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Abstract

Transversality is a powerful technique for proving that some properties

on spaces of maps, solutions of partial differential equations or vector

fields are generic. In particular the properties of the evaluation map

constructed to each problem is the key tool.

In the setting of dynamical systems given by the pair ( ),, fM  where the

state space M is a smooth manifold and MMf →:  is a continuous

map, frequently we have only a partial information of M throughout a

scalar map R→α M:  but we do not know how is M. As a consequence,
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a problem which arises is how to reconstruct M using α and getting the

essential information on it. The technique of using embeddings maps is

satisfactory since them keep that information. The embedology started

with the works of Whitney in the 1930’s. Since then some results have

been obtained but using different techniques.

In this paper we present part of those results under the unified approach

of the transversality theory and underlay the importance of the

evaluation map associated to each problem of embedology.

1. Introduction

Searching for generic or typical properties of vector fields, maps,

partial differential equations, etc. has been a subject of interest since the

1950’s. It is well known that a general technique to establish such

properties is called the transversality theory that has its beginning in the

Thom’s results of [16]. The Kupka and Smale’s theorems ([7], [10] and

[12]) on generosity of some properties for flows on compact manifolds is

another good example.

Adequate topologies in the space of vector bundle sections are

necessary to state the frame where a generic property can be precisely

defined. Also the notion of evaluation map originally introduced by

Abraham and Robbin in [1] is a basic tool in the transversality technique.

Embeddings in cartesian spaces have been widely considered after

the seminal results by Merger and Nobeling [5]. Since this, Whitney in

[19] got some results in the problem of embedding analytic manifolds in

cartesian spaces. He proved that if an analytic manifold has dimension

m, then it can be embedded globally into 12 +mR  and that the set

composed of embeddings is dense and open in the space of 1C -maps.

These ideas were considered by Takens [15] and applied to the problem of

the reconstruction of discrete dynamical systems, opening the door for

other results (see [2], [11], [13], etc.).

Let nM R⊂  be a rC -manifold (the state space) and MMf →:  be

a continuous map. Then the pair ( )fM ,  is called discrete dynamical

system, where the main problem is to understand the asymptotic behavior

of the orbits of all points of M, that is, to know the asymptotic of the
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sequences ( ( )) ,0
∞
=n

n xf  where ( )N∈= − nfff nn D1  and 0f  denotes the

identity on M. When modelling real problems, in most cases we do not

know M and have only partial information on it given by a scalar

measure on M, that is, given by a map .: R→α M  This information has

then the form of a time series obtained from α. From this information, we

must be able to reconstruct the state space M.

The reconstruction of a space equivalent in some sense to M

throughout α is in the basis of many nonlinear methods used in literature

(see for example [6]).

A scalar measure is a projection of the unobserved internal variables
of the system into an interval on the real line. Apart from the reduction
in dimension, the projection may be nonlinear and mix different internal
variables, producing great distortion on the output.

With these facts in mind, we need for the reconstructed space to have
the property that the evolution of a trajectory in it be clearly stated and
uniquely determined. But uniqueness of the dynamics in the
reconstructed space is not the only property we want to hold. We want
that others properties to be maintained such as dimensions, Lyapunov
exponents, entropies, etc., but those features are invariant only under
smooth nonsingular transformations. That means that in order to
guarantee that the invariants coincide in the original state space and in
the reconstructed (or at least in a part of it) we need to require that the
structure of the tangent space be preserved by the reconstruction process.

But it can be obtained through an embedding of a compact smooth

manifold nM R⊂  which is a smooth map nMf R→:  such that at

every ,Mx ∈  MTx  is injective (f is an immersive map) and maps

homeomorphically M onto its image. The key point is to establish under

what conditions the projection obtained from the scalar measure and the
subsequent reconstruction form an embedding.

The problem with the embedding of scalar data in nR  has two
aspects. First, if it is possible or not to obtain that the state of the system

is uniquely characterized by p coordinates corresponding to p

independent variables from the scalar time series. Once we know those
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variables, we also know that the dynamic lives in a p dimensional

manifold. But this manifold could be curved. Then the second problem is
to embed this manifold into a cartesian space where we will finally work.

Thus to find maps having the former properties (called embeddings

maps) is of great interest.

The aim of this paper is to present three results on embedology of
discrete dynamical systems whose state spaces are compact manifolds,
under the unified approach of the technique of transversality. In this case
what is new is the unified approach we use.

2. Notations, Definitions and Preliminary Results

It is supposed the reader knows some initial and elementary notions
of General Topology and Differential Geometry such that those of

kC -manifold, 1C -curve, coordinate charts and tangent vector to a

manifold at a point. To see the former notions and the subsequent
properties and results, see for example [3] and [1].

Let us denote by M a kC -compact manifold. Then the set of all

tangent vectors at Mx ∈  is a vector space denoted by .MTx  The union

of the tangent vectors at all points of M gives the tangent bundle or

tangent space of M which is denoted by TM:

( ){ } { }( ).,:, ∪
Mx

xx MTxMTvMxvxTM
∈

×=∈∈=

There is a natural map ( ) MMT →τ :  given by ( ) ,xv =τ  if

MTv x∈  and ( ) .1 MTx x=τ−  If M is a kC -manifold of dimension 2m,

then τ is a 1−kC -map.

