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Abstract

We define the shift-invariant subsets for hyperbolic iterated functions
systems on metric spaces, and discuss the shadowing property for the
dynamical systems that corresponds to subshifts on symbol spaces.

1. Introduction

The purpose of this paper is to investigate the dynamics of hyperbolic
iterated function systems (see Definition 1.1). In [5], Hutchinson proves
that a hyperbolic iterated function system on a complete metric space has
the attractor. Also, it is known that the attractor is a factor of symbolic
dynamics (Theorem 1.4). Therefore, we can consider the dynamical
system which corresponds to subshifts. In Section 2, we shall give the
definition of a shift-invariant subset for a hyperbolic iterated function
system on a metric space (Definition 2.1), and show the existence of the
subshift which is corresponded to the shift-invariant set (Theorem 2.3).
In Section 3 we shall discuss the shadowing property of the dynamical

system on a shift-invariant subset (Theorem 3.4).
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In this section we review the notion of attractors for iterated function

systems.

Definition 1.1. Let (X, d) be a metric space, and let f; : X — X be
continuous maps (i =1, 2, ..., m). Then we call (X; fi, fa, - f,) an

iterated function system (abbrev. IFS). This system is said to be

hyperbolic if there is a constant 0 < r < 1 such thatfor i =1, ..., m,

d(fi(x), fi(y)) < rd(x, y), x, y € X.
Such a constant r is called a contractivity factor for (X; fi, fa, - frn)-

Definition 1.2 [4]. Let (X; fi, fa, ..., f;5) be an IFS on a metric space
(X,d). A subset A of X is called an atiractor for (X; fi, fo, - i)
provided that

(1) A is nonempty and compact;
i) f;(A)c A for i =1, ..., m;
(ii1) A is minimal with respect to (1) and (i1).
An attractor A satisfies
A =HA)U--Ufp(A). ey
We can easily prove the following lemma (see [4, 6]).

Lemma 1.3. Let (X; fi, fa, - [,,) be a hyperbolic IFS on a metric

space (X, d). Let B be a nonempty compact subset of X which satisfies
B c A(B)U--U f(B).

Then for each by € B there are a sequence {b, }:LO=1 of points in B and a
sequence i, |’ | with i, € {1, ..., m} sothat b, = f; _(b,.1) forall n>0

and by = lim,,_,o, f; oo f; (x) forall x € X.

In case that (X; fi, fa, ..., f;) 18 hyperbolic, by making use of Lemma

1.3 we can show that as long as an attractor exists, it is unique, and that
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a nonempty compact subset A of X is the attractor if and only if it
satisfies (1). In case that X is compact, from a standard Zorn’s argument
it follows that an IFS on X has an attractor.

Let >, denote the symbol space on symbols 1, 2, ..., m. That is, ¥,

consists of all one-sided infinite sequences of symbols chosen from
{1, 2, ..., m}:

> =G, 19, ) 0, € {1, 2, ..., m} forall n >1}.

We define a metric d on X, as follows: Let s = (i1, ig, ...), t = (ji, Ja, ---)
€Y, Incase s =t,d(s,t)=0. Incase s = t, d(s, t) = 2% where k +1
= inf{n : i, # j,}. The symbol space (¥,,, d) is a compact metric space.

The shift map o : >, = 2, is defined by

o(iy, iy, ) = (i, ig, ..
for (i, ig, ...) € X, Also, for each 1 <i < m we define a map t; : 2,
- 2, by
iy g, ) = (i, ig, ig, o).
We can easily check that d(c(s), o(t)) < 2d(s, t), d(z;(s), 7;(¢)) = 271d(s, ¢)
for all s, t € X,,. Therefore, (X,,; 11, ..., T,) 1s @ hyperbolic IFS and its

attractor is %,,.

Under notations above we have the following theorem (cf. [3, 4, 6]).

