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Abstract

Transversality is a powerful technique for proving that some properties
on spaces of maps, solutions of partial differential equations or vector
fields are generic. In particular the properties of the evaluation map

constructed to each problem is the key tool.

In the setting of dynamical systems given by the pair (M, f), where the
state space M is a smooth manifold and f: M — M is a continuous

map, frequently we have only a partial information of M throughout a

scalar map o : M — R but we do not know how is M. As a consequence,
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a problem which arises is how to reconstruct M using o and getting the
essential information on it. The technique of using embeddings maps is
satisfactory since them keep that information. The embedology started
with the works of Whitney in the 1930’s. Since then some results have
been obtained but using different techniques.

In this paper we present part of those results under the unified approach
of the transversality theory and underlay the importance of the
evaluation map associated to each problem of embedology.

1. Introduction

Searching for generic or typical properties of vector fields, maps,
partial differential equations, etc. has been a subject of interest since the
1950’s. It is well known that a general technique to establish such
properties is called the transversality theory that has its beginning in the
Thom’s results of [16]. The Kupka and Smale’s theorems ([7], [10] and
[12]) on generosity of some properties for flows on compact manifolds is

another good example.

Adequate topologies in the space of vector bundle sections are
necessary to state the frame where a generic property can be precisely
defined. Also the notion of evaluation map originally introduced by
Abraham and Robbin in [1] is a basic tool in the transversality technique.

Embeddings in cartesian spaces have been widely considered after
the seminal results by Merger and Nobeling [5]. Since this, Whitney in
[19] got some results in the problem of embedding analytic manifolds in
cartesian spaces. He proved that if an analytic manifold has dimension
m, then it can be embedded globally into R?™*1 and that the set

composed of embeddings is dense and open in the space of ct -maps.
These ideas were considered by Takens [15] and applied to the problem of
the reconstruction of discrete dynamical systems, opening the door for
other results (see [2], [11], [13], etc.).

Let M c R” be a C"-manifold (the state space) and f : M — M be
a continuous map. Then the pair (M, f) is called discrete dynamical

system, where the main problem is to understand the asymptotic behavior
of the orbits of all points of M, that is, to know the asymptotic of the
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sequences (f"(x))_o, where " = f"!of (neN) and f° denotes the

identity on M. When modelling real problems, in most cases we do not
know M and have only partial information on it given by a scalar
measure on M, that is, given by a map o : M — R. This information has
then the form of a time series obtained from a. From this information, we

must be able to reconstruct the state space M.

The reconstruction of a space equivalent in some sense to M
throughout a is in the basis of many nonlinear methods used in literature

(see for example [6]).

A scalar measure is a projection of the unobserved internal variables
of the system into an interval on the real line. Apart from the reduction
in dimension, the projection may be nonlinear and mix different internal

variables, producing great distortion on the output.

With these facts in mind, we need for the reconstructed space to have
the property that the evolution of a trajectory in it be clearly stated and
uniquely determined. But uniqueness of the dynamics in the
reconstructed space is not the only property we want to hold. We want
that others properties to be maintained such as dimensions, Lyapunov
exponents, entropies, etc., but those features are invariant only under
smooth nonsingular transformations. That means that in order to
guarantee that the invariants coincide in the original state space and in
the reconstructed (or at least in a part of it) we need to require that the
structure of the tangent space be preserved by the reconstruction process.

But it can be obtained through an embedding of a compact smooth
manifold M < R" which is a smooth map f: M — R" such that at
every x € M, T,M 1is injective (f is an immersive map) and maps
homeomorphically M onto its image. The key point is to establish under

what conditions the projection obtained from the scalar measure and the

subsequent reconstruction form an embedding.

The problem with the embedding of scalar data in R" has two
aspects. First, if it is possible or not to obtain that the state of the system
i1s uniquely characterized by p coordinates corresponding to p

independent variables from the scalar time series. Once we know those
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variables, we also know that the dynamic lives in a p dimensional
manifold. But this manifold could be curved. Then the second problem is
to embed this manifold into a cartesian space where we will finally work.
Thus to find maps having the former properties (called embeddings

maps) is of great interest.

The aim of this paper is to present three results on embedology of
discrete dynamical systems whose state spaces are compact manifolds,
under the unified approach of the technique of transversality. In this case

what is new is the unified approach we use.
2. Notations, Definitions and Preliminary Results

It is supposed the reader knows some initial and elementary notions

of General Topology and Differential Geometry such that those of

Ck-manifold, ct -curve, coordinate charts and tangent vector to a
manifold at a point. To see the former notions and the subsequent

properties and results, see for example [3] and [1].

