tr}[(\Phi(a)$ $+\Phi(b)-\Phi(a+b)) \cdot \Phi(s)]=0$ for all $s \in \mathcal{F}_{1}(\mathbf{A})$. Hence we conclude that $\operatorname{Tr}[(\Phi(a)+\Phi(b)-\Phi(a+b)) \cdot \Phi(s)]=0$ for all $s \in \mathbf{S o c}(\mathbf{A})$. That is $\Phi(a)+$ $\Phi(b)-\Phi(a+b) \in \mathbf{S o c}(\mathbf{B})^{\perp}$. It is well known that $\mathbf{T r}$ is nondegenerate on the socle, i.e., if $\operatorname{Tr}(x u)=0$ for every $u \in \operatorname{Soc}(\mathbf{A})$ and some $x \in \operatorname{Soc}(\mathbf{A})$, then $x=0$ [3]. It follows that Φ is additive on $\operatorname{Soc}(\mathbf{A})$. Also, since $\mathbf{S p}[\Phi(\alpha) \Phi(x)]=\mathbf{S p}(a x)$ for every $a, x \in \mathbf{A}$, we have $\Phi(\lambda \alpha)=\lambda \Phi(\alpha)$ for all $\quad \lambda \in \mathbf{C}$ and $\quad a \in \operatorname{Soc}(\mathbf{A})$. Indeed, $\quad \operatorname{Tr}[(\Phi(\lambda a)-\lambda \Phi(a)) \Phi(u)]=$ $\operatorname{Tr}[\Phi(\lambda a) \Phi(u)]-\lambda \operatorname{Tr}[\Phi(a) \Phi(u)]=\operatorname{Tr}(\lambda a u)-\lambda \operatorname{Tr}(a u)=0$, which implies that $\Phi(\lambda a)=\lambda \Phi(a)$ for every $a \in \operatorname{Soc}(\mathbf{A})$. Hence Φ is linear on $\operatorname{Soc}(\mathbf{A})$.

Remark 3.4. Similar results hold also for Jordan-Banach algebras.

References

[1] B. Aupetit, A Primer on Spectral Theory, Springer-Verlag, New York, 1991.
[2] B. Aupetit and A. Maouche, Trace and determinant in Jordan-Banach algebras, Publ. Mat. 46 (2002), 3-16.
[3] B. Aupetit and H. du Toit Mouton, Trace and determinant in Banach algebras, Studia Math. 121(2) (1996), 115-136.
[4] A. Maouche, Formes multiplicatives à valeurs dans le spectre, Colloq. Math. 71 (1996), 43-45.
[5] L. Molnár, Characterizations of the automorphisms of $B(H)$ and $C(X)$, Proc. Amer. Math. Soc. 130 (2001), 111-120.
[6] M. R. F. Smyth, Riesz theory in Banach algebras, Math. Z. 145(2) (1975), 145-155.
[7] J. Wu, Spectrum preserving multiplicative maps, Acta Math. Sinica (N.S.) 14 (1998), 719-722.

Department of Mathematics and Statistics
College of Science
Sultan Qaboos University
P. O. Box 36, AL Khod 123, Oman
e-mail: maouche@squ.edu.om

