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Abstract

In this paper we derive a two-parameter discrete distribution, called

generalized geometric distribution, which includes the Poisson-Lomax,

geometric, and Poisson-Lindley distributions as special cases.

Recurrence relations for calculating the probabilities and factorial

moments of the distribution are given. For all values of the parameters,

it is shown that the distribution is unimodal. Also, it is shown that the

distribution has a failure rate (mean residual life) which may be

decreasing, constant, or increasing (increasing, constant, or decreasing).

Application of the proposed distribution to real data is given and its

goodness-of-fit is demonstrated.

1. Introduction

A certain mixed Poisson distribution arises when the Poisson
parameter vary according to some probability distribution, called the

mixing distribution. The mixing distribution may be discrete or

continuous. A well known example of mixed Poisson distribution is the
negative binomial distribution, where the mixing distribution is the
gamma distribution.

 Let X given ,λ=Λ  denoted by ,λ|X  has a Poisson distribution with
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probability mass function (p.m.f.)

( ) ( ) .0...,,1,0,
!

>λ=λ=λ|==λ| λ− x
x

exXPxp
x

(1)

Now suppose Λ is a continuous random variable with probability

density function (p.d.f.),

( ) ( ) ( ) ,0,1
,2,1

1 >λλ+
β+α

=λ βλ−αe
U

f (2)

where ,∞<α<−∞  ,0>β  ( )⋅⋅⋅ ,,U  is the confluent hypergeometric

function of the second kind with integral representation:

( ) ( ) ( )∫
∞ −−−− >+

Γ
=

0

11 0,,11,, zadttte
a

zbaU abazt

with ( )⋅Γ  as the gamma function. More details about the hypergeometric

function of the second kind can be found in Abramowitz and Stegun [1].

Special cases:

(i) ( ),1+ν−=α  ,0>ν  :0→β  ( )
( )

,
1 1+νλ+

ν=λf  the Lomax

distribution.

(ii) ( ) ,:0 βλ−β=λ=α ef  the exponential distribution.

(iii) ( ) ( ) ,1
1

:1
2

βλ−λ+
+β
β=λ=α ef  the Lindley [5] distribution.

The unconditional p.m.f. of X, i.e., ( ) ( ),xXPxp ==  is given by

( ) ( ) ( )∫
∞

λλλ|=
0

dfxpxp

( )
( ) ( )∫

∞ αλ+β− λλ+λ
β+α

=
0

1 1
!,2,1

1 de
xU

x

( )
( ) ...,,1,0,

,2,1
1,2,1 =

β+α
+β+α++= x

U
xxU (3)

where .0, >β∞<α<∞−
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Special cases:

(i) ( ),1+ν−=α  ,0>ν  :0→β  since ( ) ,0,1,1 1−ν=ν−U  (3) reduces

to

( ) ( ) ,0...,,1,0,1,1,1 >ν=+ν−+ν= xxxUxp (4)

the Poisson-Lomax distribution.

(ii) :0=α  since ( ) ( ),,2,1 1+−=++ xzzxxU  (3) reduces to

( ) ,0...,,1,0,
1

1
1

>β=






+β+β
β= xxp

x
(5)

the geometric distribution.

(iii) :1=α  since ( ) ( )( ),1,3,1 2 xzzzxxU x ++=++ +−  (3) reduces to

( ) ( )
( )

,0...,,1,0,
1

2
3

2
>β=

+β

+β+β=
+

xxxp
x

(6)

the Poisson-Lindley distribution (Sankaran [6]).

In the following we use the notation ( )βα,GGD  to denote the

generalized geometric distribution with p.m.f. (3).

For the proposed generalized geometric distribution, we provide
recurrence relations for probabilities and factorial moments, Section 2.
Also, we show that the proposed distribution is unimodal, Section 3, and
its failure rate (mean residual life) may be decreasing, constant, or
increasing (increasing, constant, or decreasing), Section 4. Finally, fitting
the proposed distribution to real data on the number of daily
thunderstorms is given and its goodness-of-fit is demonstrated, Section 5.

