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Abstract

In the present paper, a Taylor method is developed to find the
approximate solution of high-order linear differential equation system
with specified associated conditions in terms of Taylor polynomials at
any point. In addition, examples that illustrate the pertinent features of

the method are presented, and the results of the study are discussed.

1. Introduction

A Taylor method for solving Fredholm integral equations has been
presented by Kanwall and Liu [1] and then this method has been
extended by Sezer to Volterra integral equations [2] and to differential
equations [3]. Similar approach has been used to solve linear Volterra-

Fredholm integro-differential equations applied by Yalginbas and Sezer
[6] and nonlinear Volterra-Fredholm integral equations by Yal¢inbag [4].
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The technique is based on, first, differentiating both sides of
differential equation system n times and then substituting the Taylor
series for the unknown function in the resulting equation. Here, the
obtained linear algebraic system has been solved approximately by a

suitable truncation scheme.

In this study, the basic ideas of the mentioned works are developed

and applied to problems consisting of:

1. High order linear differential equation system

k k-1
k "y | k1 d* 'y 0
r1(t) 22k + 5 () = +ot () ()
k k-1
k d*yg k1 d” "y 0
+ “rig(t) 2 + " np(t) = +ot rig(8)ye(t)
dk -1
+...+ krls ls(t) Orls(t)ys(t) = fl(t)
"21(15) n +et Oy () 31(2)
dk ~ dk—l
+ g (6) 22+ F 1r22<t>7y12+...+ Oy (t) y2 (t)
k 1
t...+ Ty ZS(t) dt h 1 -t OrZS(t)ys(t) = f2(t)
dky B dk—ly
Fra() o " @) i et Ora ()1 (1)
dk B dk—l
krsza)dT% F s () kyf Orea (t) 2 (t)
dk dk 1
%@73: MO et rs0250) = (0
or briefly
ks
DD @@ = ), (G =1, 2, . 8). )

n=0m=1
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2. The conditions (in most general)

k-1
[ohiy (@) + By (®) + v5y(e)] = Ay
=0
et
[afy5) (@) + B2y () + 75y ()] = ngi | @
j=0

Z [ 38 (@) + By P (B) + v590)(0)] =

where "7, (t), fj(t),(m, j=1,2,...,5,n=0,1,2,..., k) are functions having

nth derivatives on an interval a <, ¢ < b, provided that the real
coefficients ocgl, BZ?, yg? and A,,; (1,/=0,1,2, .., k-1, m=1,2,..,5)

appropriate constants, and the solution is expressed in the form

ul =1,2 ..,
om0 =Y oo I

k=0 a<t,c<b, N>k

which is a Taylor polynomial of degree N at ¢ =c. Here y,(,]f)(c),
(m=1,2,..8 k=0,1,2,.. N) are the coefficients to be determined.

2. Method of Solution

To obtain the solution of the given problem in the form of expression

(3) we first differentiate equations (1) n times with respect to ¢ to obtain

(n) _ (n)
a* gk-1 .
{k’"n(t) dtil} + { Vn(t) 2" {1} o+ [P @On O

(n) k1 )
a* _ d n
{krlz(t) dtﬂ {k Lrig(2) dtk_ﬂ o+ [Prg (@) yo (6]

(n) _ (n)
d* _ ak! n n
{’w ﬂ {“ns(t) dtkﬂ ot [ O3, 1) = [ ()
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(n) k-1 (n)
d* _ d n
{krglm dtﬂ {k 0 dtk_{l} ot [Py ()91 ()] ™)

(n) _ (n)
pL B gk .
+[k’“22(t) dtiﬂ J{k 'rylt) dtk‘?} ot [ O () (I

)3 (n) k-1 (n)
+...+{kr23<t>d ys} {k-l@s(t)ddtk_yf} et [Py (025 O1 = [ O

k., 1M k1. 1)
{krsl(t)%:l +{k_1'"51(t)afﬁTyll} w4 [P @ 1

k (n) k-1 (n)
{krsz(t)ddtﬂ {“rsz(t)ddtk_ﬂ +[rg @)y 1)
dty, (n) . ak Ty (n)
+. l: rss(t) dty :| +|:k 17‘35(0?_{}
o+ [ 25 O1 = [ (0], )

where n =0,1,..., N. Using the Leibnitz’s rule (dealing with

differentiation of products of functions), simplifying and then
substituting ¢ = ¢ into the resulting equation, we have

krl({z—m)(c)‘%m-%-k)(c)_’_ k—lrl(it—m)(c)y£m+k—1)( )+ n lr(n m)( ) (m+1)(c)
B U + O (e) y ™M) + A )y o)+ F T )y )
ot lr(" m)( )y (m+1)(c)+ Orl(g_m)(c)ygm)(c)+...+ krl(:_m)(c)ygwrk)(c)

