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Abstract

We give a new proof of a theorem stating that the socle of a Banach
algebra is the largest algebraic (respectively, spectrum-finite) ideal.
Then we prove that a surjective spectrum preserving map is linear on

the socle of a Banach algebra.
1. Introduction

We assume throughout this paper that A and B are two complex
semisimple Banach algebras. The socle of A, denoted by Soc(A), is the

sum of all minimal left ideals of A. It is well known that the socle of A is a
two-sided ideal of A and all its elements are algebraic. In fact we have the

following characterization of the elements of the socle: a € Soc(A) if and
only if Sp(xa) is finite for all x € A. We recall from [3] that rank one
elements of A are defined as the set F;(A) = {a € A : Sp(xa) contains at
most one nonzero point for every x € A}. This set F;(A) is closed under
multiplication by elements of A and F;(A) c Soc(A). Examples of rank

one elements are given by the minimal projections of A. Furthermore,
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every minimal left ideal of A has the form A _, where p is a minimal

o
projection, so Soc(A) is equal to the set of all finite sums of rank one
elements of A. Now, if @ € Soc(A), then we define the trace of a as in [3]
by Tra = erspak -m(k, @), where m(\, a) is the multiplicity of the
spectral value A. It is shown in [3] that Tr is linear and nondegenerate on
Soc(A), that is, if a € Soc(A) and Tr(ax) = 0 for all x € Soc(A), then
a = 0. Moreover, this spectral trace coincides with the usual trace
defined on matrices and extends the trace defined on the algebra B(X) of

bounded linear operators on a Banach space X (see [2] and [3] for more

results and details).

2. The Socle is the Largest Spectrum Finite-ideal

We give in this section a new analytic proof of a theorem first proved
in [6] saying that the socle of a semisimple Banach algebra A is the
largest spectrum-finite ideal of A. It is easy to see that the socle is
algebraic, so its elements have finite spectra. Our aim is to show that if I

is a spectrum-finite ideal of A, then I < Soc(A).

Theorem 2.1. Let A be a complex semisimple Banach algebra and 1
be an algebraic (or spectrum-finite) ideal of A. Then T  Soc(A).

Proof. Since I is an algebraic ideal, its elements have finite spectra.
Let a el and A, ={x € A:#Sp(xa) < n}. By Newburgh’s theorem,

o0
each A, is closed and A = UAn. By Baire’s category theorem there

n=1
exists an ng € N such that A,  contains a nonempty open set Q. Let
xeQ and y € A and consider the application F:C — Aa, A —
[1-2A)x +Ay]la. By the subharmonicity of log$, and the fact that
log §,,(F(1)) = —© on the segment [0, 1] which is of positive capacity, we
deduce that 3,(F(A)) =0, for all A € C (where §, denotes the n-th

diameter (see [1])). In particular this is true for A = 1. Then the spectrum

of each element of Aa has at most n points. Let b € A such that
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#Sp(ba) = n. Let pq, ..., p, be the Riesz projections associated to the
nonzero spectral values of Sp(ba). We intend to show that each
projection p; is minimal and a = ap; +--- + ap,,. Suppose that p; is not
minimal. Then there exists another nontrivial projection p;zp; € p;Ap;.
Thus the set {py, ..., Pj_1, Pis+1» ---» Pn»> PiZD;> P; — P;z0;} 1s composed of
orthogonal projections of Aa. But this is in contradiction with the fact
that the spectrum of every element of Aa consists of at most n elements.
Let p=p; +--+ p, and suppose that a # ap. Then A(a - ap) = {0}
and there exists a projection q € A(a — ap), ie., ¢% = q = (1 - p) with
l € Aa. We see that gp; =0 for i =1, ..., n because gqp; = (1 - p)p; =
(p; —p;)=0. Now if d = p; +2pg +--+np, +(n+1)q, then d € Aa
and {1, 2, ..., n, n + 1} < Sp(d), but this contradicts # Sp(ba) = n.

3. Spectrum Preserving Mappings

Let A and B be two semisimple Banach algebras and ® : A — B be
a surjective mapping such that Sp(®(a)®(x))=Sp(ax). We show that ®

is linear on the socle of A. Notice that unlike most authors who are
interested in spectrum-preserving problems, we do not assume linearity
or multiplicativity of ® in advance (see [7]). Our results are similar to
those obtained in [5] in the case of the algebra of linear bounded

operators B(H), where H is a Hilbert space.