Let us denote by M a ck -compact manifold. Then the set of all

tangent vectors at x € M 1is a vector space denoted by 7T, M. The union

of the tangent vectors at all points of M gives the tangent bundle or
tangent space of M which is denoted by T'M:

T™ = {(x,v):x e M,ve T,M} = U({x}xTxM)
xeM

There is a natural map t:7T(M)—> M given by 1t(v)==x, if
veT,M and v Hx)=T.M. If Mis a C* -manifold of dimension 2m,
then tisa C*! -map.

If we consider the tangent vectors of M with ||v| =1, then we obtain

the set TM = {(x,v):x e M, |v||=1} « TM. This set is a compact

manifold of dimension 2m — 1.

In what follows M and N will denote smooth manifolds of dimensions

m and n respectively, and f: M — N is a smooth map. The derivative
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of fat x € M 1is a linear map from 7, M to Tr(x) denoted by T.f. The
derivative of f is a map Tf : TM — TN mapping linearly 7, M into
Tf(x)N .

The notion of transversality is introduced throughout some
definitions.

Definition 1. If 7, M is injective, then fis immersive at x € M. If f

i1s immersive at every point of M, then f is an immersion. f is an
embedding provided f is an immersion and maps homeomorphically m
onto its image.

Remark 1. When M is compact, it is easy to see that f is an

embedding if and only if f is injective and an immersion.
Definition 2. Let [ € C'. Then a point y € N is a regular value of f

if 77Y(y) = @ or if the map T.M is surjective at all x ().

Definition 8. Let L < N be a submanifold. Then a C! -map
f: M — N is transverse to L at x € M provided f(x)¢ L and if
f(x) € L, then the following hold:

(1) (Txf)_l(Tf(x)L) has a closed complement in 7, M.
(2) T,.f(T,M) has a closed subspace V such that Tr)N =V + Tpy)L.

Remark 2. When M or N are finite dimensional, fis transverse to the
submanifold L ¢ N at x € M when f(x) ¢ L or Ty )N = Tf(T M) +

Tf(x)L when f(x) € L.

Remark 3. Let fbe a C'-map. If fis transverse to L, then f~ (L) is
a submanifold of M.

Let M denote now a C” and m-dimensional compact manifold and

B = C"(M, R") be the set of C"-maps from M to R". Let {¢; : U; c M

->V;c R™ }ﬁvzl be a finite set of coordinate charts holding Ujvz 1 Uj=M
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(this is possible since the compactness of M) and let C; < U; be compact

subsets holding Ui\il Cj = M. Then the space B is complete when it is

endowed with the topology given by the distance
d(f, g) = supf] f(x) - g@) | | 7O © 07" (0;(x))

~TO(g o071 )(0j(®))||gn : x € Cj; 1< j<N,1<i<r)
for every f, g € C"(M, R") and where 70 denotes the i-derivative of T.

If Nis a C" and n-dimensional manifold, then the topology of
C"(M, N) is slightly more complicated. Better than define a distance
between two functions, it is more convenient to describe a base of
neighborhoods of the topology. Let f € C"(M, N) andlet ¢ : U c M —
UcR"and y:VcN - V' < R" be charts on M and N, respectively.
Let K — U be a compact set such that f(K) c V and let ¢ > 0. Then a
neighborhood of fis given by

N'(f; 9, U), (v, V), K, ¢)
g:M —> N:g(K)cV and
=Ty e foo ™) (o) = T*(y o g o 07" (0(x) [gn < -
forall x e o(K), k=0, ..., 7
Remember that a set S is residual in a topological space X if there is
a countable number of dense open sets {U;};_y in X such that Sc ﬂjeN U;.

If X is a complete metric space, then any residual subset S of it is dense.

With help of the notion of Lebesgue measure (see for example [17]),
we introduce a measure on any manifold and we speak of zero measure
sets and full measure sets in a similar way than we speak of zero

Lebesgue measure or full Lebesgue measure sets.

Definition 4. Let M be an m-dimensional manifold. Then a subset

S © M has zero measure (respectively full measure) if for every chart
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o:Uc M —->V cR™, the set oUNS)c R™ has zero Lebesgue
measure (respectively full Lebesgue measure).

The following result is a key tool in this theory.

Theorem 1 (Morse-Sard). Let M and N be manifolds of dimensions m
and n respectively, and f: M — N be a C"-map. If r > max{0, m — n},

then the set of regular values of f has full measure in N. Moreover, it is

residual and therefore dense.

If M is a compact manifold, then the set C" (M, R") is a manifold [1]

and associated we have
TC' (M, R") = U {f} < T,CT (M, R™),
feC™ (M, R™)
where T(C"(M,R")={neC (M, TR"):ar on=f} with t, :TR" - R"
given by 1., (v) = f(x) and v € Ty(,)R". Since C"(TM, TR") is a manifold
(recall that T™™ is a compact manifold), we introduce the set
TC™(TM, TR™) with TTfC’(fM, TR") = {we C"(TM, TTR"):

- 1),

TR ° W

The map o : TTM — TTM, given by o(x, v, u, w) = (x, u, v, w) is an
isomorphism and is called the canonical involution. This map satisfies

Ty o @ = Tty and © o © = Identity.