Theorem 1.4. Let (X; fi, fo, ..., [,,) be a hyperbolic IFS on a metric
space (X, d). Suppose that it has the attractor, A. Then, there is a unique
map h: %Y, — A such that for i =1, ..., m the following diagrams are
commutative:

fi
A—> A
h h

Xn——> 2

L7
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Moreover, h is continuous and onto, and satisfies

h(s) = lim fi oo f, (x) @

forall s = (i, ig, ...) € 2,,, and x € X.

The map A : 2,, - A defined by (2) is called the code map.

2. Shift-invariant Subsets

Let E be a nonempty compact subset of >, satisfying o(E) = E. Then
we call the dynamical system (E, ) a subshift.

For a subset E of a symbol space ¥.,,, o(E) c E if and only if (+x) E
4 (E)U--Ur,,(E); o(E) > E if and only if (++) E < t7 (E)U - U 1, (E).

Here we define a shift-invariant subset for an IFS as follows:

Definition 2.1. Let (X; fi, f, ..., f,5) be an IFS on a metric space
(X, d). A nonempty compact subset B of X is said to be shifi-invariant if
() B fi(B)U-Uf,(B) and (xx) B < fi (B)U U f,'(B).

Note that if a subset A of X satisfies A = fj(A)U---U f,,(A), then (x)
and (+*) hold for B = A.

Theorem 2.2 [1]. Let (X; £, fo, .- [;n) be a hyperbolic IFS on a
complete metric space (X, d) with attractor A, and let h:Y,, — A
denote the code map. Let E be a compact subset of X.

(@) There is a compact subset E of %, with o(E) c E and B = h(E)
ifand only if %) B < f,(B)U--U f, (B).

(b) The set E = h™Y(B) satisfies o(E) > E if and only if (+x) B
fB)U--U f1(B).

(c) B is the image set of a subshift of %, under the code map if and
only if B satisfies (x) and (xx).
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We can generalize Theorems 1.4 and 2.2 as follows:

Theorem 2.3. Let (X; fi, fo, -.-s ;) be an IFS on a metric space
(X, d), and let a shift-invariant subset B of X be given. We put

.. There is a sequence {b, }”_, of pointsin B
Ep = , 09, - : nJn=0
B {(ll 2, ) € Xm suchthat b, = f; | (by41) forall n > 0.
Then we have the following:
(1) Eg is shift-invariant.
(2) Moreover, if (X; fi, fas - [rn) 18 hyperbolic, then there is a unique
continuous onto map h : Eg — B such that h(s) = lim,_,,, f; - o f; (x)

forall s = (iy, iy, ...) € Eg and x € X. Also, for i =1, ..., m the following

diagrams are commutative:

Ep —> Ep

T

Proof. (1) By definition we can easily check that Eg is nonempty and
o(Egp) = Eg. We shall prove that Ep is closed. Let s = (i;, iy, ...) € Eg,
where @ denotes the closure of Eg. Then, for each n > 0 we can take
a finite sequence {b{", ..., ")} of points in B such that b\ = £,  (6{"))
for k =0, ..., n — 1. Here we may assume that for each & > 0 the sequence
{b;ﬁn)}fzk converges: b, = lim,_, b]gn)(e B). While, b}c”) = fip (b,(;i)l) for
all 0 <k < n. Letting n — » we have by, = f;, (b41) for all k> 0. So
s = (i, ig, ...) € Ep.

(2) Suppose that (X; fi, fo, ..., f,) 1s a hyperbolic IFS with

contractivity factor r. We shall define the code map & : Eg — B. Take

s = (i, iy, ...) € Eg and x € X. By definition of Eg there is a sequence
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{bn -0 of points in B such that b, = f; (b,,1) for all n > 0. Since B is

compact, we can take a constant K > 0 so that d(b, x) < K for all b € B.
Then we have d(by, fiy oo f;, (x)) = d(fy o=+ fi, (bn), fiy oo [, (%))

<r"K. 8o by =lim,_,, fi, o f; (x). Therefore, we define
h(s) = lim f; oo f; (x)(c B).
n—

From Lemma 1.3 we see that A 1s onto. Also, from definition it follows
that d(h(s), h(t)) < r"diam B, where s = (i, iy, ...), t = (j;, jo, ...) € Eg
and iy = j, ..., I, = J,, and diam B = sup{d(x, y) : x, y € B}.