If we consider the tangent vectors of M with ,1=v  then we obtain

the set ( ){ } .1,:,
~

TMvMxvxMT ⊂=∈=  This set is a compact

manifold of dimension .12 −m

In what follows M and N will denote smooth manifolds of dimensions

m and n respectively, and NMf →:  is a smooth map. The derivative
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of f at Mx ∈  is a linear map from MTx  to ( )xfT  denoted by .fTx  The

derivative of f is a map TNTMTf →:  mapping linearly MTx  into

( ) .NT xf

The notion of transversality is introduced throughout some
definitions.

Definition 1. If MTx  is injective, then f is immersive at .Mx ∈  If f

is immersive at every point of M, then f is an immersion. f is an

embedding provided f is an immersion and maps homeomorphically m

onto its image.

Remark 1. When M is compact, it is easy to see that f is an

embedding if and only if f is injective and an immersion.

Definition 2. Let .1Cf ∈  Then a point Ny ∈  is a regular value of f

if ( ) ∅=− yf 1  or if the map MTx  is surjective at all ( ).1 yfx −∈

Definition 3. Let NL ⊂  be a submanifold. Then a 1C -map

NMf →:  is transverse to L at Mx ∈  provided ( ) Lxf ∉  and if

( ) ,Lxf ∈  then the following hold:

(1) ( ) ( ( ) )LTfT xfx
1−  has a closed complement in .MTx

(2) ( )MTfT xx  has a closed subspace V such that ( ) ( ) .LTVNT xfxf +=

Remark 2. When M or N are finite dimensional, f is transverse to the

submanifold NL ⊂  at Mx ∈  when ( ) Lxf ∉  or ( ) ( ) += MTTfNT xxf

( )LT xf  when ( ) .Lxf ∈

Remark 3. Let f be a 1C -map. If f is transverse to L, then ( )Lf 1−  is

a submanifold of M.

Let M denote now a rC  and m-dimensional compact manifold and

( )nr MCB R,=  be the set of rC -maps from M to .nR  Let { MU jj ⊂ϕ :

}N
j

m
jV 1=⊂→ R  be a finite set of coordinate charts holding ∪N

j j MU
1=

=
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(this is possible since the compactness of M) and let jj UC ⊂  be compact

subsets holding ∪N
j j MC

1
.

=
=  Then the space B is complete when it is

endowed with the topology given by the distance

( ) { ( ) ( ) ( )( ) ( ( ))xfTxgxfgfd jj
i ϕϕ−= −1,sup, D

( )( ) ( ( )) }riNjCxxgT jjj
i

n ≤≤≤≤∈ϕϕ− − 1,1;:1
RD

for every ( )nr MCgf R,, ∈  and where ( )iT  denotes the i-derivative of T.

If N is a rC  and n-dimensional manifold, then the topology of

( )NMCr ,  is slightly more complicated. Better than define a distance

between two functions, it is more convenient to describe a base of

neighborhoods of the topology. Let ( )NMCf r ,∈  and let →⊂ϕ MU:

mU R⊂′  and NV ⊂ψ :  nV R⊂′→  be charts on M and N, respectively.

Let UK ⊂  be a compact set such that ( ) VKf ⊂  and let .0>ε  Then a

neighborhood of f is given by

( ) ( ) )εψϕ ,,,,,; KVUfN r

( )

( ) ( )( ) ( ) ( )( )

( )

.

...,,0,allfor

and::

11



















=ϕ∈

ε<ϕϕψ−ϕϕψ

⊂→

= −−

rkKx

xgTxfT

VKgNMg

n
kk

RDDDD

Remember that a set S is residual in a topological space X if there is

a countable number of dense open sets { } N∈jjU  in X such that ∩ N∈⊆
j jUS .

If X is a complete metric space, then any residual subset S of it is dense.

With help of the notion of Lebesgue measure (see for example [17]),
we introduce a measure on any manifold and we speak of zero measure
sets and full measure sets in a similar way than we speak of zero
Lebesgue measure or full Lebesgue measure sets.

Definition 4. Let M be an m-dimensional manifold. Then a subset

MS ⊂  has zero measure (respectively full measure) if for every chart
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,: mVMU R⊂→⊂ϕ  the set ( ) mSU R⊂ϕ ∩  has zero Lebesgue

measure (respectively full Lebesgue measure).

The following result is a key tool in this theory.

Theorem 1 (Morse-Sard). Let M and N be manifolds of dimensions m

and n respectively, and NMf →:  be a rC -map. If { },,0max nmr −>

then the set of regular values of f has full measure in N. Moreover, it is

residual and therefore dense.

If M is a compact manifold, then the set ( )nr MC R,  is a manifold [1]

and associated we have

( ) { } ( )
( )

,,,

,

∪
mr MCf

nr
f

nr MCTfMTC

R
RR

∈

×=

where ( ) { ( ) }fTMCMCT n
nrnr

f =ητ∈η= DRRR :,,  with nnTn RRR →τ :

given by ( ) ( )xfvn =τR  and ( ) .n
xfTv R∈  Since ( )nr TMTC R,

~
 is a manifold

(recall that MT
~

 is a compact manifold), we introduce the set

( )mr TMTTC R,
~

 with ( ) { ( ) wTTMTCwTMTCT nf T
nrnr

T DRRR τ∈= :,
~

,
~

}.Tf=

The map ,: TTMTTM →ω  given by ( ) ( )wvuxwuvx ,,,,,, =ω  is an

isomorphism and is called the canonical involution. This map satisfies

MTM Tτ=ωτ D  and .Identity=ωω D

Let M and N be two differential manifolds and consider a family of

maps from M to N parametrized by a topological space K, that is, there is

a map ( )NMCKF r ,: →  given by ( ) ,kfkF =  where kf  denotes a

member of the family. Associated to F we introduce the map

NMKevF →×:

given by ( ) ( )xfxkev kF =,  which it is called the evaluation map of F. This

map plays an important role to obtain the transversality results. The
same can be said of the following result, where its proof is made in [1]
using an infinite dimensional version of the former Morse-Sard’s theorem.
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Theorem 2 (Parametric Transversality Theorem). Let K, M, N be
rC -manifolds, NL ⊂  be a rC -submanifold of codimension p and

( )NMCKF r ,: →  be a continuous map such that its evaluation map

Fev  is .rC  Assume that:

  (i) K and M are second countable (their topology has a countable base
of neighborhoods).

