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Abstract

We give a new proof of a theorem stating that the socle of a Banach
algebra is the largest algebraic (respectively, spectrum-finite) ideal.
Then we prove that a surjective spectrum preserving map is linear on
the socle of a Banach algebra.

1. Introduction

We assume throughout this paper that A and B are two complex

semisimple Banach algebras. The socle of A, denoted by ( ),ASoc  is the

sum of all minimal left ideals of A. It is well known that the socle of A is a

two-sided ideal of A and all its elements are algebraic. In fact we have the

following characterization of the elements of the socle: ( )ASoc∈a  if and

only if ( )xaSp  is finite for all .A∈x  We recall from [3] that rank one

elements of A are defined as the set ( ) ( ){ xaa SpAA :1 ∈=F  contains at

most one nonzero point for every }.A∈x  This set ( )A1F  is closed under

multiplication by elements of A and ( ) ( ).1 ASocA ⊂F  Examples of rank

one elements are given by the minimal projections of A. Furthermore,
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every minimal left ideal of A has the form ,pA  where p is a minimal

projection, so ( )ASoc  is equal to the set of all finite sums of rank one

elements of A. Now, if ( ),ASoc∈a  then we define the trace of a as in [3]

by ( )∑ ∈λ
λ⋅λ=

a
ama

Sp
Tr ,,  where ( )am ,λ  is the multiplicity of the

spectral value λ. It is shown in [3] that Tr is linear and nondegenerate on

( ),ASoc  that is, if ( )ASoc∈a  and ( ) 0=axTr  for all ( ),ASoc∈x  then

.0=a  Moreover, this spectral trace coincides with the usual trace

defined on matrices and extends the trace defined on the algebra ( )XB  of

bounded linear operators on a Banach space X (see [2] and [3] for more
results and details).

2. The Socle is the Largest Spectrum Finite-ideal

We give in this section a new analytic proof of a theorem first proved

in [6] saying that the socle of a semisimple Banach algebra A is the

largest spectrum-finite ideal of A. It is easy to see that the socle is

algebraic, so its elements have finite spectra. Our aim is to show that if I

is a spectrum-finite ideal of A, then ( ).ASocI ⊆

Theorem 2.1. Let A be a complex semisimple Banach algebra and I

be an algebraic (or spectrum-finite) ideal of A. Then ( ).ASocI ⊆

Proof. Since I is an algebraic ideal, its elements have finite spectra.

Let I∈a  and ( ){ }.#: nxaxn ≤∈= SpAA  By Newburgh’s theorem,

each nA  is closed and ∪
∞

=
=

1
.

n
nAA  By Baire’s category theorem there

exists an N∈0n  such that 
0nA  contains a nonempty open set Ω. Let

Ω∈x  and A∈y  and consider the application ,: aACF →  →λ

( )[ ] .1 ayx λ+λ−  By the subharmonicity of nδlog  and the fact that

( )( ) −∞=λδ Fnlog  on the segment [0, 1] which is of positive capacity, we

deduce that ( )( ) ,0=λδ Fn  for all C∈λ  (where nδ  denotes the n-th

diameter (see [1])). In particular this is true for .1=λ  Then the spectrum

of each element of Aa has at most n points. Let A∈b  such that
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( ) .# nba =Sp  Let npp ...,,1  be the Riesz projections associated to the

nonzero spectral values of ( ).baSp  We intend to show that each

projection ip  is minimal and .1 napapa ++= "  Suppose that ip  is not

minimal. Then there exists another nontrivial projection .iiii ppzpp A∈

Thus the set { }iiiiinii zpppzpppppp −+− ,,...,,,...,, 111  is composed of

orthogonal projections of Aa. But this is in contradiction with the fact

that the spectrum of every element of Aa consists of at most n elements.

Let nppp ++= "1  and suppose that .apa ≠  Then ( ) { }0≠− apaA

and there exists a projection ( ),apaq −∈ A  i.e., ( )plqq −== 12  with

.al A∈  We see that 0=iqp  for ni ...,,1=  because ( ) =−= ii pplqp 1

( ) .0=− ii ppl  Now if ( ) ,12 21 qnnpppd n +++++= "  then ad A∈

and { } ( ),1,...,,2,1 dnn Sp⊂+  but this contradicts ( ) .# nba =Sp

3. Spectrum Preserving Mappings

Let A and B be two semisimple Banach algebras and BA 6:Φ  be

a surjective mapping such that ( ) ( )( ) ( ).axxa SpSp =ΦΦ  We show that Φ

is linear on the socle of A. Notice that unlike most authors who are
interested in spectrum-preserving problems, we do not assume linearity

or multiplicativity of Φ in advance (see [7]). Our results are similar to

those obtained in [5] in the case of the algebra of linear bounded

operators ( ),HB  where H is a Hilbert space.

Lemma 3.1. Let ( ).ASoc∈a  If ( ) { }0=axSp  for all ( ),1 AF∈x  then

0=a  and Φ is injective.