Remark 2.4. Let s = (i1, iy, ...) € Eg. We put b,, = h(c"(s)) for n > 0.

Then {b, } is a sequence of points in B with b, = f; (b,.;) forall n > 0.

Conversely, let {b,},_, be a sequence of points in B, and s = (i;, iy, ...)

€ X, satisfies b, = f; (b,,1) for all n > 0. Then, s € Eg and b, =
h(c™(s)) for all n > 0.

Remark 2.5. The code map ~ : Eg — B is one-to-one if and only if

the B f;(B) is pairwise disjoint and each f; : f"%(B)N B — B is one-

to-one.

Remark 2.6. If (X; fi, f3, ..., f,,) be a hyperbolic IFS with attractor
A,then E4 =2,,.

3. The Shadowing Property

Definition 3.1. Let f be a continuous map from a metric space (X, d)

into itself. For & > 0, a sequence {x,} _, of points in X is called a

8-pseudo-orbit for f provided that d(f(x,), x,,,1) < & for all n > 0. Given
¢ > 0, a sequence {xn}fzo 1s said to be e-traced by a point x € X

provided that d(x,, f"(x)) <e for all n > 0. We say that f has the
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shadowing property if for any ¢ > 0 there is 8 > 0 such that every

8-pseudo-orbit for f can be e-traced by some point in X.
Definition 3.2. For a nonempty subset Wof {1, ..., m}*(k > 1) we put
Sw =11, ig, ) € Xy (lyats oo Ipap) € Won =0, 1, ...
Let E be a shift-invariant subset of Y,,. The dynamical system (E, o) is

called a subshift of finite type provided that E = Xy for some nonempty

subset Wof {1, ..., m}*.

Let M = (M;;) be an m x m matrix with entries 0 and 1. We put
Iy =, i, ) eZy M =1n=12 .}
If ¥ is shift-invariant, then (X;7, o) is a subshift of finite type. We
call M the structure matrix.

It is well-known that a subshift (E, o) has the shadowing property if
and only if it is of finite type ([7]).

Definition 3.3. Let (X; fi, fa, ..., f,) be an IFS on a metric space
(X, d), and let a shift-invariant subset B be given. A sequence {x,} _,
of points in B is called an orbit if there is (i}, iy, ...) € Ep such that x,, =
fi, ., (Xpi1) forall n > 0. For § > 0, a sequence {%,},_, of points in B is
called a &-pseudo-orbit if there are (ij, iy, ..) € Eg and a sequence
{*,1,-; of points in B such that d(%,,1, x,41) <8 and %, = f;  (x}11)
for all n > 0.

Let (X; f1, fa, - [n) be a hyperbolic IFS with attractor A. In the
case that the code map h:2Y,, > A is one-to-one, we can consider a

continuous onto map S =hocoh™l: A - A The system (A4, S) is
called the associated shift dynamical system. Since (A, S) is topologically
conjugate to (X,,, 6), (4, S) has the shadowing property. Barnsley directly
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shows that the dynamical system (A, S) has the shadowing property
([2, Theorem 7.1]). We shall generalize his result as follows:

Theorem 3.4. Let (X; fi, fo, ..., [,,) be a hyperbolic IFS on a metric

space (X, d) with contractivity factor r, and let B be a shift-invariant
subset of X. Then, for & > 0 and a 8-pseudo-orbit {X, | _, there is an orbit

{(x, ) o such that d(x,, X,) < rd(1 - r) forall n > 0.