 (ii) Fev  is transverse to L.

(iii) { },,0max pmr −>  where .dim Mm =

Then { }LtotransverseisfKkA k:∈=  is residual in K and therefore

dense. Moreover if L is closed in N and M is compact, then A is also open.

When K is a finite dimensional manifold, we use Morse-Sard’s
theorem to obtain the next result. The proof we have made is inspired in
Stark [14] and Hirsch [3].

Theorem 3. Let K, M, N be rC -manifolds, NL ⊂  be a rC -

submanifold of codimension p and suppose F is continuous and Fev  is

.rC  Assume that:

  (i) K and M are finite dimensional with ( ) .dim mM =

 (ii) Fev  is transverse to L.

(iii) { }.,0max pmr −>

Then { }LtotranverseisfKkA k:∈=  has full measure in K.

Moreover if L is closed in N and M is compact, then A is also open.

Proof. Since Fev  is transverse to L, the set ( )LevF
1−  is a submanifold

of .MK ×  Let ( ) KLevF →π −1:  be the first projection. Then we claim

that the set of regular values of π belongs to the set
{ }.totransverseis: LfKkA k∈=

Let Kk ∈  be a regular value of π.

 (i) If ( ) ,1 ∅=π− k  then ( ) Lxfk ∉  for all Mx ∈  and ( ) kfkF =  is

transverse to L.
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(ii) If ( ) ,1 ∅≠π− k  then ( ) Lxfy k ∈=  for some Mx ∈  and we need

to prove that kf  is transverse to L, that is, ( ) .NTLTMTfT yyxkx =+  As

Fev  is transverse to L, for any ,NTw y∈  there exists ,LTv y∈  KTk∈α

and MTu x∈  such that ( ) ,,, wvuevT Fxk =+α  that is, ( ) ( ) ++ηα ufTx kx

,wv =  where TNM →ηα :  such that .kN f=ητ αD

Also we know that πxkT ,  is surjective and then for ,KTk∈α  exists

MTu x∈′  is such that ( ) ( ( ))LevTu Fxk
1

,, −∈′α  and ( ) ( ) .LTufTx ykx ∈′+ηα

Finally we have ( ) ( ) ( )( ) wvufTxuufT kxkx =+′+η+′− α  and then kf  is

transverse to L, proving the claim. Hence A has full measure by
Morse-Sard’s theorem.

The technical Lemmas 1 and 2 are proved in [13].

Lemma 1. Let ( )., mr MCf R∈  Given ,Mx ∈  ( )
m

xfTv R∈  and MU ⊂

an open neighborhood of x, there exists a rC  function ( )mr
f MCT R,∈η

such that ( ) vx =η  whose support is contained in U.

Lemma 2. Let ( )., mr MCf R∈  Given MTv x∈  with ,0≠v  ∈w

( )( )m
vTf TT R  and an open neighborhood MU ⊂  of x, there exists ∈η

( )mr
f MCT R,  such that ( )( ) ,wvTx =ηω  whose support is contained in U.

Lemmas 3, 4 and 5 are key points for proving the Whitney’s theorem
and its prevalent version using transversality theorems.

Lemma 3. Let M be a compact smooth manifold of dimension m.
Consider the maps σ and its evaluation

( ) ( )12112 ,
~

,: +−+ →σ mrmr TMTCMC RR

( ) ( )., vfTvfev =σ

Then σev  is transverse to every submanifold of ,12 +mTR  for .1≥r

Proof. Consider

( ) ( )
1212

,
~

,: ++
σ →× m

vfTv
mr

fvf TTMTTMCTevT RR



w
w

w
.p

ph
m

j.c
om

BALIBREA, CABALLERO and TENDERO158

given by

( ) ( ) ( ).,, vTvfTTvevT xvvf ηω+=ησ

By Lemma 2, σevT vf ,  is surjective for all ( ) ( ) MTMCvf mr ~
,, 12 ×∈ +R

and then is transverse to every submanifold of .12 +mTR

Lemma 4. Let M be a compact smooth manifold of dimension m

contained in kR  and let { }pfff ...,,, 21  be a basis for the finite-

dimensional space of polynomial functions from kR  to 12 +mR  of degree

less than or equal to 2. Consider the map ρ and its evaluation map

( )1212,\: ++ ×∆×→ρ mmrp MMC RRR

( ) ( ) ( ) ,,,,
1 1














αα=α ∑ ∑

= =
ρ

p

i

p

i
iiii yfxfyxev

where ∆ denotes the diagonal of MM ×  and ∆̂  the diagonal of ×+12mR
.12 +mR

Then ρev  is transverse to .∆̂

Proof. Consider the map

( ) ( )1212
,,,, \: ++

αρα ×→∆×× mm
zzyx

p
yx TMMTTevT RRR

( ) ( ) ( ) ( ) ( ) ,,,,
1 1 1 1

,, 












α+α+= ∑ ∑ ∑ ∑

= = = =
ρα

p

i

p

i

p

i

p

i
yiiixiiiyx vfTyfaufTxfavuaevT

where ( ) ∆∈αρ
ˆ,, yxev  and ( ) ( )∑ ∑= =

α=α= p
i

p
i iiii yfxfz

1 1
.