2. Recurrence Relations

The following theorem provides a useful three-term recurrence

relation for calculating the probabilities ( )xp  of the ( )., βαGGD

Theorem 1. For all ,∞<α<−∞  ,0>β  the ( )βα,GGD  satisfies the

recurrence relation:
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( ) ( ) ( ) ( ) ( ) ( )[ ] ...,2,1,1
11

11 =−+β−α+
++β

=+ xxpxpx
x

xp

where

( ) ( )
( ) ( ) ( )

( ) .
,2,1

1,3,21,
,2,1

1,2,10
β+α
+β+α=

β+α
+β+α=

U
U

p
U

U
p

Proof. Using formula 13.4.27 of Abramowitz and Stegun [1, p.507]:

( ) ( ) ( ) ( ) 0,1,1,,1,1,1 =−−−+−+++ zbaUzbaUzbzbazaU (7)

with α++=+= 2,1 xbxa  and ,1+β=z  we obtain

( ) ( ) ( )1,3,211 +βα+++++β xxUx

( ) ( )1,2,1 +βα+++−α−β+ xxUx ( ) .01,1, =+βα++− xxU (8)

Using (3) in (8), we obtain, for all ...,,2,1=x

( ) ( ) ( ) ( ) ( ) ( ) 01111 =−−−α−β++++β xpxpxxpx

proving the theorem.

To show how Theorem 1 works, consider the case: ,3−=α  .1=β

Since, in this case, ( ) 746737.00 =p  and ( ) ,183402.01 =p  we have

( ) ( )[ ] ,049133.0746737.0183402.03
4
1

2 =+−=p

( ) ( )[ ] ,014189.0183402.0049133.02
6
1

3 =+−=p   etc.

Next, we provide a recurrence relation for the rth factorial moment of the

( ),, βαGGD  i.e., [ ] ( ) ....,2,1,1
1

=




 +−=µ′ ∏ =
riXE

r
ir

Theorem 2. For all ,∞<α<−∞  ,0>β  the ( )βα,GGD  satisfies the

recurrence relation:

[ ] {( ) [ ] [ ]} ...,2,1,11
11 =µ′+µ′+β−α+

β
=µ′ −+ rrr rrr
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where

[ ] [ ]
( )
( ) .

,2,1
,3,2,1 10 β+α
β+α=µ′=µ′

U
U

Proof. By conditioning on the mixing random variable ,Λ  we obtain

 [ ] ( )























Λ|+−=µ′ ∏

=

r

i
r iXEE

1

1

{ }rE Λ=

( ) ( )∫
∞ αβλ− λλ+λ

β+α
=

0
1

;2,1
1 de

U
r

( )
( ) ....,1,

,2,1
,2,1! =

β+α
β+α++= r

U
rrU

r (9)

Using identity (7) with 2,1 +α+=+= rbra  and ,β=z  we obtain

( ) ( )βα++++β ,3,21 xxUr

( ) ( ) ( ) .0,1,,2,1 =βα++−βα+++−α−β+ rrUrrUr (10)

Finally, using (9) in (10), we obtain, for all ...,,2,1=r

( ) ( ) [ ] ( ) [ ] ( ) [ ] 0
!1

1
!

11
!1

11 11 =µ′
−

−µ′−−α−β+µ′
+

+β −+ rrr rr
r

r
r

proving the theorem.

To show how Theorem 2 works, consider the case: ,3−=α  .1=β

Since, in this case, [ ] 10 =µ′  and [ ] ,353750.01 =µ′  we have

[ ] ( ) 292500.01353750.022 =+−=µ′

[ ] ( ) ( ) ,415000.0353750.0229250.03 =+−=µ′   etc.

Remark. The mean and variance of the ( ),, βαGGD  respectively, are
given by

[ ]
( )
( ) ,

,2,1
,3,2

1 βα+
βα+=µ′=µ

U
U
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[ ] [ ] ( [ ] ) .
21 22

112
2 µ−µ

β
+α

+
β

=µ′−µ′+µ′=σ

3. Unimodality

A discrete (continuous) distribution with p.m.f. (p.d.f.) ( )xη  is said to

be unimodal if there is a value 0x  such that ( )xη  is steadily increasing

for 0xx ≤  and steadily decreasing for .0xx ≥  The value 0x  is called a

mode and may not be unique. The class of discrete ( continuous) unimodal

distributions includes those distributions for which ( )xη  is monotone.

