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Abstract

Let &;, &9, ... be 1i.d. random vectors on Q C R% and let f and g be
real-valued functions on Q. Define X; = f(§;) and Y; = g(§;) and
assume that the joint distribution of (X j» Y;) belongs to the domain of

attraction of the bivariate maximal extreme value distribution G with

marginals gy/ and gyg, where ys >0 and Yg >0 are the

corresponding tail indexes. We introduce probability measures on the set

of extreme points Qf and Qg and derive tests for asymptotic
dependence of X(;)=max{Xj,..., X} and Y,)=max{}1,..,¥,} based

on Hill’s estimates of yf and yg.

1. Introduction

Distributions with fat-tailed series are common in financial data and
extreme value theory has become an important tool to analyse the

extreme price movements during highly volatile periods corresponding to
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financial crisis. The univariate theory is a well-documented area and
shows that the statistical behavior of extremes observed over a long time
period can be modelled by three types of distributions: the Fréchet, the
Weibull and the Gumbel distributions. These distributions, in the case of
normalized maxima, can be summarized by the Generalized Extreme

Value distribution
G, (x) = exp{- (1 + yx) 7} )

defined on {x : 1 + yx > 0}. Corresponding to y > 0 we have the Fréchet
distribution, y < 0, the Weibull distribution and y = 0, Gumbel, taken
as the limit y — 0. The parameter y, known as the tail index, represents
the tail behavior of Gy The Fréchet distribution, that corresponds to

fat-tailed distributions, has been found to be the most appropriate for

financial data.

In the multivariate case, no natural parametric family exists to
summarize these distributions. Their study are usually done by modelling
the dependence structure. Since for multivariate extreme value
distribution pairwise independence is equivalent to mutual independence,

enough to consider the bivariate case.

Let (X1, Y7), (X9, Y5), ... be a sequence of independent and identically

distributed (i.i.d.) random variables with a common distribution F e
M(Fx, Fy), where Fx and Fy denote the marginal distributions. We

say that F belongs to the domain of attraction of the maximal bivariate

extreme distribution G, in short F € Dp,,,(G), if there are sequences of

constants a,, > 0, b,, ¢,, > 0 and d,, such that

X,y —b Y,y—d
P( ) . yj - G(x, y), @)
a, C, N0
where X(,) = max{Xj, .., X}, Y(,) = max{¥j, .., Y,} and G is a non-
degenerate distribution. Then, clearly we must have G e M (gy, gyr),

where G, and G,/ are members of family (1) for some y and Y. Also, we
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have Fy € Dp.x(Gy) and Fy € Dyax(G,). The general structure of G

has been known since the works of Tiago de Oliveira [7] and Sibuya [6]. It

makes use of the dependence function d(:), which in the case of Gumbel

marginals, G € M(G, Gp), has the form

G(x, ¥) = (Go(x)Go(y)"™ ) &)
with
1y o)
m < d(x, y) <1 (4)

(see, for example, Galambos [2], a v b = max{a, b}). In the general case a
representation of d(-) in terms of the tail indexes y and y* can be
obtained.

Next, we consider a more restrictive setting that will allow us to
derive tests for the asymptotic dependence of the maxima X(n) and Yn)

Let &, &9, ... be 1.i.d. random vectors with a common distribution H on
Q c R? and let f and g be real-valued functions defined on Q. For
X; = f(g;) and Y; = g(§;) assume that the common distribution F of
(X1, ¥7), (X, Yy), ... satisfies (2), that 1is, F € Dp.(G), with
Fyx e Dmax(gw) and Fy e Dmax(gyg ), where the tail indexes y; >0

and y, > 0. Under this model we may think of &, &, ... as random

factors that might affect the markets X and Y and the functions f and g
may be regarded as the markets’ response to these random factors. By
allowing f and g be functions depending on distinct random factors or
eventually the same random factors, this setting is not as restrictive as it
seems. Our Theorem 1 gives an explicit representation of G and

Corollary 1 shows that the statistics ¥, can be used to test the

dependence between X(,) = max{f(&;), ..., f(§,)} and Y{,) = max{g(&;),
- 8(&,)}- More specifically, for the order statistics X(3) < X(g) < - <
X(n), Y(l) < Y(z) < < Y(n) and Z(l) < Z(2) <. < Z(n) from Zj = Xij,

consider the Hill’s estimators
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Tf = % [log X(,—js1) — log X(n )],

Yg = [log Y(n j+1) ~ log Y(n—k)]’