+ kflrl(sn_m)(c)y(m% 1)(c)+ et 1rl(sn_m)(c)ygmﬂ)(c) + 0rl(s"_m)(c)ygm)(c)

= ")

kr(n—m)(c)y(m+k)(c)+ k—lr(n m (C)y(m+k 1)(C)+ n lr(n m)(c)y(m+1)(c)

n U + O () ™)+ BB () i) )+ F LRI () y R )
ot )y D () + Ol () y () 4+ BT )y ()

+ F ) E) 4 I ) ) + Ol ) )
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=)

kr(n—m)(c)y{m+k)(c)+ k—lr(n—m)( ) (m+k-1) (C)+ n lr(n m)(c)y(m+1)(c)
i[n] i Ors(ln m (c)y{ (c)+ krs(g m (c)y (m+k) (C)+ — rs(;—m)( ) (m+k-1) (C)
m=0\m) |+...+ lrs(g*m)(c)ygm+1 (c)+ rs2 (c) (c)ysm+k (c)

T B mem) ) y R ) L BT ) y ) () + Ol )y ()

M (c)+...+ Frlm

= fM(e).

This is a system of s(N +1) linear equations for the s(IN +1) unknown

®)

coefficients yg,f’)(c), (m=1,2,..s k=0,1,.. N). Here nrj(:l)(c), fj(z)(c),
n=0,1,...,k;m,j=1,2,..,82=0,1,..,n; n=0,1, ..., N), respectively,

denote the values of zth derivatives of the unknown functions

t=c, [34,6]

nrjm, fJ at

Note that, in general, system (5) cannot be directly used for solution
of the given problem, but it is a fundamental relation.

To solve the more general problem consisting of equations (1) and

conditions (2), we now write the matrix form of system (5) as

Wll ‘Yl + W12 .Y2
ng 'Yl + W22 .Y2

Wsl ‘Yl + WS2 .Y2

+..+ W, Y, =F
+ ...+ WZS'YS = F2

: (6

+..+ W, Y, =F,

where
YﬁﬁMA%wwWwT
[WMy@)y@wT

[@@wmm

yMe)f”
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F = [2%) D¢ .. M

F, = [i%) V%) .. AN

F, = (1) 1) - M)

and for n, m =0, 1, ..., N,

Wi = [wi1),, ] Wig = [(wi2),,) - Wis = [(wi5),,,,]

Wo1 = [(w021),, ), Wag = [(Wag)m s s Was = [(was),,,, ]t

Wsl = [(wsl)nm]7 W82 = [(ws2)nm]7 ) Wss = [(wss)nm]

The elements of which are defined by

I B L O AN [ Sl

(k-1)

n n-m n n-m
+...+(m_1]1r1(1 +1)(c)+(m]0r1(1 )(c)

(wi2),,, = ( n kj}’ (n-m+k) (c)+[ n jklrl(ngr(kl))(c)
m—

-(k-1)

n n—m n n—-m
+ot (m - J 17"1(2 De) + (mj 0r1(2 (c)

(W1 ) = (m’i kj p(nmeh) o) (m ) n jk—lrl(srz—m+(k—1))(c)

(k-1)

+...+( n ]1 pnmme) (o) ( ] 0(n-m) )

m-—1

_ n k (n m+k) n k-1 (n-m+(k-1))
S P R

n n-m n n-m
+o (m B J Lfrmmeb) (e 4 (mj 0pfn=m)(c)

()
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(Wa2 ) = (mri kj (momek)(c) +( B (r; B 1)} hdpfnmm (k1) ()

n n-m n n-m
+ot (m - 1] Lp{n=m+) (c) 4 (m] 0pfn=m)(c)