Proof. Let a 3-pseudo-orbit {X,}_, be given. From definition there

are s = (if, Iy, ...) € Ep and a sequence {x,,}_; of points in B such that

d(Xp41, Xp41) <8 and ¥, =f; _ (x541) for all n > 0. We define a sequence
(xn}r_o by x, =h(c"(s)), where h: Eg — B denotes the code map. Then,
by Remark 2.4, x,, = f; (%,,1) forall n > 0, and so {x,},_, it is an orbit.

Now we shall prove that for 1 < £ < N,
dxy_p, Xn_p) < S+ -+ 718 + rFK, 3)

where K = diam B. We fix N and prove (3) by induction on k. For k =1,
dxy_1, ¥n_1) = d(fiy, (xn), fiyy (xy)) < 7K. Thus (3) holds for & =1.
Suppose that (3) holds for a given value of £ (1 < k < N), and consider

k + 1. Then, we have

A% N_(k+1)s N-(k+1)) < Td(XN_p, XN_1)

IA

r(d(xn_p» En-p) + dXN_g, XN-1))

A

<r(rd+ -+ 18 + K + 6)
which shows that (3) holds for % + 1. This completes the induction.

Let n > 0 be given. By (3), d(x,, %,) < 51 -r)" + rN"K for all

N > n. Let N = ® toobtain d(x,, X,) < rd(1 - r) L.
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Proposition 3.5. In Theorem 3.4 assume that (Eg, o) is a subshift of
finite type. Then, for any & > 0 there is n > 0 such that if {s(n)}fzo is an
n-pseudo-orbit for the dynamical system (Epg, o), then {h(s(n))}f=0 is a
d-pseudo-orbit.
Proof. Let 5 > 0 be given. Take k£ > 0 with r*diam B < & and put
n = 27%. Now, let an n-pseudo-orbit {s(n)}:f:o for (Ep, o) be given. Here
we put %, = h(s™), s = (i{n), ién), ..) and x),,; = h(o(s")) (e B). Since
d(s", o(s™) < m = 278, dF. ) = d"TY), Ro(s") <
r*diam B < 8. Also, &, = fil(n)(h(cs(s(”)))) - fil(n)(x;L+1). While, since the

subshift (Ep, o) is of finite type, (i\”), .., i), .)e Eg Gf n >0 is

sufficiently small). Thus, {X,}_, is a §-pseudo-orbit.

4. An Example

Let X denote the closed interval [0, 1]. We define
1 1 1
f1(x)—§x, fz(x)—§+§x.
Then, (X; fi, f3) is a hyperbolic IFS and its attractor is X. Let

h:29 —> X denote the code map. We consider a structure matrix
1 1
M = ( J. Then

=11 ..,1,2,2 .)€ Xy :0<n <},
R
n times

and X j; is shift invariant. Now, we put B = h(X ;7). Then, by Theorem
2.2, B is shift-invariant, and we have the following:
(1) B={2":0<n <o}

(2) h: Xy — B isone-to-one.

(3) BNA(B)N fz(B) = {271},
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(4) Eg =Xy U1, ..,1,2,1,..):0<n < o
5/_/
n times

(5) (Ep, o) does not have the shadowing property.

(6) (Ep, o) is not of finite type.

Proof of (5). Let 0 < ¢ < 27! pe given. Take a sufficiently large
integer N > 0 and put & = 9 V-2) Define a finite sequence {s(n)}n]\]:0 of

points in > 5, as follows:

s =(2,1,1,..)sW=(@1,..,1,211..),
N-1times

and s = Gn_l(s(l)) for n=2,..,N. Then, s™ =5 and d(c(s(o)), s(l))

-9 N1 o5 Therefore, extending this sequence periodically, we obtain

a 5-pseudo-orbit for the dynamical systems (Ep, c). But it can not be

g-traced by any orbit. Also, note that the sequence {h(s(n))} is not a
pseudo-orbit on B (see Definition 3.3).
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