>
wln—‘
—_ —

1
Vg = 3 2,108 Zin-jir) ~ log Z )] ®

N
—

J

and define y,, = «A/fg/{(f +Yg. We will show that when X(,) and Y, are

dependent we necessarily have 7, —1.
n

2. The Univariate and Uniform Case

Let &, &, &g, ... be independent and uniformly distributed over
Q=10,1]. For X = f(¢) and Y = g(§) assume that (X, Y) possesses a

distribution F € D ,«(G) with G e M(G ng), where y; >0 and

Tfe
Yg > 0. Note that for

xyp =1+ fo)_l/yf, Yyg = @+ ygy)_l/yg 6)
we can write (3) and (4) as
G(x, y) = [Go(- log xyf)go(_ log i )]3(10g Yyg ~logxy,)
with
d(xyf, yyg) = d(log Yrg ~ log xyf)

lv(xyf/yyg) Xyp vy,
Sl yy) xS

Since for y > 0 we have G, (2) = Go(~ log(1 + yz)_l/y), it follows that

G(x, ¥) = Gy, ()G, ()17 e,
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where

Xy, VY
fo +ng g

)< 1. @)
Clearly (4) can be obtained from (7) by letting y; — 0 and y, — 0.
This suggests that tests based on the tail indexes y; and yg could be

obtained. Next, we derive a representation for G that displays the

iteration of the maximum points of the coordinate functions f and g. To
build such representation we need to introduce measures of maximality
contact uy and p, (for related work see Dorea [1]). These measures will

be defined on the set of points where f or g is unbounded,

Qp ={x:xeQ, fx7)=limy, f(x') =0 or f(x)=lim,, f(x')=o0} (8)
and

Qg ={y:yeQ g(y)=1lim 4, g(y')=wor g(y*)=1lim,, g(y) = o} (9
The notion of regularly varying function will also be needed: for
R" =(0,x), we say that a function v:R' - R" is &-varying if

Jim 20%)

= x% forall x > 0.
t—>o U(t)

Condition 1. Given y; >0 and yg >0, let vy and v, be
Yf-varying and y,-varying functions such that for all x. € Q; and

Y« € Qg the following limits exist and are positive and finite (possibly 0):

floxs +t 1)

Rs(xy, x) = lim , xeR x=20 10
f ) t—w vr(t) < (10)
and
-1
Ry(ye y) = lim £ L9 gy, (11)

t—>o0 Ug(t) ’

Write Rf(xf) = Rp(x., £1), Rg(yf) = Rg(y«, £1) and assume that for
some x, € Q and some y, € Q, we have Ry(x,) = Rs(xy)+ Ry(x;) > 0

and Rg(y*) = Rg(y:) + Rg(y;) > 0.
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Theorem 1 below shows that, under Condition 1, we can define the

following probability measures (maximality contact) on Q; and Q,:

xt 1/vf
o) = S Ry = S R+ () )
erf
and
E\\/vg
08) = BV = 3 R (6]
yng

Similarly, Hf(x*) = “f(x:) + “f(x;) and Hg(y*) = Hg(y:) + “g(y;)'

To derive the representation for G we partition Q; and Q, into

dependent and independent parts
D=QrNQ,, Iy =QA\D and I, = Q,\D (14)
and we get representation (15).

Theorem 1. Assume that Condition 1 holds and that F € D, (9).
Then, if f and g are continuous in some neighborhood of Qy and Qg

respectively, we have
QF =1{x:xe€Qp, up(x) >0} and Qp = {y: y € Qg, ng(y) > 0}

both finite, uy and W, probability measures, Fx eDmaX(ng) and

Fy e Dmax(ng ). Moreover,

G(x’ y) = eXp{_ “f(If)xyf - ug(lg)yyg - deg(z> X, y)}’ (15)
zeD

where

dig(z, x, y) = {lup(@)xy ) v (g (7)o I+ Lp (@), ) v (g (7)1
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Proof. (i) To see that Q;? is countable, enough to show that for each
x, € QF there exists an open interval (a, b) such that (a, b) N Qf = {x,}.
Assume no such interval exists, 0 < x, <1 and uf(x:) > 0. Then given
g, L 0 there exists x, € Qf, x, # x, and x, € (x, —&,, x, +&,). We
may assume x, — X., otherwise there is a subsequence x,; — x.. In
particular, we may take x, | x.. Let ¢, = (x, —x,)*. Then f(x, + ;')
= f(x,) = © and

-1
R(x,,1) = lim [l +t,7) _ ,
n—»o0 Uf(tn)

(16)
a contradiction. The endpoints 0 and 1 can be similarly treated. To see
that Q}? is finite, suppose that there are infinitely many {x,} C Q;?.
Then since {x,}c [0,1] there will be a convergent subsequence
x,7 + £€[0,1] (or x,, T x). Since fis continuous in a neighborhood of Q f

we must have x € Q f- By (16) we have a contradiction. It follows that

(10) is well-defined and that i is a probability measure.