Proof. If ( ) { }0=axSp  for all ( ),1 AF∈x  then ( ) 0=auTr  for all

( ).1 AF∈u  Now if ( ),ASoc∈y  then ∑ =
=

n
i iuy

0
 with ( ).1 AF∈iu  So

( ) ( )∑ ∑∑ = ==
===








=

n
i

n
ii

n
i i auuaay

0 00
.00TrTrTr  Since Tr is

nondegenerate, we have .0=a  Suppose that ( ) .0=Φ a  Then for each

( )A1F∈x  we have ( ) ( ) ( )( ) { }0=ΦΦ= xaax SpSp  and 0=a  by the first

part of the proof.
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Theorem 3.2. Let BA 6:Φ  be a surjective map preserving the

spectrum in the sense ( ) ( )( ) ( )axxa SpSp =ΦΦ  for every ., A∈xa  Then Φ

is injective, ( )( ) ( )BA 11 FF =Φ  and ( )( ) ( ).BSocASoc =Φ

Proof. (i) Let ( ).1 AF∈u  Then ( ) { } 10\# =uxSp  for all .A∈x  For

each ,B∈y  ( )( ) ( ) ( )( ) ( ),uxxuyu SpSpSp =ΦΦ=Φ  for some x in A. So

( ) ( ).1 BF∈Φ u  Similarly, we show that if ( ),1 BF∈v  then there exists

( )A1F∈u  such that ( ).uv Φ=  Indeed, ( ) { } 10\# =vySp  for all ,B∈y

( )uv Φ=  and ( )xy Φ=  for xu,  in A because Φ is surjective. Then

( ) ( ) ( )( ) ( )uxxuvy SpSpSp =ΦΦ=  for all .A∈x  Thus ( )A1F∈u  and

( )( ) ( ).11 BA FF =Φ

(ii) Let ( ).ASoc∈a  So axaa =  for some A∈x  because the socle is

von Neumann regular. Then ( ) ( ) ( )BSoc∈Φ=Φ axaa  since for an

arbitrary ,B∈y  there exists A∈z  such that ( ),zy Φ=  so ( )( ) =Φ yaSp

( ) ( )( ) ( )azza SpSp =ΦΦ  is finite; then ( ) ( ) ( )BSocB ⊂∈Φ na F  for some

.N∈n  Conversely, if ( ),BSoc∈y  then ( )ay Φ=  for some ( )ASoc∈a

for the same reason. Then ( )( ) ( ).BSocASoc =Φ

Theorem 3.3. Let BA 6:Φ  be a surjective map preserving the

spectrum in the sense ( ) ( )( ) ( )axxa SpSp =ΦΦ  for every ., A∈xa  Then

( ) ( ) ( )[ ] 0=⋅Φ−Φ−+Φ ybaba  for all ba,  in ,A  ( )BSoc∈y  and Φ is

linear on ( ).ASoc

Proof. Let ( ),BSoc∈y  so ,1 nyyy ++= "  with ( ).1 BF∈iy  By the

previous theorem there exists ( )ASoc∈iu  such that ( )ii uy Φ=  and

( ) ( )∑ =
∈Φ=

n
i iuy

1
.BSoc  Consequently,

( ) ( ) ( )( )[ ] ( ) ( ) ( )[ ] ( )( )∑
=

=Φ⋅Φ−Φ−+Φ=⋅Φ−Φ−+Φ
n

i
iubabaybaba

1

0TrTr

because for ( )A1F∈s  and by linearity of the trace we have:

( ) ( )( ) ( )[ ] ( ) ( ) ( ) ( )( )sbsasba ΦΦ+ΦΦ=Φ⋅Φ+Φ TrTr

( ) ( )( ) ( ) ( )( )sbsa ΦΦ+ΦΦ= TrTr
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)( ( )bsas TrTr +=    ( )( )A1,because F∈bsas

( )( ).sba += Tr

Then ( ) ( )( ) ( )[ ] ( )[ ] ( ) ( )[ ]sbasbasba Φ+Φ=+=⋅Φ+Φ TrTrTr  and [( ( )aΦTr

( ) ( )) ( )] 0=Φ⋅+Φ−Φ+ sbab  for all ( ).1 AF∈s  Hence we conclude that

( ) ( ) ( )( ) ( )[ ] 0=Φ⋅+Φ−Φ+Φ sbabaTr  for all ( ).ASoc∈s  That is ( ) +Φ a

( ) ( ) ( ) .⊥∈+Φ−Φ BSocbab  It is well known that Tr is nondegenerate on

the socle, i.e., if ( ) 0=xuTr  for every ( )ASoc∈u  and some ( ),ASoc∈x

then 0=x  [3]. It follows that Φ is additive on ( ).ASoc  Also, since

( ) ( )[ ] ( )axxa SpSp =ΦΦ  for every ,, A∈xa  we have ( ) ( )aa Φλ=λΦ  for

all C∈λ  and ( ).ASoc∈a  Indeed, ( ) ( )( ) ( )[ ] =ΦΦλ−λΦ uaaTr

( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ,0=λ−λ=ΦΦλ−ΦλΦ auauuaua TrTrTrTr  which implies

that ( ) ( )aa Φλ=λΦ  for every ( ).ASoc∈a  Hence Φ is linear on ( ).ASoc

Remark 3.4. Similar results hold also for Jordan-Banach algebras.
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