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Abstract

This paper proposes an efficient method for automatic continuous

smoothing, which is based on the determination of the trade-off between

the goodness of fit and the danger of over-fitting. The usefulness of this

method is demonstrated by applying it to economic time series. It is also

shown how this method can be used for spectral density estimation.

Algorithms are given for the automatic selection of the degree of

smoothing as well as for the carrying out of the smoothing.

1. Introduction

Smoothing methods are indispensable tools for the analysis of time
series. The first step in a conventional analysis is to remove the trend of
the time series. This can be achieved either by differencing or by first
estimating the trend and then subtracting it. To estimate the trend we
may compute weighted averages of adjacent values (nonparametric
smoothing) or fit suitable approximating functions (e.g., polynomials) to
the data (parametric smoothing). Once the trend has been removed, the
next step is to describe the dependence among the values at different
times (serial dependence). Assuming that the detrended series is roughly
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stationary and restricting attention to the first- and second-order
moments, we can use the spectral density to describe the serial
dependence. Estimates of the spectral density can be obtained by
parametric or nonparametric smoothing of its sample analogue, the
periodogram.

Both in case of nonparametric smoothing and in case of parametric
smoothing, the choice of the degree of smoothing is crucial. In the former
case, the degree of smoothing is determined by the number of values
included in the weighted averages as well as the size of the weights and
in the latter case by the form of the approximating function and the
number of its parameters. Normally, the choice of the number of values
included in the averages and the number of parameters of the
approximating function, respectively, is far more important than the
choice of the weights and the form of the approximating function,
respectively. However, there are exceptions to this rule. For example, the
widely used method of smoothing a time series nyy ...,,1  by minimizing

( ) ( ) ( )( )∑∑
=

−−−
=

−−−λ+−
n

t
tttt

n

t
tt gggggy

3

2
211

1

2 (1)

with respect to ngg ...,,1  yields a solution, where each tg  is a weighted

average of all data. Here the degree of smoothing depends only on the
weights, which in turn are determined by the parameter λ. The larger the

value of λ, the smoother is the solution. If ,btagt +=  the second sum in

(1) vanishes. Thus the solution will approach a linear time trend as λ
approaches infinity. This method has a long history of use, particularly in
the actuarial sciences (see, e.g., Whittaker [16]). It was propagated by
Hodrick and Prescott [5] as a useful tool for trend estimation and is
therefore called Hodrick-Prescott filter by economists. To a certain extent
the popularity of the Hodrick-Prescott filter is due to the fact that
Hodrick and Prescott have proposed particular values of λ for various
situations, e.g., 600,1=λ  for log quarterly data. In general, there are no

clear rules for the choice of the degree of smoothing. In case of
nonparametric smoothing, the degree of smoothing is typically chosen by
subjective judgment of the investigator. In case of parametric smoothing,
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the number of parameters of the fitted function is frequently chosen with
the help of an “objective” decision rule like the Akaike information
criterion (AIC; Akaike [2]). Unfortunately, the use of a particular decision
rule does not really guarantee objectivity since we may obtain completely
different results depending on which class of approximating functions
(polynomials, rational functions, etc.) we use. Moreover, since there are
not only many different classes of approximating functions but also many
different decision rules (see, e.g., Schwarz [11], Sawa [10], Sugiura [13],
Reschenhofer [9]) there is still the problem of how to select the decision
rule.

To illustrate the fact that we should not blindly trust any data-
independent rule for the choice of the degree of smoothing, we look at the
seasonally adjusted quarterly real US GDP from 1947.1 to 2001.4 (see
Figure 1). The data were downloaded from the website of the St. Louis

Fed’s FRED Database. Applying the Hodrick-Prescott filter with the

recommended value of 600,1=λ  to this time series, we obtain a rather

changeable trend estimate. Figure 1 suggests that the growth rate
changes every five to ten years. Normally, fluctuations with such a small
wavelength are rather considered as business cycles. Only very slowly
changing functions like simple polynomials or exponential functions are
considered as appropriate for the description of a trend. It seems that we
have to use a much larger value of the smoothing parameter. Indeed, the
trend estimate obtained with 000,100=λ  looks much steadier (see

Figure 1). This curve resembles a broken linear trend. The slowdown in
growth follows the oil-price shock in early 1973 (see also Perron [6, 7]).
Clearly, if we increase the smoothing parameter further, we will end up
with an unbroken linear trend. To decide which type of trend is most
plausible in light of the data we would need an objective, data-driven rule

for choosing λ.