Clearly, Q; is also a finite set and W g is a probability measure.

(ii) Let Qf = {x;, ..., x5} andlet I;, ..., Iy be disjoint intervals such
that I; U---U Iy =[0,1], I; N Qf = {x;} and, except for the endpoints 0

and 1, x; is an interior point of 7;. Define b, = vf(n)R}’f and a, =Ysb,.

Then

N
P(f(&) > apx + b,) = Zm{z czelj, f(z) > ayx +b,}
=1

=% im{u;(xj+%jelj, f(xj+%)>anx+bn}}

LJ=1

N
=~ > m(Clxy, R (L+ fo)))], 17
=1

LJ=

S|~
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where m stands for the Lebesgue measure and

> X

u) e I, _f(xj +%)

Cp(x;, x) = u:(xj+— e

Using (10) and the fact that vy 1s y;-varying we have for u > 0

R LC R

u

It follows that for © > 0

xXi+—

f( ! zj
. - im "/ _ Y, Yf
Re(xj, u) = r%mgo o Re(xi)u 7.

Similarly, for u < 0 we have Ry(xj, u) = Rp(xj)|u[7".

From (12) and (18) we have

hmn%oo m(Cn (x] ’ x))

m{(w > 0, Re(xF)u" > x)U (u < 0, Rp(xj)|u[f > x)}

(RO 17 + (Rp( )11 11

= [up(x) + pf(xj_.)]fo—l/Vf _ Hf(xj>fo_1/yf,

And from (17)

N
lim, oo nP(F(E) > @p +by) = D () Re[R]T (1 y )] V17
j=1

= 2wl N =

xjle

(18)
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Since
lim nlog Fx(a,x +b,) = - lim nP(f(§) > a,x +b,) = Xy
n—oo n—»x

we have Fy e Dmax(gw ). Similarly, Fy e Dmax(gyg )-

(111) Note that for n large

P(X(n) < apx + by, Yi) < ¢y +dy) = —n(l = Flayx + by, ¢,y +dy))
and

1-F(a,x +b,, c,y +d,) =P(f(§) > a,x + b, or g(€) > c,y +d,).

Thus, to prove (15) enough to show that for some a, >0, b,, ¢, >0 and

d,
nP(f(&) > apx + b, or g(‘i) >y + dn)

= wp(Ip)xy, +ug(Ig)yy, + D dp(z %, 3) (19)
zeD

Since Q;? and Q; are finite, let Iy, ..., I3y be a partition such that
I;N(QF UQy) = {z;} for j =1, .., M. Proceeding as in (ii) define b, =

vf(n)R}{f, an = vfb,, d, = vg(n)Ryg, ¢p = Ygdy, and write

P(f(8) > ayx + b, or g(&) > ¢, + dy)
1 M
= D [m(Dy(zf, % 9)U Dz, )L (20)
j=1

where

Dn(z]*,x, y)= {u >0, (zj +%) € I;, f(&) > a,x + b, or g(&) > cny+dn}

for2) e o
= u>0,(24 uje[-—n>Ryfx or—n>R;g

Y
vg(n) Vg
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and for D, (2}, x, y) we replace u > 0 by u < 0. Then
D, (2], %, 5) > {u >0, u < uf(z}’)xyl, or u < ug(z}’)yyg}.
It follows that
lim m(D, (27, % 9) = (=), ) v (g, )
and similarly
r}g{}o m(Dy (25, x, y)) = (ur (25 )2y )V (Mg (27) 7y, )-
From the definition of dfg and (20)

nP(f(E) > anx + b, or g(€) > ey +dy) > D dlz %, ).
2eQ Uy
Using notation (14), if z € If, then ug(zi) =0 and if z € I, we have

ne(z") = 0. Hence

Z dfg(z, X, y) = uf(If)xyf + ug(Ig)yyg + deg(z, x, y)
2eQ U zeD

and (19) follows.