Let M and N be two differential manifolds and consider a family of

maps from M to N parametrized by a topological space K, that is, there is
a map F:K — C'(M, N) given by F(k)=f,, where f, denotes a
member of the family. Associated to F we introduce the map

evp : KxM —> N

given by evp(k, x) = f;(x) which it is called the evaluation map of F. This

map plays an important role to obtain the transversality results. The
same can be said of the following result, where its proof is made in [1]

using an infinite dimensional version of the former Morse-Sard’s theorem.
g
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Theorem 2 (Parametric Transversality Theorem). Let K, M, N be
C" -manifolds, Lc N be a C"-submanifold of codimension p and

F:K - C' (M, N) be a continuous map such that its evaluation map

evg is C". Assume that:

(1) K and M are second countable (their topology has a countable base
of neighborhoods).

(1) evp is transverse to L.
(i) r > max{0, m — p}, where m = dim M.

Then A ={ke K : f, istransverseto L} is residual in K and therefore

dense. Moreover if L is closed in N and M is compact, then A is also open.

When K is a finite dimensional manifold, we use Morse-Sard’s
theorem to obtain the next result. The proof we have made is inspired in
Stark [14] and Hirsch [3].

Theorem 3. Let K, M, N be C"-manifolds, Lc N be a C’-

submanifold of codimension p and suppose F is continuous and evp is
C". Assume that:
(i) K and M are finite dimensional with dim(M) = m.

(1) evy is transverse to L.

(iii) r > max{0, m - p}.

Then A ={k e K : f, is tranverse to L} has full measure in K.
Moreover if L is closed in N and M is compact, then A is also open.

Proof. Since evy is transverse to L, the set evfrl (L) is a submanifold

of KxM. Let n:evit(L) > K be the first projection. Then we claim

that the set of regular values of = Dbelongs to the set
A ={k € K : f; is transverse to L}.

Let k£ € K be a regular value of «.

() If ni(k) =@, then fy(x)e L for all x e M and F(k) = f, is

transverse to L.
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(i) If n1(k) # @, then y = f,(x) € L for some x € M and we need
to prove that fj is transverse to L, that is, T, f,(T,M) + T, L = T ,N. As
evy 1is transverse to L, for any w € TyN, there exists v e TyL, o e T, K
and u € T, M such that T}, ,evp(a, u)+v = w, thatis, n,(x) + T fp(u) +

v = w, where g : M — TN such that ty o1y = f;.
Also we know that T}, ,m is surjective and then for a € T} K, exists
u' € T,M is such that (o, u') € Tk,x(evﬁl(L)) and ng(x) + T, f,(v') € T, L.

Finally we have T, fp(u —u')+ (g (x) + T fp(v') + v) = w and then f} is

transverse to L, proving the claim. Hence A has full measure by
Morse-Sard’s theorem.

The technical Lemmas 1 and 2 are proved in [13].
Lemma 1. Let f € C"(M,R™). Given x € M, veTs,\R™ and Uc M
an open neighborhood of x, there exists a C" function n € T;C"(M, R™)

such that n(x) = v whose support is contained in U.

Lemma 2. Let f e C"(M,R™). Given ve T,M with v0, we

Trp)(TR™) and an open neighborhood U — M of x, there exists e

T;C"(M,R™) such that o(T n(v)) = w, whose support is contained in U.

Lemmas 3, 4 and 5 are key points for proving the Whitney’s theorem
and its prevalent version using transversality theorems.

Lemma 3. Let M be a compact smooth manifold of dimension m.
Consider the maps o and its evaluation

o : C"(M, R?™1) o ¢" Y (TM, TR?™*1)
evg(f, v) = Tf([v).
Then evg is transverse to every submanifold of TR for r > 1.
Proof. Consider

Ty yevg : TrCT(M, R*™ ) x T, TM — Ty, TR™*
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given by
Tf,vevc(n’ 17) = Tva(lj) + wan(U)’

By Lemma 2, Ty ,ev, is surjective for all (f,v) e C"(M, R2™ 1) TM

and then is transverse to every submanifold of TR?mH,

Lemma 4. Let M be a compact smooth manifold of dimension m
contained in R* and let {fy, fy, ..., fp} be a basis for the finite-

R2m+1

dimensional space of polynomial functions from R” to of degree

less than or equal to 2. Consider the map p and its evaluation map

p: RP - C"(M x M\A, R+  R2m+1)

evp(a, X, y) = {i aifi(x)’ iaifi(y)}
i=1 i=1

where A denotes the diagonal of M x M and A the diagonal of R¥™*! x
R2m+1‘

Then ev, s transverse to A.