_ n g (n-m+k) n k-1_(n-m+(k-1))
(w28 )nm [m j 35 (C) + (m — (k- 1)) Tos (C)

R R L

_ n k. (n—-m+k) n k-1 (n-m+(k-1))
(wsl )nm (m _ k) rs]_ (C) + (m _ (k _ 1)} rs]_ (C)

+...+(m”_1]1 H ) ) 4 ( ] (-m)c)

_ n k. (n—-m+k) n k-1 (n-m+(k-1))
N R OF I e (O

+"'+(mn—lj1 (n- m+1)(0)+[ j ’"s(gim)(c)

_ n k_ (n—-m+k) n k-1_(n-m+(k-1))
T I e O (NN L [0

+...+( " jlrgg_m+l)(c)+( j rss m)(c) (7
m-—1

Note that in equations (7) that for ¢ < 0,

" = ®

and for j <0 and j > i, ( j = 0, where i, j and k& are integers. In this
J

case, in equations (7), for n <m -k, (n =0,1, ..., N-(k-1); m = k +1,
k+2,.. N)

(wij )nm = 0.
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Now write the system (6) in matrix form

WY =F,
where

79 |
yW(e)

¥M(e)

W | ry
W | |y
2 ) Y2

() QS

y{9(c)

yM(e)
Ly (e))
and the matrix
Wi Wi
W. W.
W - :21 :22
Wsl Ws2

O ]
Y (e)

AN (e)
£ | g
e | g,

AVO| g,

1)
B (e)

()]

Wls
' WZS

WS S

is formed by matrices W;; (i, j = 1, 2, ..., s) defined as

(@)oo (Wi1)gy -
Wy, - (w1?)1o (wl?)u
|(wi1)yo (Win)yg -
[(wi2)go  (Wi2)o1
Wiy = (wl.‘.z)w (w1?)11
|(Wi2)yo Wi2)Ng -

(wll )ON ]
. (w11)1N
(wll)NNJ

P )ON ]

- (wrg )1N

(wy2) NN

)

(10)
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[ (w15 )00

(wis )10

_(wls )N()
[ (waq )00

(w21)10

_(wz 1 ) NO
[(wag )00

(wag )10

_(w22 ) NO

[ (LUQs )00
WQS — (wZS )10

| (025

[ (wsl )00
Wsl — (wsl )10

(s o

(wg2 )00

W, = (ws?)l()

(wSZ.)NO

(wls )()1

(wWis)hy -

(wls)Nl
(LU21)01

(w21)11

(w21)N1
(LU22)01

(UJ22 )11

(w22)N1

(w23)01
(LU2:9)11

(was)yy -

(wsl)m
(ws} )11

(w1)yy

(g2 )01
(ws? )11

(wSZ.)Nl

e (wWrs)on |

(wls )1N

(wls )NN_
(w21)0 N ]

(w21)1N

(w21)NN_
(w22)ON ]

(wae )1 N

(w22 )NN_

(w23 )0 N
(w2§ )1N
(w2s') NN
(wsl )0 N
(wsl. )1N
(w51‘) NN
cee (ws2 )ON
vee (st )1N

ves (ws2.)NN

147
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(wss)()o (wss)01 (wss)()N
Wss — (ws§)10 (ws?9)11 (wss:)1N .
(wss)NO (wss)Nl (wss')NN

Next we can obtain the corresponding matrix forms for the conditions
(2) as follows. The expression (3) and its derivative are equivalent to the
matrix equations

3O {1 (-a@-of ‘];,)N}.Ym

_ )N
n(e) = { T "(t(N—)l)! }'Ym

_:c _N-)
e = { 0% ‘ 1 )"'Eév—)(k—l))!}'Ym

where Y,, (m =1, 2, ..., s) is defined in equations (6). By using these

equations, the quantities y,, )(c) ym(a) and y(n)(b), (n=0,1,2,.. k-1),

can be written as
yO)=[100..0LY,
yg,?)(a) = {1 h h ﬂ}Ym

1120 7N

2 N

Oy |18k kT
i (D) —{1 T o N Y,

yW(e)=[010...0]Y,,
N-1
y%)(a) = {0 1 X h—}Ym

ol 11 (NN— 11)! ’ an
(1) 1k k
v (b) = {0 o T V= 1)'} Y,

y%e—l)(c) =[0..010..0]Y,

(k1) () - 1 h RN
v (a) = {0 .. 0 o T N (k=) Y,

(h-1) 7y _ 1k RN
Yo (b) = {0 ..0 o T (N = (kD) Y,

where h=a-cand k =b-c.
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Substituting quantities (11) into equations (2) and then simplifying,
we obtain the matrix forms of the first, second and kth conditions defined