-1 -2
Example 1. (2) Let f(x)=|x —%‘ and g(x)=2/x —%‘ if

3
x__

-2
1 . 1 1
X € [O, E} and g(x) = 2 2 if x € (5, 1}. We have I; = Qf = {5},

I, =Q, = {%, %} and D =@ Let v(t) =t and uv,(t) = t>. Then

3

Condition 1 is satisfied with p.f(%] =1 and ug(%) = ug(z

1
]—E. And

we have G € M(G;, G9) with

Gx, y) = expl- (1+x) 1 = (1 +2y) V%) = G,(x)Ga()-
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Note that for a,, = b, = 2n, ¢, = 16n2 and d, = 8n? we have

X, Y,y — 8n?
(n) (n)
(—2’1 ST o Sanngl(x)gz(y).
@)Ltf()—(l— )_l'f [olj f) =[x - L[ it [1 2}
et flx)=|g5-= ifxe)0 5] fla)=]x-5 fxe|lg, 3

-1
and f(x) = x—% if x e(%,l}. Let g(x)=x2 if x €|:O, %} and
)
12 o s,
g(x) = x-g if xe(z,l} Then If_{z’ﬁ}’ I, = {0} and

1 . . .
D = {g} By taking v and v, as in (a) we have pf(x*):g for

() w{&)]) 0 s w31

direct verification shows that we do not have asymptotic independency

and
G(x, y) = exp{— Larat -2y - E 1+ x)_l} v E 1+ zy)-l/ﬂ}.

To derive the dependence test, let Z; = f(&;)g(&;) and let F; denote
the common distribution of the i.i.d. sequence {Z,}, ..

Corollary 1. Under the hypotheses of Theorem 1 if X(n) and Y(,) are

asymptotically dependent, then

A 1L (n—j+1) & X(n j+1) Y(n j+1)
in = 2oz [ j Zl (X(n o) Y(n—kn)jﬁl’ .

k p . . .
where - — 0 and — stands for convergence in probability. Moreover, if
n

Fy € D(G,) for some y >0 and (21) holds, then X,y and Y(,) are

asymptotically dependent.



220 CHANG C. Y. DOREA

Proof. (a) First, note that if xy ¢ Qf, then f(xp)<e and
lim f(xo + ¢ 'x) < o0. Since tlim vf(t) = o, by (10) we have Ry (xg, x) = 0.
t—> —>0

It follows that for vf, = Ufvg we have

flacg + 1) glacg + 1) _ 0

Brglwo, ) = == 05 o)

Similarly, if xy ¢ Qg, then we have R4(x(, x) = 0. And, in either case,

g ’
we have R, (xg, x) = 0. It follows that for

Qf = {x:xeQ, lim f(x")g(x") = o}
x'—>x

we have

DZQfﬂQgCQfgCQfUQg. (22)

(b) If Xn) and Y(,) are asymptotically dependent, then by (12), (13),
(15), and (22) we have up(D)>0, pg(D)>0, Rp(zp,2)20 for
2p € Qf and there exist z, € Qg with Ry (2.)> 0. Since vy is

(Yf +vg)-varying and Condition 1 is satisfied, from Theorem 1 we must

A

have Fj € Dyax(Gy 4y, ). On the other hand, ¥, == Tfe , where
g Yg + Vg
Vr = k—Zlog(X(n;ﬁl)], Vg and ¥z are just Hill's [3] estimators of
noj=1 (n—ky)

Yf» Yg and vy +y4 respectively. And by Mason [5] if F e DmaX(Gnyg)
. P . p
and vy +vg > 0, then yp > vy +v,. Clearly, we also have vy > v, and

P
Vg = Vg And (21) follows.

(c) Assume that (21) holds and that Fj € Dy,,4(G,) then we must
have y =y +vg. Using the same type of arguments as in (a) we
necessarily have D # & and by (15) we have X,, and Y(n) asymptotically

dependent.
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Example 2. Consider the setting of Example 1.

1 1 3

(a) We have Qpy :{1’5’1} and for vfg(t):t2 we have

ng(%) > 0, ng(%) >0 and ng(%] = 0. From Theorem 1 we have
F7 € Dpax(G2). Thus yp — 2 # yp + 75 = 3. Indeed, X(,;) and Y,

are asymptotically independent.

1 1 5 3
(b) We have Qg = {O, 35 E} and for wvg(t) =t we have
ng(%J >0 and Ry (z) =0 for z # % In this case, ¥4 — 3 = vf + Vg
and asymptotic dependence follows.

Remark 1. Consider the particular situation where p; and pg are

the uniform measure on Q;? and Q;, respectively, and y; =y, = V.