Proof. Consider the map

Ty x.yeVp  TuRP x Ty (M x M\A) - T, (R¥™ x R#™H)

p p p p
Ta,x,yevp(a’ u, U) = Z aifi(x) + Z aiTxf(u)’ Z aiﬁ(y) + Z O‘iTyf(U) s
=1 =1

1=1 1=1
A p p
where ev(a, x, y) € A and z = Zizl a;fi(x) = Zizl a;f:(y).

We need to prove that the image of T|, , yev, contains a basis vector

of TZ,Z(RQmeRzmH). For some i let x; # y; and consider the

polynomial of degree one and two in the variable i for each component of

R2m+1’ and such that the rank of ((f2m+2(x)’ f2m+2(y))’ ey (fp(x)’ fp(y)))

is 4m + 2.
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Now find a certain @ =(0,..,0, agpsg, ..., ap) € RP  with

Ta’x,yevp(a, 0,0)=(0, .., ¢, ..., 0).
Then the map ev, 1s transverse to A.

Lemma 5. Let M be a compact smooth manifold of dimension m

contained in RF and let {hr for o [} be a basis for the

inite-dimensional space of polynomial functions from R* o RZMH! of
f D poly

degree less than or equal to 2. Consider the map o and its evaluation

c: RP - C"(TM, TR?*™)
2
evg(a, v) = Zaini(v).
i=1

Then evg is transverse to every submanifold of TR2m+1, for r > 1.
Proof. Considering the map

T

a

ev. - T-RP xT'TM — T TR2m+1
&0 F L Ry P aTh)

given by
p p
Ta,vevc(a’ u) = Z OLiTvai(u) + Z Otini(U)
i=1 i=1

we are proving that it is surjective.

The number of homogeneous polynomial of degree 1 existing in
{h» far - fp) is (2m + 1)k and the rank of

ThAW), ... Tf,©))

is (2m +1) provided v # 0. For every w e T_, TR?™*1 there
i=10~ini(U)

exist real numbers such that w = Zle a;T, f;(v) = T, yevs(@, 0) and

therefore ev, is transverse to every submanifold of TRZMHL,
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When we are considering a property held by a subset of an infinite
dimensional linear metric space, we will use the term almost every to
mean that the subset i1s prevalent with respect to such property.
Prevalence 1s an appropriate condition when one desires a probabilistic
result on the likelihood of a given property on a space of functions. The
notion of prevalent set was introduced by Hunt et al. (see [4]). The use of
this term was introduced as an extension of (Lebesgue) almost every to the
infinite dimensional case and allow us to establish similar results to those

made on manifolds in the setting of compact sets which are not manifolds.

Definition 5. A Borel subset S of a normed linear space V is
prevalent if there is a finite-dimensional subspace £ < V such that for

each v e V, v+e e S for (Lebesgue) almost every e € E (see [11]).

A prevalent set means that if we start at any point in the linear space

V and explore along the finite dimensional E — V, then almost every

point encountered will lie in this set. For subsets of finite-dimensional
spaces the term prevalent is synonymous with almost every, in the sense
of outside a set of measure zero. When there is no possibility of confusion,
we will say that almost every map satisfies a property when the set of

such maps is prevalent.

Now we are recalling when a compact set A c R” has box-counting

dimension d.
Let ¢ >0 and N(g) be the number of subsets A, = {x e R :|x —a| <,
a € A} such that A ¢ UA,. When

. log N(¢)
31_1)1(1) - log(e)

exists and takes the value d, the box-counting dimension of A is d.

In what follows we are proving some technical results necessary to

prove a prevalent version of Whitney's theorem for compact sets.

Lemma 6. Let A c R* bea compact set. Then there is a map from

R* to R” injective on A, for some n.

Proof. Since A c R* is compact, it can be covered by a finite
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number of open set {V;}; such that A < U:ilVl Let U; (i =1, ..., m)
be a finite number of open sets holding V;, <V, cU; and
A :R* 5[0,1] a C*-map equal to 1 on V; and to 0 on R™\U, for
i=1,.. m (see [3]). Let the C"-map f; : R* — R* given by
fi(x) = k;(x)x.
P — . ok k+1
ut g; = (f;, A;): R® > R*™ and
g = (g, o 8py) : R — REHD),

then gis a C” -map.

To see that g is injective on A, let x, y € A with x # y and y ‘7L
for some i. If x ¢ V;, then A;(x) =1 = 4;(y) and g;(x) # gjy). If x e V.,
then %;(x) = 4;(y) but f;(x) = £;(y).