in equations (2), respectively, as
1 2 k .
Ui-Yl = [kli], Ui.YQ = [7‘21' ], ooy Ui’Ys = [}"si] (l =0,1,2, .., k- 1)

or more clearly,

1,1 1 1

(w0 “win “wig o Twin ] Yy = Ay (12)

2 2 2 2

[Fwio “un “wig ... “uin] Yo =Ly (13)

k k k k

[Fuio “un “wig ... "uin] Y = g, (14)
where 1uij, 2uij, 3uij, vy kuij are constants related to the coefficients

ag,ﬁg.l,yg.‘ and A,,; m=1,2,..,8i=0,1,..,k-1;j=0,1,.., N) in

equations (2), h and & in equations (11). Of course we should be careful in

the choice of coefficients of the conditions given by equations (2).
Now, by replacing the £ rows matrices W;; and F; in (10) by the last

k rows of the matrices lUi and Ay; 1=0,1,..,k-1) in (12),

respectively, we have

(w11 )0 (w11)p1 - (w11 ] i fl(o)(c) 1
(w1110 (w111 o (wi N fl(l)(c)
i) v-ro @ivopy o @i (N-F)
Wi - 11 )(N-k)0 1 11)(N-k)1 \ 1 (N-k)N - A (e) 15)
Uoo Uo1 o UQN Mo
Yy Yy oty M1
Vo Mg Ty | g |

Similarly, by replacing the k& rows matrices Wog and Fy in (10) by the

last k rows of the matrices 2Ui and Ag; (1 = 0,1, ..., kB — 1), respectively,
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we obtain
[ (wag )00
(wag )10
Wy, =

2u(k—1) 0

(wag )01

(wag )11

(woyg )(N—k)O (w2 )(N—k)l

2
Uo1

2u(k—1)1

(wag )0 N

(wae )1 N

Y )(N_k)N

2u(lH)N

RON
fD(e)

ANR)(c)

L20

. (16)

Ao(k-1) |

Finally, by replacing the k rows matrices Wy, and F, in (10) by the

last k rows of the matrices *U; and Ay (i=0,1,..,k—1) in (13),

respectively, we get

[ (wss)oo (wss)(n (wss)()N 1
(wss )1() (w 8S )1 1 (wss )1 N
(wss)(ka)o (wss)(ka)1 (wss)(ka)N
kuoo kucn kuON
kulo kun kulN
i ku(k—l)O ku(k—l)l ku(k—l)N ]

RON
D)

JFs = fVR) ).
7‘30

17

| As(h-1)

Taking into account (15), (16), (17) the matrix equations (10) can be

written into the form

W'Y = F*
or more clearly,
Wi Wy Wis || Y
Wy Wiy Wy || Y2
Wsl Ws2 Ws*s YS

(18)
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If [W" | # 0, then we can write
Y = (W) LF* (19)

Thus, the coefficients yﬁ,’f)(c), m=12..,8k=01.., N) are
uniquely determined by equation (19). Thereby the differential equation

system (1) with the condition (2) has only unique solution. This solution

1s given by the Taylor polynomials

N
ym(t)=zk‘ym ().t-cf,(a<t,c<b;m=1,2 .., s N=E). (20)
k=0

3. Accuracy of Solution

We can easily check the accuracy of the solution obtained in the form
(20) as follows. Since the truncated Taylor series (20) or the
corresponding polynomial expansion is an approximate solution of

equations (1), when the solutions y,,(!) and its derivatives are

substituted in equations (1), the resulting equations must be satisfied

approximately, that is, for ¢, ¢; € [a, b], i =0, 1, 2, ...