In general, unless strong restrictions are imposed on the data
generating process, it is hopeless to try to determine the true nature of
the trend of a macroeconomic time series like the US GDP. In the end it
comes down to a matter of taste, whether we prefer a model with a simple
deterministic trend and long-term dependence, a model with a more
complex deterministic trend and medium-term dependence, or a model
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with a stochastic trend and short-term dependence. The nastiness of this
modeling problem stems mainly from the fact that we have to deal with
the trend and the serial dependence simultaneously. However, when we
switch from quarterly data to annual data the situation improves
immediately. The first differences of the annual log GDP exhibit no
obvious serial dependence (Durlauf [3]). Moreover, since possible shifts in
the mean are orders of magnitude smaller than the variability of the
annual changes, the assumption of serial independence is meaningful
regardless of whether or not there is a break in the trend.

50 55 60 65 70 75 80 85 90 95 00

λ=1,600

λ=100,000

log GDP

Figure 1. Smoothing the log quarterly GDP with the Hodrick-Prescott
filter using two different values of the smoothing parameter λ

The Hodrick-Prescott filter has been designed for the smoothing of a
series that exhibits a roughly linear increase. If we want to smooth the
differenced log US GDP, we need another method. This method could
then also be used for spectral density estimation. The next section
describes the analogue of the Hodrick-Prescott filter for series exhibiting
no clear trend and a method for the automatic determination of the
smoothing parameter. All computational details are given in Appendices
A and B. In Sections 3 and 4, the methodology is applied to real data.
First the growth component of the log annual US GDP is estimated and
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then the spectral density of the differenced log quarterly US GDP is
estimated. Section 5 concludes.

2. Methods

Suppose nyy ...,,1  is a sequence of uncorrelated random variables

with common variance .2σ  A linear smoother Zyg =  of the random

vector ( )′= nyyy ...,,1  is obtained by minimizing

( ) ( )∑ ∑
= =

−−λ+−
n

t

n

t
tttt gggy

1 2

2
1

2 (2)

with respect to ngg ...,,1  (see Appendix A). The smaller the value of λ,

the better is the fit and the greater is the danger of over-fitting. In the

extreme case of 0=λ  there is no smoothing at all. Vice versa, the larger

the value of λ, the smoother is the solution. If ,21 nggg ===  the

second sum in (2) vanishes, hence the solution will approach a constant

function as λ approaches infinity.

For the choice of the continuous smoothing parameter λ we need an

automatic decision method. Perhaps the most popular decision method is

the AIC. Normally the AIC is used for model selection. Given a sample of

size n, the AIC measures the discrepancy between the true model and an

approximating model by minus two times the log likelihood plus two

times the number of estimated parameters. The first term measures the

goodness of fit and the second term serves to penalize over-fitting. The

AIC values are calculated for all candidate models and the model with

the smallest AIC value is chosen. At first glance it is hard to see how the

AIC can be used in a nonparametric setting. Clearly, we cannot use

the number of estimated parameters to penalize over-fitting in

nonparametric smoothing because there are no estimated parameters. We

rather have to go back to the rationale behind the AIC (or, more precisely,

a precursor of the AIC; see Akaike [1]). Suppose that uy +µ=  and
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∗∗ +µ= uy  are independent samples from a distribution with mean

vector µ and covariance matrix I2σ  and Zyg =  is an unbiased linear

estimator for µ based on sample y only. Then it follows from

( ) ( ) ( ) ( ) ( ) ( )uZIZIuEZuuZuuEgygyE −′−′=−′−=−′−

{( ) } ( ) ( ){ }ZZtrZtrnuEuZZZZItr ′+−σ=′′+−′−= 22

and

( ) ( ) ( ) ( ) ZuZuEuEuZuuZuuEgygyE ′′+=−′−=−′− ∗∗′∗∗∗∗

( ){ }ZZtrn ′+σ= 2

that the sum of squared residuals

( ) ( )gygyS −′−=

is a biased estimator of the mean square prediction error

( ) ( ).gygyE −′− ∗∗

An unbiased estimator is given by

( ) ( ){ } ( ){ }ZZtrnZZtrZtrnS ′+′+− −12

( ( ) ( ) ( ){ } ).221 1−′+−+= ZZtrZtrnZtrS (3)