Lemma 7. Let A c RF be a compact set of box-counting dimension

d <k and f:R¥ - R* bea C'-map. Then f(A) has Lebesgue measure

zero.

Proof. Let A c R* be a compact set of box-counting dimension
d <k Then N(¢) ~ ¢, where N(g) is the number of cubes covering A
of side &. The measure of each cube is p(C) = €* and the measure of A is

w(A) = e*¢@ = ¢*°? then if d <k the measure of this set is zero.

Therefore f(A) has Lebesgue measure zero (see [3]).

Lemma 8. Let A c R* be a compact set of box-counting dimension

d<kand f:RF 5 R? bea C'-map. If q > d, then f(A) has Lebesgue

measure zero in RY.

Proof. Let U(e) be a cube of side ¢ such that A < UU(e) and

N(g) ~ €% because the box counting dimension of A is d. Let
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A, =U(e)N A be such that A = UA,. We know that f(A) < Uf(4,)
U f(U(e)), then f(A) is covered by £ ¢ sets. If x, y e U(¢), then

1 fx) = F)| < K| x = | < ke,

where % is the maximum value taken by the differential of f on A. Then

w(f(U(e)) < k%2 and f(A) has measure zero.

Lemma 9. Let A c R be a compact set of box-counting dimension

d < k. Then there is a C"-map from R”* to R" injective on A, where n =
min{j e N: j>2d +1} and r > 1.

Proof. By Lemma 6 there exists a map from R” to R? injective on A,

for some q. If ¢ is an integer less than or equal to 2d + 1, then we have
finished. Let us suppose ¢ is an integer greater than n. To finish the
prove it is sufficient to prove that we are able to find a map from R” to
R?7! injective on A.

Identifying R?' with {x e RY tx, =0} let ve RAR?™!  and
f, R - R?7 be the parallel projection to v. If f denotes the injective
map from R” to RY, then it is sufficient to prove that f,/ f(4) 1s injective.

To get it, we need that v is not parallel to any secant of f(A). That is, if

f(x) - f()
[ Flx) = f)]°

x, y are any two distinct points of A, then we need v #

Consider the map
o:RFxRF - A - g971
given by
_ )= fy)
o0 ) = TGy = 70|

where A denotes the diagonal of R”* x R*. It is clear that v holds the

conditions needed for f, to be injective on A if and only if

v e o(f(4)x f(A)) - ((f(A) x f(A) N A).



... TRANSVERSALITY IN EMBEDOLOGY 163

But it is possible to find a vector v holding the above conditions since

the set A x A has box counting dimension 2d and being k > d, the set
(A x ANA has Lebesgue measure zero in (R¥ x R*\A and its image by

a C"-map (r >1) is again a zero Lebesgue measure, if ¢ —1 > 2d by

Lemma 7.

Let (M, f) be a discrete dynamical system, where M c R" is a
C" -manifold and f : M — M is a continuous map. Recall that a point
x € M is periodic of period p of the system if fP(x) = x and f/(x)# x
for j < p.

Takens (see [15]) gave the first theoretical justification of data
embedding techniques used by experimentalists to reconstruct dynamical
information from time series. To this end, he dealt with a class of maps

called delay coordinate maps because they are more accessible to

scientists making experimental work than other maps.

Definition 6. Let f be a diffeomorphism of an open set U < R* and

o : U — R be a map. Then the delay coordinate map @/, : U — R" is

O o (x) = (a(®), alf(x)), ., a(f"" ()

Now we recall a Takens’s theorem (see [13] and [14]) from which we
will prove a prevalent version.

Theorem 4. Suppose that f e Cr(Rk, Rk) is a diffeomorphism on

M c R* an m-dimensional compact manifold such that f has only a

finite number of periodic points of period less than 2m + 1, and such that

the eigenvalues at all periodic points are distinct.
Then there is an open and dense set of o € Cr(Rk, R) for which @y
is an embedding on M.

Finally we recall an easy result following necessary to prove Theorem
8 (see [13]).
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Lemma 10. Let V be a vector space with dimV =n. Let A:V ->V
be an invertible linear map with distinct eigenvalues, and a : V — R be

any linear map holding a(v) # 0 for all eigenvectors v of A.

Then vectors a, ao A, ..., a o A" gre linearly independent.
3. The Theorems

Since C"(M, R") is dense in C*°(M,R") for all r>s, for r

sufficiently large we obtain the following results (see [3]).

The first result is a version of the well known Whitney theorem [18].
Originally this result was proved in the setting of analytical manifold and

for analytical maps.

Theorem 5. Let M be a compact smooth manifold of dimension m.
Then for r > 1, there is an open and dense set of C” (M, R?™*1) composed

of embeddings of M.