We need to prove that the image of ρα evT yx ,,  contains a basis vector

of ( ).1212
,

++ × mm
zzT RR  For some i let ii yx ≠  and consider the

polynomial of degree one and two in the variable i for each component of

,12 +mR  and such that the rank of ( ( ) ( )( ) ( ( ) ( )))yfxfyfxf ppmm ,...,,, 2222 ++

is .24 +m
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Now find a certain ( ) p
pm aaa R∈= + ...,,,0...,,0 22  with

( ) ( ).0...,,...,,00,0,,, iyx eaevT =ρα

Then the map ρev  is transverse to .∆̂

Lemma 5. Let M be a compact smooth manifold of dimension m

contained in kR  and let { }pfff ...,,, 21  be a basis for the

finite-dimensional space of polynomial functions from kR  to 12 +mR  of

degree less than or equal to 2. Consider the map σ and its evaluation

( )12,
~

: +→σ mrp TMTC RR

( ) ( ).,
1
∑
=

σ α=α
p

i
ii vfTvev

Then σev  is transverse to every submanifold of ,12 +mTR  for .1≥r

Proof. Considering the map

( )
12

,
1

~
: +

αασα ∑ =
→× m

vfTv
p

v TTMTTTevT p
i ii

RR

given by

( ) ( ) ( )∑ ∑
= =

σα α+α=
p

i

p

i
iiiviv vfTufTTuaevT

1 1
, ,

we are proving that it is surjective.

The number of homogeneous polynomial of degree 1 existing in

{ }pfff ...,,, 21  is ( )km 12 +  and the rank of

( ( ) ( ))vfTvfT p...,,1

is ( )12 +m  provided .0≠v  For every 
( )

12

1

+
α∑ =

∈ m
vfT

TTw p
i ii

R  there

exist real numbers such that ( ) ( )∑ = σα== p
i vixi aevTvfTaw

1 , 0,  and

therefore σev  is transverse to every submanifold of .12 +mTR
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When we are considering a property held by a subset of an infinite

dimensional linear metric space, we will use the term almost every to

mean that the subset is prevalent with respect to such property.

Prevalence is an appropriate condition when one desires a probabilistic

result on the likelihood of a given property on a space of functions. The
notion of prevalent set was introduced by Hunt et al. (see [4]). The use of

this term was introduced as an extension of (Lebesgue) almost every to the

infinite dimensional case and allow us to establish similar results to those
made on manifolds in the setting of compact sets which are not manifolds.

Definition 5. A Borel subset S of a normed linear space V is

prevalent if there is a finite-dimensional subspace VE ⊂  such that for

each ,Vv ∈  Sev ∈+  for (Lebesgue) almost every Ee ∈  (see [11]).

A prevalent set means that if we start at any point in the linear space

V and explore along the finite dimensional ,VE ⊂  then almost every

point encountered will lie in this set. For subsets of finite-dimensional
spaces the term prevalent is synonymous with almost every, in the sense
of outside a set of measure zero. When there is no possibility of confusion,

we will say that almost every map satisfies a property when the set of

such maps is prevalent.

Now we are recalling when a compact set kA R⊂  has box-counting

dimension d.

Let 0>ε  and ( )εN  be the number of subsets { ,: ε≤−∈=ε axxA kR
}Aa ∈  such that .ε⊆ AA ∪  When

( )
( )ε−
ε

→ε log
loglim

0

N

exists and takes the value d, the box-counting dimension of A is d.

In what follows we are proving some technical results necessary to
prove a prevalent version of Whitney's theorem for compact sets.

Lemma 6. Let kA R⊂  be a compact set. Then there is a map from
kR  to nR  injective on A, for some n.

Proof. Since kA R⊂  is compact, it can be covered by a finite
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number of open set { }miiV 1=  such that ∪m
i iVA

1
.

=
⊆  Let ( )miUi ...,,1=

be a finite number of open sets holding iii UVV ⊂⊂  and

[ ]1,0: →λ k
i R  a ∞C -map equal to 1 on iV  and to 0 on i

k U\R  for

mi ...,,1=  (see [3]). Let the rC -map kk
if RR →:  given by

( ) ( ) .xxxf ii λ=

Put ( ) 1:, +→λ= kk
iii fg RR  and

( ) ( ),:...,, 1
1

+→= kmk
mggg RR

then g is a rC -map.

To see that g is injective on A, let Ayx ∈,  with yx ≠  and iVy ∈

for some i. If ,iVx ∉  then ( ) ( )yx ii λ=≠λ 1  and ( ) ( ).ygxg ji ≠  If ,iVx ∈

then ( ) ( )yx ii λ=λ  but ( ) ( ).yfxf ii ≠

Lemma 7. Let kA R⊂  be a compact set of box-counting dimension

kd <  and kkf RR →:  be a 1C -map. Then ( )Af  has Lebesgue measure

zero.