If g is obtained by projecting y onto the k-dimensional subspace

generated by the columns of a design matrix X, i.e., ( ) ,1 XXXXZ ′′= −  the

unbiased estimator (3) becomes

( ( ) ) ( ( ) ).21221 11 −− −+=+−+ knkSkknkS (4)

The logarithm of expression (4) multiplied by n is approximately equal to

( ) ,2log kSn +

which differs from the AIC only by an additive constant (in the Gaussian
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case). Analogously, n times the logarithm of (3) approximately equals

( ) ( ).2log ZtrSn + (5)

Thus we may select the continuous smoothing parameter λ in (2) by

minimizing (5) with respect to λ. Of course, the trace of the smoothing

matrix can be used to penalize over-fitting only in the case of a linear

smoother (Hastie and Tibshirani [4], Wahba [15]). For the nonlinear case,

Ye [17] developed the concept of generalized degrees of freedom (see also

Shen and Ye [12]). Unfortunately, both the proper definition and the

estimation of the generalized degrees of freedom are nontrivial tasks. But

even in the comparatively simple linear case we have to calculate S and

( )Ztr  repeatedly for many different values of the smoothing parameters.

We therefore need algorithms for the efficient computation of these

quantities. In particular, this is true in the case of a continuous

smoothing parameter. For the special case where Z is obtained by

minimization of (2), algorithms for the computation of S and ( )Ztr  are

given in Appendices A and B, respectively.

The plausibility of the derivation of selection criterion (5) is

somewhat reduced by the fact that we had to assume that .µ=Eg  It is

therefore reassuring to know (see Reschenhofer [8]) that model selection

criteria derived under the assumption that the models under

consideration are true models (Akaike [2], Sugiura [13]) very often select

the same models as the corresponding criteria derived without this

problematic assumption (Sawa [10], Reschenhofer [9]).

3. Trend Estimation

For the first differences of the log annual US GDP, there is no

indication that criterion (5) reaches an absolute minimum at some finite

value of λ. It keeps decreasing even for values as large as .1015=λ

Figure 2 shows that already for much smaller values the estimated mean

is practically constant. We conclude that there is little evidence of a

structural break.
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The special value of this result is due to the fact that it has been

obtained without specifying the number of possible breaks and their

locations in advance. In contrast, conventional methods for the detection

of structural breaks typically require some prior information. Moreover,

the results obtained with these methods depend crucially on the prior

information. For example, Zivot and Andrews [18] estimated a single

breakpoint in several macroeconomic time series and found less evidence

against a stochastic trend than Perron [6] who fixed the breakpoint at the

1973 oil-price shock. Of course, the situation gets worse as the number of

possible breakpoints increases. In the case of multiple breaks the

simultaneous estimation of both the number of breaks and their locations

is computationally infeasible for medium and large sample sizes (see,

e.g., Sullivan [14]). Moreover, the performance of such estimation

methods would be considerably reduced if there were smooth transitions

rather than sharp breaks.

Figure 2. Smoothing the first differences of the log annual GDP with

a penalized least squares method using two different values of the

smoothing parameter λ
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4. Spectral Density Estimation