Proof. We first prove that the set of immersive maps from M to
R2™*! is an open and dense set of C"(M, R>™*1). For that, consider the
maps

c: Cr(M, R2m+1) e Cr_l(TM, TR2m+1)
o(f)=Tf
evg : CT(M, R*™1)x TM — TR?™*!

evs(f, v) = Tf(v).

By Lemma 3, ev; is transverse to every submanifold of TR2m+1,
thus is transverse to L =1{0, € TR?>™1} with dim L = 2m +1. This

evaluation map is Cl, if >3 and dim7TM - codim L < 0, then we
apply the Parametric Transversality Theorem (Theorem 2) to o and

obtain that the set of f’s belonging to C"(M, R?*™!) and holding that

o(f) is transverse to L is open and dense in C"(M, RZ™*1),
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For any v e TM the dimension of 7,(TM) is 2m —1 and then the
dimension of T,(Tf)(T,(TM)) is at most 2m —1 and the dimension of
ToL is 2m+1. If Tf(w)e L, T,(Tf)(T,(TM))+ TyL has dimension at
most 4m < 2(2m +1) = dim TyTR?*™*! | then T,(Tf)(T,(TM))+ TyL cannot
span TOTR2m+1. Thus the unique way for Tf to be transverse to L is

that its image does not intersect L. In such case fis an immersion.

We denote by I the open and dense set of C”(M, R>"*!) holding that

Tf 1s an immersion for every f € I.

Now we prove that the set of injective maps from M to R?™*1 which
are immersive is an open and dense set in I. To this aim, consider the

maps

p: 1 > C"(M x M\A) - RZMH1  g2m+1
evy 1 I x (M x M\A) — RZmHL  R2mHL

evy(f, x, ¥) = (f(x), f(¥)),

where A is the diagonal of M x M, with z = f(x) = f(y) and
. r 2m+1 2m+1 2m+1
Ty v yevy « TCT (M, RZ™) T, (M x MNA) - T, JR¥™ x R
Tf,x,yevp(n: u, U) N (ﬂ(x) + Txf(u)’ n(y) + Tyf(v))'

Using Lemma 4, for all f, x, y € C"(M, R?™*1)x (M x M\A) and
every (v, 0) € TZ,ZRZ’”Jr1 x R?™*1 we can find n e T;C" (M, R2™*1) such
that n(x) =v and n(y) = 0. Hence T ev,(n, 0, 0) = (v, 0), which implies

the map ev, is transverse to A the diagonal of RZ™*! x RZm+,
Since ev, 1s Cl, r>2 and dim M x M\A-codimA =2m —2m -1 < 1,
we can apply the Parametric Transversality Theorem to obtain that the

set of f’sin I such that p(f) is transverse to A is open and dense in 1.
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The dimension of T, ,M x M\A 1is 2m, then the dimension of

Ty yo(f)(Ty, yM x M\A) is less than or equal to 2m. Since the dimension
of TZ,ZA is 2m +1, the transversality of p(f) to A implies that the

image of p(f) cannot intersect A. This is the condition for f to be

injective, and hence the injective maps form an open and dense set in 1.

Then the set of injective and immersive maps from M to RZ™*1 i an

open and dense set in C"(M, R?™*1), for r > 3. But C"(M, R?™*) is an
open and dense set in Cl(M, R2m+1) for r 21, and the statement is
proved.

Theorem 6. Let M be a compact smooth manifold of dimension m
contained in R*. Then almost every f e C"(R*, R2™*1) is an embedding
of M, for r > 1.

Proof. Let S ={feC'(R*, R?"1):f is an embedding of
M, r > 1}. We want to prove that this set is prevalent.

To this end, we take the finite-dimensional space of polynomial

R2m+1

functions from R* to of degree less than or equal to 2. Let

{fi, fo, ..., f,} be a basis for this space.
Let fy € C"(R*, R2™*) and f, = f, + Zle a;f;. Consider the maps

o :RP - C"(TM, TR?™*1)

given by
o(a) = Tf,
and
evg : RP x TM — TR?mH
given by

b
evg(e v) = Tf,©) = Tfo) + Y aTf(v).
i=1
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By Lemma 5, the map ev, is transverse to every submanifold of
TR?>™1  and then is transverse to L = {0, € TR2™ 1} Since
dim (fM )—codim L < 0, we apply the Morse-Sard’s theorem (see [3],
[13]) to obtain that the set {o € R? : o(a) is transverse to L} has full
measure and is an open set. Now we count dimensions: dim (T,7M) =
2m — 1, the dimension of its image T,(T'f,)(T,TM) is at most 2m —1
and the dimension of TyL is 2m +1. Hence T,(Tf,)(T,TM)+ T,L
cannot span TOTRzm 1. Therefore the map Tf, is transverse to L when

its image does not intersect L. Then the set {o e RP :f, is an

immersion} has full measure and is an open set. We denote this set by 1.