Proof. Let kA R⊂  be a compact set of box-counting dimension

.kd <  Then ( ) ,dN −ε≈ε  where ( )εN  is the number of cubes covering A

of side ε. The measure of each cube is ( ) kC ε=µ  and the measure of A is

( ) ,dkdkA −− ε=εε=µ  then if kd <  the measure of this set is zero.

Therefore ( )Af  has Lebesgue measure zero (see [3]).

Lemma 8. Let kA R⊂  be a compact set of box-counting dimension

kd <  and qkf RR →:  be a 1C -map. If ,dq >  then ( )Af  has Lebesgue

measure zero in .qR

Proof. Let ( )εU  be a cube of side ε such that ( )ε⊆ UA ∪  and

( ) dN −ε≈ε  because the box counting dimension of A is d. Let
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( ) AUA ∩ε=ε  be such that .ε= AA ∪  We know that ( ) ( ) ⊆⊆ εAfAf ∪

( ( )),εUf∪  then ( )Af  is covered by d−ε  sets. If ( ),, ε∈Uyx  then

( ) ( ) ,ε≤−≤− kyxkyfxf

where k is the maximum value taken by the differential of f on A. Then

( ( ( ))) qqkUf ε≤εµ  and ( )Af  has measure zero.

Lemma 9. Let kA R⊂  be a compact set of box-counting dimension

.kd <  Then there is a rC -map from kR  to nR  injective on A, where =n

{ }12:min +≥∈ djj N  and .1≥r

Proof. By Lemma 6 there exists a map from kR  to qR  injective on A,

for some q. If q is an integer less than or equal to ,12 +d  then we have

finished. Let us suppose q is an integer greater than n. To finish the

prove it is sufficient to prove that we are able to find a map from kR  to
1−qR  injective on A.

Identifying 1−qR  with { }0: =∈ q
q xx R  let 1\ −∈ qqv RR  and

1: −→ qq
vf RR  be the parallel projection to v. If f denotes the injective

map from kR  to ,qR  then it is sufficient to prove that ( )Afvf  is injective.

To get it, we need that v is not parallel to any secant of ( ).Af  That is, if

yx,  are any two distinct points of A, then we need ( ) ( )
( ) ( ) .

yfxf
yfxfv

−
−≠

Consider the map

1: −→∆−×σ qkk SRR

given by

( ) ( ) ( )
( ) ( ) ,,

yfxf
yfxfyx

−
−=σ

where ∆ denotes the diagonal of .kk RR ×  It is clear that v holds the

conditions needed for vf  to be injective on A if and only if

( ) ( )) ( ( ) ( )( )( ).∆×−×σ∉ ∩AfAfAfAfv
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But it is possible to find a vector v holding the above conditions since

the set AA ×  has box counting dimension 2d and being ,dk >  the set

( ) ∆× \AA  has Lebesgue measure zero in ( ) ∆× \kk RR  and its image by

a rC -map ( )1≥r  is again a zero Lebesgue measure, if dq 21 >−  by

Lemma 7.

Let ( )fM ,  be a discrete dynamical system, where nM R⊂  is a

rC -manifold and MMf →:  is a continuous map. Recall that a point

Mx ∈  is periodic of period p of the system if ( ) xxf p =  and ( ) xxf j ≠

for .pj <

Takens (see [15]) gave the first theoretical justification of data
embedding techniques used by experimentalists to reconstruct dynamical
information from time series. To this end, he dealt with a class of maps

called delay coordinate maps because they are more accessible to

scientists making experimental work than other maps.

Definition 6. Let f be a diffeomorphism of an open set kU R⊂  and

R→α U:  be a map. Then the delay coordinate map n
f U R→Φ α :,  is

( ) ( ) ( ( )( ) ( ( )))....,,, 1
, xfxfxx n

f
−

α ααα=Φ

Now we recall a Takens’s theorem (see [13] and [14]) from which we
will prove a prevalent version.

Theorem 4. Suppose that ( )kkrCf RR ,∈  is a diffeomorphism on

kM R⊂  an m-dimensional compact manifold such that f has only a

finite number of periodic points of period less than ,12 +m  and such that

the eigenvalues at all periodic points are distinct.

Then there is an open and dense set of ( )RR ,krC∈α  for which αΦ ,f

is an embedding on M.

Finally we recall an easy result following necessary to prove Theorem
8 (see [13]).
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Lemma 10. Let V be a vector space with .dim nV =  Let VVA →:

be an invertible linear map with distinct eigenvalues, and R→Va :  be

any linear map holding ( ) 0≠va  for all eigenvectors v of A.

Then vectors 1...,,, −nAaAaa DD  are linearly independent.

3. The Theorems

Since ( )nr MC R,  is dense in ( )ns MC R,  for all ,sr >  for r

sufficiently large we obtain the following results (see [3]).

The first result is a version of the well known Whitney theorem [18].
Originally this result was proved in the setting of analytical manifold and
for analytical maps.

Theorem 5. Let M be a compact smooth manifold of dimension m.

Then for ,1≥r  there is an open and dense set of ( )12, +mr MC R  composed

of embeddings of M.