ZZ @@ - £;t)[20,(=1,2,...,5i=0,1,2..) 21

n=0m=
or
Dj(k;) < 1075 (k; is any positive integer).
If max]| 107 | =|107% | (k is any positive integer) is prescribed, then
the truncation limit NV is increased until the differences | D;(t;)| at each

of the points becomes smaller than the prescribed 107*
4. Examples

The method of this study is useful in finding the solution of
differential equation system in terms of Taylor polynomials. We illustrate
it by the following examples.
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Example 4.1. Let us first consider the problem
ty; + 2vh + 2y9 = te' + 3e! +2

¥+ +3y2=5et+3

51(0) =1, y5(0) =2 (22)

and approximate the solution y,,(¢) by the Taylor polynomial
N 1 L
w0 = D 590 - o)
k=0

where N =4,¢=0,a =0 and b = 0.

Then, by using these quantities ”r](;)(t), fj(z )(t) in (1) and relation (7)

for N = 4, we obtain the matrix W* and F* in (18) as

O 0 00 0 2 1 0 0 O 5

1 0 000 0 21 00 4

02 0 0 0 OO0 21 0 5

0 03 00 O0O0OO0 21 6

* 1 0 0 0O 0O0O 0 0 0 2 * 1
W= 1100 00 3 00 0 F= 8|
011 0 0 0 0 3 0 O 5

0 01 1 0 0 0 O0 3 0 5
0001 1 00 O0 O0 3 5

0 0 001 1 0 0 0 0] | 2]

From the solution of  equation (19), the coefficients

yg,f’)(O), (m=1,2,..s k=0,1,.. N) are uniquely determined as

1.08280
0.90016
1.13390
1.04630

- 5.6818x107°
2.00570
0.98864
0.93994
1.31980

| - 4.13960 x 1072 |
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By substituting the obtained coefficients in (20) the solution of (22)

bec

omes

y; = 1.0828 + 0.90016¢ + 0.56695¢> + 0.17438t> — 2.3674 x 10444

yo = 2.0057 + 0.98864t + 0.46997t2 + 0.21997¢3 — 1.7248 x 102¢*.

The comparison of solutions (for ¢ = 0, N = 4) with exact solution y; = e’

and yo =1+ e! is given in Table 1.

Table 1. Numeric results of Example 4.1

Exact Exact Present method | Present method
i t; solution solution c=0,N=4 c=0,N=4
y =e yg =1+¢ N Yo
0]-0.5 0.60653 1.60650 0.75264 1.60130
1(-0.4] 0.67032 1.67030 0.80228 1.67130
21-0.3| 0.74082 1.74080 0.85907 1.74550
31-0.2 0.81873 1.81870 0.92405 1.82500
41-0.1 0.90484 1.90480 0.99828 1.91130
5 0 1.00000 2.00000 1.08280 2.00570
6| 0.1 1.10520 2.10520 1.17870 2.10950
71 0.2 1.22140 2.22140 1.28690 2.22400
81| 0.3 1.34990 2.34990 1.40860 2.35050
9| 04 1.49180 2.49180 1.54470 2.49040
10| 0.5 1.64870 2.64870 1.69640 2.64490

Example 4.2. Let us now consider the differential equation system

(t +1)y) + 3y — 3y3 = 3t5 = 3t5 + 20¢* + 20¢3 — 3¢ - 3

1+ tyg +y§:t7+t5+20t3+4t2+5t+1

yp + 295 + y3 = 2t° + 60t + 8t +4

(23)
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with conditions
y1(0) =1, 1(0) =3, y3(0) =2, y5(0) =4, y3(0) =3, y5(0)=5.

To find a Taylor polynomial solutions the problem above, we first
take ¢ = 0 and N = 4, and then proceed as before. Then we obtain the

matrix W* and F* in (18) as

[0 01 003 00O0O0-30 0 0 0]
00110030000 -30 0 O
00021003000 0O -30 0
10000O0O0OO0O30O0O O O =320
01000000030 0 O 0 =3
100000O0OO0OO0OO0OO0O O 1T 0 O
01000100000 O O 1 O
W'={0 01 00020000 O 0 0 1
000101 0O0O0OO0O0O O0O O O O
00001010000 O O 0 O
100000O0O2001 0 0 0 O
01 000O0O0OO0OZ2O0O0 1 O O O
00100000020 0 1 0 O
0oo01000O0O0OO0OO0O1T O O O O
00001 0O0O0O0O0O0OO0OT1 0O O O |

F*=[-3-301315824438035].