Now consider the map
p:I > CT(M x M\A, RZ™L c R2m+l)

ev, 1 Ix (M x M\A) - R¥™H x RZMH

b b
evp(o, %, ¥) = | fol®)+ Y aifil@) fol¥)+ Y aifily)|.
=1 =1

A

By Lemma 4, the map ev, is C' and is transverse to A. Since

dim (M x M\A)-co dimA <0, we apply the Morse-Sard’s theorem to

obtain that the set {a e I: p(a) is transverse to A} has full measure
and is an open set in I. We count dimensions: for any x, y € (M x M\A),

if the dimension of T, ,(MxM\A) is 2m, then the dimension of
Ty yp(a) (Ty (M xM\A)) is less than or equal to 2m and if the
dimension of szzﬁ is 2m+1, then Tx,y(MxM\A)+TZ72A cannot span
TZYZ(R2'"+1><IR{2'"+1). Thus p(a)(x, y) ¢ A, that is, p(a) is injective for
almost every o € L.

Theorem 7. Let A be a compact subset of box counting dimension d

contained in R*. Then almost every f e Cr(Rk, R™), with r>1 and
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n=min{j € N: j>2d +1}, is injective on A and immersive on each
compact subset of a smooth manifold contained in A.

Proof. Let S = {f € C"(R*, R"): f is injective on A = R*}. We will
prove that this set is prevalent in C(Rk , R™).

An e-map fis a map such that A ,(f) = sup{dim f*({z}): z € f(A)} < &.

The set of all those maps consists on the maps on A which deviate from

being injective by less than e.

Consider the set of those maps on A which deviate from being
injective by less than ¢ and U, = {f € C(R*, R"): A,(f) < &}. It is open
in the topology of compact convergence in C(Rk , R™).

By Lemma 9 there is a map from R* to R” injective on A with
n =min{j € N: j > 2d + 1}. Then it is held

{f € C(R®, R"): f isinjectiveon A = R*} = ﬂUl/n = J.
n=1

Let {f;, fa, ..., fg} be a basis of the space of linear transformation
from R* to R”™. Consider the map
v :RFxRY 5 R
given by

D
Wi, o) = folx) + ) aifi(x),
=1

where fy € C(R*, R*) and o = (oy, ..., ay). This map is continuous and
the same for the map
¥ : R? - C(RF, R")
given by
q
Wla) = fo+ D aif;
i=1

see [8].
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If n > k, then there exists some o € R? such that ¥(a) is injective
on R”* and then injective on A.

If n < k, then by Lemma 9 we know that A is in a subspace of R” of
dimension n and also there exists an injective map ¥(a) on this subspace

and then injective on A.

Then the subset of {o € R? holding ¥(a) € ﬂ:zl Uy/p !} is an open set
of RY.

Take o € R? and the set B(a, &), £ > 0. Then the map

v/ 5 : R* x B(a, &) > R"

given by
q
v/ Blx, B) = fo(x) + Y Bifi(x)
=1

is continuous and ¥/g = fy + Z?:l B;f; is also continuous [8] and then

the subset of {B:B e B(a, &) such that ¥/ pg(B) € ﬂ:ﬂ Uy is an open
set of B(a, £)}. We have then proved that for almost every o e RY,

where the map f, = fy + Z?zl o;f; 1s injective on A.

The second part of the statement is immediate using Theorem 6.

Theorem 8. Let M be a compact smooth manifold of dimension m
contained in R* and let f e Cr(Rk, Rk) be a diffeomorphism on M with

only a finite number of periodic orbits of period less than 4m + 2, and
eigenvalues distinct. Then for almost every o e C'(M, R), the map

Op oy M R2™1 given by

O, () = (0@), a(fE)) oo a2 (x)

is an embedding on M, with r > 1.
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Proof. Let {a, ..., 04} be a basis of the vectorial space of polynomial

in %k variables of degree less than or equal to 4m + 2. Denote by

P = {xy, ..., x,} the set of periodic points of fin M.
It is proved in [13] that the set of maps a € C"(M, R) holding @
1s injective and immersive on Py is an open and dense set of C" (M, R).

Consider the map
evg :RIxM - R

given by

Q

evg(a, %) = ag(x) + D ajo(x),

=1
where og € C"(M, R). It is continuous and then o:R? — C"(M, R)

with o(a) = o + Z?_l a;0; is also continuous, provided r > 1.

Following [11] we construct a polynomial in & variables of degree at

most p —1 such that ®; , is injective on Py and a polynomial in %

variables of degree at most p such that @ , 1s immersive on Pr.

Then we have an open and dense set of R?, denoted by O, such that

for all @ € O the map ®; , is injective and immersive on P;.