Proof. We first prove that the set of immersive maps from M to
12 +mR  is an open and dense set of ( )., 12 +mr MC R  For that, consider the

maps

( ) ( )12112 ,
~

,: +−+ →σ mrmr TMTCMC RR

( ) fTf =σ

( ) 1212 ~
,: ++

σ →× mmr TMTMCev RR

( ) ( )., vfTvfev =σ

By Lemma 3, σev  is transverse to every submanifold of ,12 +mTR

thus is transverse to { },0 12 +∈= m
y TL R  with .12dim += mL  This

evaluation map is ,1C  if 3≥r  and ,0dim
~

dim <− LcoMT  then we

apply the Parametric Transversality Theorem (Theorem 2) to σ and

obtain that the set of f ’s belonging to ( )12, +mr MC R  and holding that

( )fσ  is transverse to L is open and dense in ( )., 12 +mr MC R
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For any MTv
~∈  the dimension of ( )MTTv

~
 is 12 −m  and then the

dimension of ( ) ( ( ))MTTfTT vv
~

 is at most 12 −m  and the dimension of

LT0  is .12 +m  If ( ) ,LvfT ∈  ( ) ( ( )) LTMTTfTT vv 0
~ +  has dimension at

most ( ) ,dim1224 12
0

+=+< mTTmm R  then ( ) ( ( )) LTMTTfTT vv 0
~ +  cannot

span .12
0

+mTT R  Thus the unique way for fT  to be transverse to L is

that its image does not intersect L. In such case f is an immersion.

We denote by I the open and dense set of ( )12, +mr MC R  holding that

fT  is an immersion for every .If ∈

Now we prove that the set of injective maps from M to 12 +mR  which

are immersive is an open and dense set in I. To this aim, consider the

maps

( ) 1212\: ++ ×→∆×→ρ mmr MMCI RR

( ) 1212\: ++
ρ ×→∆×× mmMMIev RR

( ) ( ) ( )( ),,,, yfxfyxfev =ρ

where ∆ is the diagonal of ,MM ×  with ( ) ( )yfxfz ==  and

( ) ( ) 1212
,,

12
,, \,: +++

ρ ×→∆×× mm
zzyx

mr
fyxf TMMTMCTevT RRR

( ) ( ( ) ( ) ( ) ( )).,,,,, vfTyufTxvuevT yxyxf +η+η=ηρ

Using Lemma 4, for all ( ) ( )∆××∈ + \,,, 12 MMMCyxf mr R  and

every ( ) ,0, 1212
,

++ ×∈ mm
zzTv RR  we can find ( )12, +∈η mr

f MCT R  such

that ( ) vx =η  and ( ) .0=η y  Hence ( ) ( ),0,0,0,, vevT xf =ηρ  which implies

the map ρev  is transverse to ∆̂  the diagonal of .1212 ++ × mm RR

Since ρev  is ,1C  2≥r  and ,1122ˆdim\dim <−−=∆−∆× mmcoMM

we can apply the Parametric Transversality Theorem to obtain that the

set of f ’s in I such that ( )fρ  is transverse to ∆̂  is open and dense in I.
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The dimension of ∆× \, MMT yx  is 2m, then the dimension of

( ) ( )∆×ρ \,, MMTfT yxyx  is less than or equal to 2m. Since the dimension

of ∆̂, zzT  is ,12 +m  the transversality of ( )fρ  to ∆̂  implies that the

image of ( )fρ  cannot intersect .∆̂  This is the condition for f to be

injective, and hence the injective maps form an open and dense set in I.

Then the set of injective and immersive maps from M to 12 +mR  is an

open and dense set in ( ),, 12 +mr MC R  for .3≥r  But ( )12, +mr MC R  is an

open and dense set in ( )121 , +mMC R  for ,1≥r  and the statement is

proved.

Theorem 6. Let M be a compact smooth manifold of dimension m

contained in .kR  Then almost every ( )12, +∈ mkrCf RR  is an embedding

of M, for .1≥r

Proof. Let { ( ) fCfS mkr :, 12 +∈= RR  is an embedding of

}.1, ≥rM  We want to prove that this set is prevalent.

To this end, we take the finite-dimensional space of polynomial

functions from kR  to 12 +mR  of degree less than or equal to 2. Let

{ }pfff ...,,, 21  be a basis for this space.

Let ( )12
0 , +∈ mkrCf RR  and ∑ =α α+= p

i ii fff
10 .  Consider the maps

( )12,
~

: +→σ mrp TMTC RR

given by

( ) α=ασ fT

and

12~
: +

σ →× mp TMTev RR

given by

( ) ( ) ( ) ( ).,
1

0 ∑
=

ασ α+==α
p

i
ii vfTvfTvfTvev
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By Lemma 5, the map σev  is transverse to every submanifold of