We model the differenced log quarterly US GDP as a linear process

∑ ∈ −εψ=
Zj jtjty  with absolutely summable impulse response

coefficients jψ  and i.i.d. innovations tε  with 0=εtE  and .22 σ=εtE

Under these conditions, the process ( )ty  has an absolutely summable

autocovariance function

( ) ( ) ...,3,2,1,0,, ±±±===γ ++ kyEyyyCovk kttktt

and a continuous spectral density given by

( ) ( ) ( ) ( ) ( ) ( )∑ ∑
∞

−∞=

∞

= 











ωγ+γ
π

=ω−γ
π

=ω
j j

kkikkf .cos20
2
1exp

2
1

1

From n observations nyy ...,,1  we can estimate the autocovariances ( )kγ

by the sample autocovariances ( ),kc  which are defined by

( ) ( ) ( )∑
−

=
+ −−=

kn

j
ktt yyyy

n
kc

1

1

for nk <≤0  and ( ) ( )kckc −=  for .0<<− kn  Using 1−n  rather than

( ) 1−− kn  or ( ) 11 −−− kn  in this definition ensures that ( )kc  is non-

negative definite. The periodogram of nyy ...,,1  is defined by

( ) ( ) .exp
2
1

2

1
∑
=

ω−
π

=ω
n

j
t ity

n
I

The sum of squared observations can be decomposed into a sum of

periodogram ordinates associated with the Fourier frequencies =ω j

,2 njπ  i.e.,

( )
( )

∑ ∑
= ∈

ω=
n

j nFj
jt Iy

1

2 ,

where ( ) ( )[ ] [ ]{ }.2...,,21 nnnF −−=  For any non-zero Fourier frequency
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,jω  we have

( ) ( ) ( ) ( ) ( ) ( )∑ ∑
−= = 











ω
π

+
π

=ω−
π

=ω
n

nk

n

k
jjj kkccikkcI .cos

2
120

2
1exp

2
1

1

Because of the resemblance between ( )jf ω  and ( )jI ω  we may use

( )ωI  for the estimation of ( ).ωf  If π<ν<<ν< j10  and ( ) 0>ωf  for

all ω, then the random vector ( ( ) ( ))′νν jII ...,,1  converges in distribution

to a vector of independent and exponentially distributed random

variables with means ( ) ( )....,,1 jff νν  This implies that the periodogram

is a very erratic estimator of the spectral density. Assuming that f is

quite smooth, we can easily construct a superior estimator by smoothing

the periodogram. Usually, we consider weighted averages of neighboring

periodogram ordinates:

( ) ( )∑
−=

+ω=ω
r

rk
kjkj Iwf .ˆ

As the number of involved ordinates, r, increases, the variance of the

estimator decreases, but at the same time the bias increases. In general,

the choice of the smoothing parameter r is more critical than the choice of

the weights .kw

Alternative estimates of the spectral density can be obtained by

modeling the process ( )ty  as an autoregressive (AR) process

tptptt yyy ε+φ++φ= −−11

or an autoregressive moving average (ARMA) process

,1111 qtqttptptt yyy −−−− εθ++εθ+ε=φ−−φ−

estimating the model parameters by maximum likelihood (ML), and

finally plugging the ML estimates into the formulas for the spectral
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densities implied by these processes, i.e.,

( ) ( ) ( ) 2
1

2
expexp1

2
−ω−φ−−ω−φ−

π
σ=ω piif p (6)

and

( ) ( ) ( ) 2
1

2
expexp1

2
piif q ω−θ++ω−θ+

π
σ=ω

( ) ( ) ,expexp1 2
1

−ω−φ−−ω−φ− pii p (7)

respectively. Estimates of the model parameters can also be obtained by
fitting the inverse trigonometric polynomial (6) and the trigonometric
rational function (7), respectively, to the periodogram.

Finally, the smoothing procedure described in Section 2 can also be
used to estimate the spectral density. However, since this methodology is
based on additive errors rather than on multiplicative errors, it must be

applied to the log periodogram. For the Fourier frequencies ( ),,0 π∈ω j

the log periodogram can be written as

( ( )) ( ( )) ( )jjj vfI logloglog +ω=ω

[ ( ( )) ( ( ))] [ ( ) ( ( ))],loglogloglog jjjj vEvvEf −++ω=

where the random variables ,jv  ,20 nj <<  approximately are

independent and have a standard exponential distribution. The
expectation of the log of a standard exponential random variable equals

minus Euler’s constant ( ),...57721.0=γ  hence an estimate of the log

spectral density can be obtained by adding γ to the smoothed log

periodogram. Figure 3 shows various estimates of the spectral density
function obtained with different values of the continuous smoothing