From the solution of equation (19), the coefficients yg,}f )(O), (m=1,2,3;

k =0,1, .., 4) are uniquely determined as

Y:[130002400035000]T.

By substituting the obtained coefficients in (20) the solution of (23)
becomes

y1 =38t+1, y9 =4t +2, y3 =5t +3. (24)

The values y,,(t;), (m=1,2,3;i=0,1, ..., 10) of solution (24) in an
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interval — 0.5 < x < 0.5 and the values D;(t;) are demonstrated in Table

2.

Table 2. Numeric results of Example 4.2

Present Present Present

method method method
i| i |e=0,N=4|c=0,N=4|c=0,N=4]|[Di)||[D:(t;)]||Dst)]

Y1 Y2 NE]

0]-05 - 0.50000 0.00000 0.50000 1.1094 2.5391 3.6875
1|-04 - 0.20000 0.40000 1.00000 0.72499 1.2919 1.5155
21-03 0.10000 0.80000 1.50000 0.36852 | 0.54265 | 0.48114
3 1-0.2 0.40000 1.20000 2.00000 0.12685 | 0.16033 | 0.9536
41-0.1 0.70000 1.60000 2.50000 0.017967 | 0.02001 | 0.00598
5 0 1.00000 2.00000 3.00000 0 0 0
6| 0.1 1.30000 2.40000 3.50000 0.021973 | 0.02001 | 0.00602
71 02 1.60030 2.80010 4.00000 0.19123 | 0.15033 | 0.9664
81| 0.3 1.90240 3.20070 4.50240 0.6969 0.54265 | 0.49086
91| 04 2.21020 3.60410 5.01020 1.7736 1.2919 1.5565
10| 0.5 2.53130 4.01560 5.53130 3.7031 2.5391 3.8125

Example 4.3. Let us consider the problem

4 3 3 2

: o s 3 v+ 2 7 (2t -1)2 92 12y, = 37 + 8 -1

dt dt dt dt

4 2 3
d—y42+d—3;2+y2+tdyl+y1:2t2+2t+4 (25)
dt dt

y1(0) =3, 1(0) =0, »/(0) =2, "(0) =0, y9(0) = -1,
¥5(0) = 2, ¥5(0) =2, y3'(0)=0

and approximate the solution y,,(¢) by the Taylor polynomial

>

5
(@)= > Ly W)t - o, (26)
k=0

where N =5,¢=0,a =0 and b = 0.
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Following the procedures in the previous examples, we find the

unknown coefficients yﬁ,’f)(O) (n=0,1,..,5)

Y=[302000-12200 o]. @7

Substituting the elements of column matrices (27) into equation (26),
we obtain the approximate solutions, in term of the Taylor polynomial of

degree two about ¢t = ¢ = 0, as
— 2 _ 2
y1(t) = 3+1t%, yo(t)=—-1+2t+1¢°.

Of course these are exact solutions.
5. Conclusions

High-order linear differential equation systems with variable
coefficients are usually difficult to solve analytically. In many cases, it is
required to obtain the approximate solutions. For this purpose, the
presented method can be proposed. A considerable advantage of the
method is that the solution is expressed as a truncated Taylor series and
thereby a Taylor polynomial at ¢t = ¢. Furthermore, after calculation of

the series coefficients, the solution y(t) can be easily evaluated for

arbitrary values of ¢ at low computation effort.

If the functions ”rjm(t), fit),(m,j=1,2.,85n=012..,k) are
functions having nth derivatives on the interval a <t < b, then we can

approach the solutions y,,(¢) by the Taylor polynomial

N
In®) = D= ) (e - o)t
k=0

about ¢ = ¢; otherwise, the method cannot be used.

On the other hand, it is observed that this method shows the best
advantage when the known functions in equation can be expanded to
Taylor series about ¢ = ¢ which converge rapidly. The method can be
developed and applied to another high-order linear and nonlinear
differential equation systems with variable coefficients.
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