,12 +mTR  and then is transverse to { }.0 12 +∈= m
y TL R  Since

( ) ,0dim
~

dim <− LcoMT  we apply the Morse-Sard’s theorem (see [3],

[13]) to obtain that the set { ( )ασ∈α :pR  is transverse to }L  has full

measure and is an open set. Now we count dimensions: ( ) =MTTv
~

dim

,12 −m  the dimension of its image ( ) ( )MTTfTT vv
~

α  is at most 12 −m

and the dimension of LT0  is .12 +m  Hence ( ) ( ) LTMTTfTT vv 0
~ +α

cannot span .12
0

+mTT R  Therefore the map αfT  is transverse to L when

its image does not intersect L. Then the set { α∈α fp :R  is an

immersion} has full measure and is an open set. We denote this set by .I

Now consider the map

( )1212,\: ++ ×∆×→ρ mmr MMC RRI

( ) 1212\: ++
ρ ×→∆×× mmMMev RRI

( ) ( ) ( ) ( ) ( ) .,,,
1 1

00 












α+α+=α ∑ ∑

= =
ρ

p

i

p

i
iiii yfyfxfxfyxev

By Lemma 4, the map ρev  is 1C  and is transverse to .∆̂  Since

( ) ,0ˆdim\dim <∆−∆× coMM  we apply the Morse-Sard’s theorem to

obtain that the set { ( )αρ∈α :I  is transverse to }∆̂  has full measure

and is an open set in .I  We count dimensions: for any ( ),\, ∆×∈ MMyx

if the dimension of ( )∆× \, MMT yx  is 2m, then the dimension of

( )αρyxT ,  ( ( ))∆× \, MMT yx  is less than or equal to 2m and if the

dimension of ∆̂, zzT  is ,12 +m  then ( ) ∆+∆× ˆ\ ,, zzyx TMMT  cannot span

( ).1212
,

++ × mm
zzT RR  Thus ( ) ( ) ,ˆ, ∆∉αρ yx  that is, ( )αρ  is injective for

almost every .I∈α

Theorem 7. Let A be a compact subset of box counting dimension d

contained in .kR  Then almost every ( ),, nkrCf RR∈  with 1≥r  and
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{ },12:min +≥∈= djjn N  is injective on A and immersive on each

compact subset of a smooth manifold contained in A.

Proof. Let { ( ) fCfS nkr :, RR∈=  is injective on }.kA R⊂  We will

prove that this set is prevalent in ( )., nkC RR

An ε-map f is a map such that ( ) { { }( ) ( )} .:dimsup 1 ε<∈=∆ − AfzzffA

The set of all those maps consists on the maps on A which deviate from

being injective by less than ε.

Consider the set of those maps on A which deviate from being

injective by less than ε and { ( ) ( ) }.:, ε<∆∈=ε fCfU A
nk RR  It is open

in the topology of compact convergence in ( )., nkC RR

By Lemma 9 there is a map from kR  to nR  injective on A with

{ }.12:min +≥∈= djjn N  Then it is held

{ ( ) fCf nk :, RR∈  is injective on } .
1

1∩
∞

=

∅≠=⊂
n

n
k UA R

Let { }qfff ...,,, 21  be a basis of the space of linear transformation

from kR  to .nR  Consider the map
nqk RRR →×ψ :

given by

( ) ( ) ( )∑
=

α+=αψ
p

i
ii xfxfx

1
0 ,,

where ( )nkCf RR ,0 ∈  and ( )....,,1 qαα=α  This map is continuous and

the same for the map

( )nkq C RRR ,: →Ψ
given by

( ) ∑
=

α+=αΨ
q

i
ii ff

1
0

see [8].
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If ,kn ≥  then there exists some qR∈α  such that ( )αΨ  is injective

on kR  and then injective on A.

If ,kn <  then by Lemma 9 we know that A is in a subspace of kR  of

dimension n and also there exists an injective map ( )αΨ  on this subspace

and then injective on A.

Then the subset of { qR∈α  holding ( ) }∩∞
=

∈αΨ
1 1n nU  is an open set

of .qR

Take qR∈α  and the set ( ) .0,, >ξξαB  Then the map

( ) nk
B B RR →ξα×ψ ,:

given by

( ) ( ) ( )∑
=

β+=βψ
q

i
iiB xfxfx

1
0,

is continuous and ∑ =
β+=Ψ q

i iiB ff
10  is also continuous [8] and then

the subset of { ( )ξα∈ββ ,: B  such that ( ) ∩∞
=

∈βΨ
1 1n nB U  is an open

set of ( )}., ξαB  We have then proved that for almost every ,qR∈α

where the map ∑ =α α+= q
i ii fff

10  is injective on A.

The second part of the statement is immediate using Theorem 6.

Theorem 8. Let M be a compact smooth manifold of dimension m

contained in kR  and let ( )kkrCf RR ,∈  be a diffeomorphism on M with

only a finite number of periodic orbits of period less than ,24 +m  and

eigenvalues distinct. Then for almost every ( ),, RMCr∈α  the map

12
, : +
α →Φ m

f M R  given by

( ) ( ( ) ( )( ) ( ( )))xfxfxx m
f

2
, ...,,, ααα=Φ α

is an embedding on M, with .1≥r
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Proof. Let { }qαα ...,,1  be a basis of the vectorial space of polynomial

in k variables of degree less than or equal to .24 +m  Denote by

{ }pf xxP ...,,1=  the set of periodic points of f in M.

It is proved in [13] that the set of maps ( )R,MCr∈α  holding αΦ ,f

is injective and immersive on fP  is an open and dense set of ( )., RMCr

Consider the map

RR →×σ Mev q:

given by

( ) ( ) ( )∑
=

σ α+α=
q

i
ii xaxxaev

1
0 ,,

where ( ).,0 RMCr∈α  It is continuous and then ( )RR ,: MCrq →σ

with ( ) ∑ =
α+α=σ q

i iiaa
10  is also continuous, provided .1≥r

Following [11] we construct a polynomial in k variables of degree at

most 1−p  such that αΦ ,f  is injective on fP  and a polynomial in k

variables of degree at most p such that αΦ ,f  is immersive on .fP

Then we have an open and dense set of ,qR  denoted by O, such that

for all Oa ∈  the map αΦ ,f  is injective and immersive on .fP

Consider the map

12~: +
ρ →× mTMTOev R

given by

( ) ( ) ( )∑
=

ααρ Φ+Φ=
q

i
fif vTavTvaev

i
1

,, ,,
0

where ( )qaaa ...,,1=  and { }.0 12 +∈= m
y TL R  We claim that this map

is transverse to L.
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To see it, if ( ) Lvaev ∈ρ ,  with ,, MTvOa x∈∈  then ,fPx ∉  since if

,fPx ∈  then ( ) ( )∑ = αα ≠Φ+Φ q
i fif vTavT

i1 ,, 0
0

 and as consequence ρev

would be transverse to L at such periodic point x.