Lemma 3.1. Let a € Soc(A). If Sp(ax) = {0} for all x € F;(A), then

a = 0 and O is injective.
Proof. If Sp(ax) = {0} for all x € F{(A), then Tr(au)=0 for all

u € F1(A). Now if y € Soc(A), then y = Z:L:o u; with u; € F1(A). So

Tr(ay) = Tr[aZ?ZO u; j = 2:;0 Tr(au;) = Z?:OO =0. Since Tr is

nondegenerate, we have a = 0. Suppose that ®(a)= 0. Then for each
x € F1(A) we have Sp(ax) = Sp(®(a)®(x)) = {0} and a = 0 by the first
part of the proof.
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Theorem 3.2. Let ® : A — B be a surjective map preserving the
spectrum in the sense Sp(®(a)®(x)) = Sp(ax) for every a, x € A. Then ®

is injective, ®(F;(A)) = F1(B) and ®(Soc(A)) = Soc(B).

Proof. (i) Let u € F;(A). Then #Sp(ux)\{0} =1 for all x € A. For
each y € B, Sp(®(u)y) = Sp(®(u)®(x)) = Sp(ux), for some x in A. So
®(u) € F1(B). Similarly, we show that if v e 7;(B), then there exists
u € F1(A) such that v = ®(x). Indeed, #Sp(y\{0} =1 for all y € B,
v==®@wu) and y = ®d(x) for u, x in A because ® is surjective. Then
Sp(vy) = Sp(®(x)®(x)) = Sp(ux) for all x € A. Thus u e F;(A) and
O(F,(A)) = 7(B).

(ii) Let a € Soc(A). So a = axa for some x € A because the socle is
von Neumann regular. Then ®(a)= ®(axa) e Soc(B) since for an
arbitrary y € B, there exists z € A such that y = ®(z), so Sp(®(a)y) =
Sp(®(a)®(z)) = Sp(az) is finite; then ®(a) e F,(B) < Soc(B) for some
n € N. Conversely, if y € Soc(B), then y = ®(a) for some a € Soc(A)
for the same reason. Then ®(Soc(A)) = Soc(B).

Theorem 3.3. Let ® : A — B be a surjective map preserving the
spectrum in the sense Sp(®(a)®(x)) = Sp(ax) for every a, x € A. Then

[®(a +b) - D(a)-P(B)]-y=0 forall a,b in A, y e Soc(B) and ® is

linear on Soc(A).

Proof. Let y € Soc(B), so y = y; +---+ y,, with y; € F1(B). By the

previous theorem there exists u; € Soc(A) such that y; = ®(y;) and

Y= Z?zl ®(u;) € Soc(B). Consequently,

Tr[(@(a + b) - ®(a) - D)) y] = Y Tr([@(a +b) - D(a) - DB)]- ®(x;)) = 0
i-1

because for s € F;(A) and by linearity of the trace we have:
Tr[(®(a) + ®(b)) - @(s)] = Tr(®(a)D(s) + ©(b)P(s))
= Tr(®(a)d(s)) + Tr(d(b)D(s))
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= Tr(as) + Tr(bs) (because as, bs € F1(A))
= Tr((a + b)s).

Then Tr[(®(a)+ ®(b))- (s)] = Tr[(a + b)s] = Tr[®(a + b)P(s)] and Tr[(P(a)
+ ®(b) - ®(a + b)) d(s)] =0 for all s e F;(A). Hence we conclude that
Tr[(®(a) + ®(b) - ®(a + b)) - D(s)] = 0 for all s € Soc(A). That is d(a) +

®(b) — D(a + b) € Soc(B)'. It is well known that Tr is nondegenerate on
the socle, i.e., if Tr(xu) = 0 for every u € Soc(A) and some x € Soc(A),
then x = 0 [3]. It follows that ® is additive on Soc(A). Also, since
Sp[®(a)®(x)] = Sp(ax) for every a, x € A, we have ®(Aa)= A®(a) for
al LeC and aeSoc(A) Indeed, Tr[(®(ha)-rd(a))D(u)]=
Tr[®(ra)®(u)] - ATr[®(a)®(x)] = Tr(rau) — ATr(aw) = 0, which implies
that ®(La) = A®(a) for every a € Soc(A). Hence @ is linear on Soc(A).

Remark 3.4. Similar results hold also for Jordan-Banach algebras.
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