parameter λ. Of particular interest for economists is whether or not there

is a steep decline of the spectral density near frequency zero. This is due
to the fact that the value of the spectral density at frequency zero is a
widely used measure for the size of the stochastic trend component. The

result obtained with the automatically chosen λ suggests that this

component is relatively large.
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Figure 3. The periodogram of the differenced log quarterly US GDP is

plotted together with estimates of the spectral density that have been

obtained by smoothing the log periodogram with different values

of the smoothing parameter 10( =λ : fine, 50=λ : medium,

500=λ : fat, automatic choice : dotted)

5. Concluding Remarks

In nonparametric trend estimation and nonparametric spectral

density estimation, applied workers usually determine the degree of

smoothing in a subjective way. This is mainly due to the fact that

standard programs for time series analysis typically compute values of

the AIC (and other decision criteria) for parametric models only, but have

no built-in methods for choosing the optimal degree of nonparametric

smoothing. Thus there is obviously a need for simple and computationally

efficient automatic smoothing methods that can be implemented also by

persons with moderate programming skills. The methods described in

this paper meet these requirements.
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Appendix A

To find the vector ( )′= nggg ...,,1  that minimizes

( ) ( ) ( )∑ ∑
=

−

=
+ −λ+−=|

n

t

n

t
tttt ggygygS

1

1

1

2
1

2 ,

we differentiate ( )ygS |  partially with respect to ngg ...,,1  and set the

derivatives equal to zero. We obtain the system of first-order conditions

( ) ( )

( ) ( )[ ( )]

( ) ( )[ ( )]

( ) ( ) .0

0

0

0

1

11111

231222

1211

=−λ+−

=−−−λ+−

=−−−λ+−

=−λ−−

−

−−−−−

nnnn

nnnnnn

ggyg

ggygyg

ggggyg

ggyg

In matrix notation the system can be written as ,gy Λ=  where

.

100000

210000

000210

000021

000001

































+−

−+−

−+−

−+−

−+

=Λ

λλ

λλλ

λλλ

λλλ

λλ

The matrix Λ is positive definite because it is a diagonally dominant

matrix, i.e., 0>Λii  and ∑
≠
Λ≥Λ

ij
ijii  for all i. Hence, the Hessian matrix

( )
Λ=











∂∂
|∂

2
2

ji gg
ygS

is also positive definite.
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A simple numerical method to find the solution yg 1−Λ=  is based on

the cumulative first-order conditions

( ),1
1112 yggg −

λ
+=

( ) ( )[ ],1
221123 ygyggg −+−

λ
+=

                    

( )∑
−

=
− −

λ
+=

1

1
1 ,

1
n

t
ttnn yggg

∑ ∑
= =

=
n

t

n

t
tt yg

1 1

.

Obviously, 2g  is increasing in 31, gg  is increasing in 1g  and ,2g  and so

on. Hence, nggg ...,,, 32  are increasing in .1g  Therefore, all we have to

do is to select an appropriate starting value, e.g., ( ) ,0 11 yg =  and to

change this value iteratively until ( ) .ε≤∑−∑ kgy tt  It must be

increased if ( ) ε−∑<∑ tt ykg  and decreased if ( ) .ε+∑>∑ tt ykg  Here

( )kgt  is the value of tg  at iteration k.

Appendix B

Pre-multiplying both sides of the equation gy Λ=  by

,

1111

0111

0011

0001

























=B
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we get AgBy =  and ,1ByAg −=  where

.

11111

1111

00111

0011

0001











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















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+

−+

−+

=Λ=

λλ

λ

λλ

λλ

BA

Writing A as a partitioned matrix of the form

( )

( ) 











 ′λ−
=

11...,,1

,0...,,0R
A

we obtain

( ) ( ) ( )

( ) 

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Thus,
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All quantities occurring in the final expression for ( )BAtr 1−  can be

calculated recursively. For the derivation of the recursion formulas, we
introduce the nn ×  matrix
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The inverse of ∗R  takes the form
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Thus,
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