If ,fPx ∉  then mxxx 21 ...,,,  are distinct and it is true that

( ) ,
~ 12

00,
+

ρ =+× m
v

q
ava TTLTMTTTevT RR

since given any 12
0

+∈ mTTu R  and ( ) 0≠= vfTv i
i  there would exist a

polynomial in k variables of degree at most 12 +m  (see [11]) such that

( ) .0,, ubevT va =ρ

The map ρev  is 1C  and ,1dim
~

dim <− LcoMT  then applying

Theorem 3 we have that thus the set of Oa ∈  has full measure in O.

Now we count dimensions: ( )MTTv
~

dim  is ,12 −m  the dimension of

( ) ( ( ))MTTaT vv
~ρ  is at most 12 −m  and ,12dim 0 += mLT  then

( ) ( ( )) LTMTTaT vv 0
~ +ρ  has dimension at most 4m and this is strictly less

than .24dim 12 +=+ mT mR  Therefore ( )aρ  is transverse to L whenever

its image does not intersect L, that is, when ( )aρ  be an immersion.

Consider now the map

( ) 1212\: ++
θ ×→∆×× mmMMOev RR

given by

( ) ( ) ( ) ( ) ( )












Φ+ΦΦ+Φ= ∑ ∑

= =
ααααθ

q

i

q

i
fiffif yayxaxyxaev

ii
1 1

,,,, 00
,,,

we now claim that this map is transverse to the diagonal of ×+12mR
.12 +mR  Following a similar procedure than in Stark [14], we distinguish

the following cases:

(a) If ,, fPyx ∈  then it is immediate that for almost every element of

qR  the map is transverse.
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(b) Let yx ≠  and suppose that some of them are not periodic points

of f. Then without loss of generality, we may assume that the points =ix

( ),xf i  for mi 2...,,0=  are distinct. Let ( ) ( )∑ = αα =Φ+Φ= q
i ff xxz

i1 ,, 0

( ) ( )∑ = αα Φ+Φ q
i ff yy

i1 ,, .
0

 Then {( ) }.:,ˆ 12
,

+∈=∆ m
zzz TuuuT R  We need

to show that the image of θevT yxa ,,  contains a complement of this space.

Let ( ) ( ) 120...,,...,,0 +∈= m
zi

i Tee R  and ( ) ( )mee 20 ...,,  form a basis of

.12 +m
zT R  We know that

( ) ( ) ( )












ΦΦ= ∑ ∑

= =
ααθ

q

i

q

i
fifiyxa yaxaaevT

ii
1 1

,,,, ,0,0,

( ) ( ) ( )( ),...,,,
1

21





ααα= ∑

=

q

i
miiii xxxa

( ( ) ( ) ( )) ....,,,
1

21 





ααα∑

=

q

i
miiii yyya

First suppose that mm yyyxxx 2121 ...,,,,...,,,  are distinct and again

using [11] we can find a polynomial with k variables of degree 24 +m

such that ( ) ( ( ) )0,0,0,,,
i

yxa eaevT =θ  and therefore the image of θevT yxa ,,

contains the space { }012 ×+m
zT R  which is clearly a complement of .ˆ

, ∆zzT

It remains to consider the case ( ),xfy j=  for some ,22 mjm ≤≤−

.0≠j  Since then y cannot be a periodic orbit of period less than ,24 +m

we can assume without loss of generality that ( ) .20, mjxfy j ≤<=  The

points mj yyyxxx 2111 ...,,,,...,,, −  are distinct. Hence for ji <≤0  we

construct a polynomial with k variables of degree 12 ++ jm  such that

( ) ( ( ) ).0,0,0,,,
i

yxa eaevT =θ  Now we proceed by induction. Our inductive

hypothesis on k is that for all ki <≤0  there exist a polynomial and a
12 +∈ m

zi Tu R  such that ( ) ( ( ) ).,0,0,,, ii
i

yxa uueaevT +=θ  By above this

holds for 1−= jk  (with ).0=iu
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Now we proceed as follows: since ( ) ( )xfyf iji =−  the points

mjmjmm yyyxxx 212221 ...,,,,...,,, +−−

are distinct, so we can find a polynomial in k variables of degree

12 ++ jm  such that ( ) ( ( ) ( ) ).,0,0,,,
jkk

kyxa eebevT −
θ =  By inductive

hypothesis there exists a polynomial such that ( ) =−θ 0,0,,, jkyxa aevT

( ( ) )., jkjk
jk uue −−

− +  Thus ( ) ( ( ) ( ) ,0,0,,, jk
jkk

kjkyxa ueebaevT −
−

−θ ++=+

( ) ).jk
jk ue −

− +  This complete the inductive process with =ku

( ) .jk
jk ue −

− +

We have thus shown that ( ) ∆+θ
ˆ

,,, zzyxa TevTIm  contains the space

{ }012 ×+m
zT R  which is clearly a complement of .ˆ

, ∆zzT

The preimage of an open and dense set of α’s ( )R,MCr∈  holding

αΦ ,f  is injective and immersive on ,fP  therefore it is an open set of .qR
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