Theorem 3. For all ,0, >β∞<α<∞−  the ( )βα,GGD  is unimodal.

Proof. Holgate [4] showed that any mixed Poisson distribution is
unimodal if the mixing distribution is positive continuous and unimodal.

Note that, for all ,∞<α<−∞  ,0>β  ( )λf  is positive continuous

function with

( ) ( ) ( ) .0,
,2,1

10 =∞
β+α

= f
U

f

The derivative of ( )λf  with respect to λ can be written as

( ) ( ).
1

λ






λ+
α−β−=λ′ ff

Hence, if ,β≤α<∞−  then ( )λf  is decreasing. Also, if ,0>β>α  then

( )λf  is unimodal at the point ( ) .0 ββ−α=λ  This completes the proof.

Corollary 1. The Poisson-Lomax, geometric and Poisson-Lindley

distributions are unimodal.

4. Failure Rate and Mean Residual Life

In reliability studies, the failure rate, ( ),xr  and mean residual life,

( ),xm  functions play important roles in distinguishing between failure

distributions. For a discrete distribution with p.m.f. ( ) ...,,1,0, =xxp

these functions, respectively, are defined as:
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( ) ( )
( ) ,
xR
xpxr =

( ) ( ) ( ) ( ) ( ),1 ∑
≥

−=≥|−=
xi

ipxi
xR

xXxXExm

where ( ) ( ) ( )∑ ≥
=≥=

xi
ipxXPxR  is called the reliability function of X.

In general, the failure rate and mean residual life functions cannot be

expressed in simple closed form and hence direct investigation of their

monotonicity properties is extremely difficult.

In the following, we use the notation DFR, CFR, IFR (DMRL, CMRL,

IMRL) to denote a decreasing, constant, increasing failure rate (a

decreasing, constant, increasing mean residual life).

Theorem 4. For all ,0>β  the ( )βα,GGD  is DFR, CFR, IFR (IMRL,

CMRL, DMRL) if ,0,0,0 >α=α<α  respectively.

Proof. When ,0=α  it is clear that the geometric distribution is both

CFR and CMRL. Hence, for ( ),00 >α<α  it suffices to show that the

mixing p.d.f (2) is log-convex (log-concave), see, e.g., Steutel [7]. This is,

indeed, the case, since

( )
( )22

2

1
log

λ+

α
=λ

λ
f

d

d

is ( )00 ><  if ( ).00 >α<α  The statement regarding the MRL is a

direct implication of monotone FR.

Corollary 2. The Poisson-Lomax, geometric and Poisson-Lindley

distributions are, respectively, DFR, CFR, IFR (IMRL, CMRL, DMRL).

5. Applications

We consider two published data sets on:

(i) the number of accidents ( )ix  to women working on H.E. shells

during five weeks, Table 1, see Greenwood and Yule [3],
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(ii) the number of thunderstorm events ( )ix  per day at Cape

Kennedy, Florida during the month of June, Table 2, see Falls et al. [2].

We fit the proposed generalized geometric distribution to the above
data sets using the method of maximum likelihood to estimate the

parameters α and β.

Tables 1 and 2 give the observed frequencies iO  as well as the

expected frequencies iE  for the considered data sets. For both data sets,

the expected frequency of each of the last two cells are less than 5. Hence,
these two cells are combined with the last cell before them. Based on the

reported P-values in both tables, we conclude that the ( )βα,GGD

provides good fit for both data sets.

Table 1. Distribution of the number of accidents to women
working on H.E. Shells for five weeks

ix iO iE

0 447 443.663

1 132 137.883

2 42 43.992

3 21 14.322

4 3 4.737

5≥ 2 2.403

Total 647 647

α̂ -1.642

β̂ 1.597

2χ 4.122

d.f. 2

P-value 0.127
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Table 2. Distribution of the number of thunderstorm events per day
during the month of June at Cape Kennedy, Florida

ix iO iE

0 187 183.776

1 77 84.905

2 40 36.576

3 17 15.040

4 6 5.981

5 2 2.319

6 1 1.403

Total 330 330

α̂ 1.625

β̂ 2.110

2χ 1.419

d.f. 3

P-value 0.701
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