Consider the map
evy : O x T™ — TR?"*1

given by

Q

evp(a, v) = TDy o (v) + Zade)f,ai (v),

1=1

where a = (ay, ..., @;) and L ={0, € TR?™ 1} We claim that this map

is transverse to L.
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To see it, if ev,(a, v) € L with a € O, v € T, M, then x ¢ Py, since if

x € Py, then T®; , (v)+ Z?zl a;T®f o (v) # 0 and as consequence ev,,

would be transverse to L at such periodic point x.

If x ¢ Py, then x, xq, ..., X9, are distinct and it is true that
T, vevy (TR x T,TM) + ToL = ToTR*™ 1,

since given any u e TyTR*™*! and v; = Tf(v) # 0 there would exist a

polynomial in %k variables of degree at most 2m + 1 (see [11]) such that
T, vevy (b, 0) = w.

The map ev, is C! and dim7TM - codim L <1, then applying

P
Theorem 3 we have that thus the set of a € O has full measure in O.

Now we count dimensions: dim 7,(TM) is 2m -1, the dimension of
T,p(a)(T,(TM)) is at most 2m -1 and dim7yL =2m +1, then
T,p(a)(T,(TM)) + TyL has dimension at most 4m and this is strictly less
than dim TR?*™! = 4m + 2. Therefore p(a) is transverse to L whenever
its image does not intersect L, that is, when p(a) be an immersion.

Consider now the map

evy : O x (M x M\A) — RZm+1  g2m+1
given by

q q
evp(a, %, ¥) = | ®f 40 () + D a0y o, (), Op o0 (9)+ Y @Dy 4, (¥)
=1 =1

we now claim that this map is transverse to the diagonal of RZ™*! x

R2m+1 Following a similar procedure than in Stark [14], we distinguish

the following cases:
(aIf x,ye Py, then it is immediate that for almost every element of

R? the map is transverse.
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(b) Let x # y and suppose that some of them are not periodic points

of f. Then without loss of generality, we may assume that the points x; =

fi(x), for i =0, ..., 2m are distinct. Let z = D oo (x) + Z?:l Df o (x) =

D g0 (¥) + Z?zl @y o;(¥). Then T, A = {(u, u) : u € T,R*™*}. We need
to show that the image of 7T}, , ,evy contains a complement of this space.
Let e = O, ..., e, .., 0)e TZR2m+1 and e(o), . ¢?™) form a basis of

T,R?™1 We know that

q q
Ta,x,yeve(a’ 0, O) = {Z aiq)f,(xi (x), Zaiq)f,oci (y)j

i=1 i=1

1=1

q JR—
= (Z ai(oci(x), (Ii(xl), ey ai(me))’

q _—
D aglo(y) i), oo ocl-(ym))].

=1
First suppose that x, x1, ..., X9, ¥, Y15 ---s Yo, are distinct and again
using [11] we can find a polynomial with %k variables of degree 4m + 2

such that T

a,x,yeb(@, 0,0) = (e, 0) and therefore the image of 7|, , ,evy

contains the space T,R*™"! x {0} which is clearly a complement of T, JA.

It remains to consider the case yzfj(x), for some -2m < j < 2m,

J # 0. Since then y cannot be a periodic orbit of period less than 4m + 2,
we can assume without loss of generality that y = f J (x), 0 < j < 2m. The
points x, xq, ..., Xj_1s Y5 Y15 s Yom are distinct. Hence for 0 <i < j we
construct a polynomial with k variables of degree 2m + j +1 such that
T4, x, yevo(@, 0, 0) = (e(i), 0). Now we proceed by induction. Our inductive
hypothesis on & is that for all 0 <i < k there exist a polynomial and a
u; € T,R?™*1 such that Ty, x, yevo(@, 0, 0) = (e + u;, u;). By above this
holds for £ = j -1 (with u; = 0).



... TRANSVERSALITY IN EMBEDOLOGY 173

Now we proceed as follows: since f™/(y) = f'(x) the points
Xy X1s wees X2ms Yo2m—jo» Y2m—j+15 =+ Y2m

are distinct, so we can find a polynomial in % variables of degree

2m + j+1 such that Ta,x,yeve(a, 0, 0) = (e, e*=7)). By inductive

hypothesis there exists a polynomial such that 7T, evg(ay_j, 0, 0) =

a,x,y
(elF1) +up_j,up_j). Thus Tg . yevg(ap_; + by, 0, 0) = (e® + e-=)) 4 Up_j,
ki) 4 up_;j). This complete the inductive process with wu; =

i) 4 Up—j-

We have thus shown that Im(T, , ,evg)+ TZ,ZA contains the space

» X, Y

T,R*™*! x {0} which is clearly a complement of 7, _A.

The preimage of an open and dense set of a’s € C"(M, R) holding

@, isinjective and immersive on Py, therefore it is an open set of RY.
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