Then (15) can be expressed as

G(x, y) = exp{- (1 - a)x, - (1 - o)y, — alx, v ),
where x, = (1 + yx)_l/y, yy =1+ yy)_l/y and 0 < o < 1. Equivalently,

G(x, ¥) = (G, (x)G, (y)™*r ),

where

(1 - OL)(xy + yy) + a(xy v yy)
Xy Ty

d(x,, y,) =

X, V
:ai;il+a—a) (23)
Xy 0y

, (23) is just the dependence

X, V x—-y
By noting that lim — ¥y _ max{l, e}
70 Xy +Jy 1+

function considered by Longin [4].
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3. The General Case

Though Theorem 1 and Corollary 1 were restricted to the special case
when H is the uniform distribution on Q = [0, 1] it is not difficult to
extend these results to a more general framework. Assume that

H = H,-Hy--Hy, where H;’s are continuous marginal distributions.

For u = (ug, ..., ug) € (0, 1)? define
Hw) = (H{ (), ..., H7'(ug)), Hj_l(uj) = inf{z : H;(2) > u;}.

Then if U is uniformly distributed over [0, 1% we have H! (U) with
distribution H on Q. In this case, to analyse the behavior of the sequences
{fE&,)},>; and {g(&,)},>; where the &, has distribution H enough to
analyse the sequences {f(U, ),s1 and {g(U,)},s;, where f=fH™,

g=g(H1') and U, is uniformly distributed over [0, 1%, Thus, it
suffices to extend the results of Section 2 to the multivariate uniform

distribution. For x e R? and yE R?  denote by x+y the
coordinatewise sum and xy the coordinatewise product (similarly, x > y
or x > y).

Condition 2. Let Q and Q, denote the sets, where f and g are
unbounded and assume that both Q, and Q, are finite sets. For some
vr >0 and y, >0, let vy and v, be dy;-varying and dy, -varying
functions such that for all x, € Q f and all y, € Qg the following limits
exist and are positive and finite (possibly 0):

-1 -1
flx, +17x) and Ry (y., ¥) = limM (24)

R/ (x,, =1
ploee, ) = lim =005 Hm @

for all x,yeR? x y#0. For i=(y,..,ig5)els={-11% if
Rg(x., i) > 0 assume that

S
hmﬁﬁii{ﬂ=xA@>Q x>0 (25)
too f(x, +¢ Q)
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and if Rg(y., i) > 0

g(ys + ¢ yi) _

lim As(¥)>0, y>0. (26)
gy, )
Moreover, for
1 . 1 .
Ri(x,)= > R/"(x..i) and Ry(y.) = > RY'(y.. 1) @7)
ier? icl?

assume that
Qf = {x, : Re(x,) > 0} # @ and Qp = {y. : R,(y.) >0} = .  (28)
Remark 2. Note that under the hypotheses of Theorem 1 we have
Condition 2 satisfied. The first part of the proof shows that Q;? and Q;
are finite. Also, if Ry¢(x,)> 0, then either Rf(x))> 0 or Ry(x;)> 0. If

Rf(x;) > 0, then for x > 0 write

floy +t tx) _ fl + t7hx)  vp(t) Uf(txil)
flaow +¢71) vt ™l)  flan + 67 vr@®)

Using (10) and the fact that vs is y,-varying we have (25) satisfied with
Ap(x) = x ', Similarly, (26) is satisfied with Ag(y) = y s,

As in the univariate case we can define the maximality contact

measures on and Qg,

) = D np(x, i) ng(da) = D ug(ye, 9)

ier? ierd

(x., 1) R (w0 (9, 0) R (v,, 1)
l’l x*’l =7 > M y*’l =
f R; g R,

Rp= ). ZR}”f(x*,i) and Ry = Y > Ry, i) (29)

Xy eQ/ﬁ iel? y*ng, icr®
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For [ > 0 define

Br(l) ={u:u>0,7p(u)>1} and Bg(l) ={u:u>0,21,(u)>1. (30)
And let

¢ = moylf (Bf(1)) and cg = m;g (Bg (1)), (31)

where mg is the Lebesgue measure on RY,

Theorem 2. Let & &,&g,.. be independent and uniformly

distributed over [0,1]%. Let F be the distribution of (f(€), g(¢)) and
assume that F e D,.(G). If Condition 2 holds and [ and g are
continuous in some neighborhood of Q; and Qg respectively, then we

have (15) with

dig(z, %y 3y,) = D Mz i)y ) v (g (2 i)y Nd (=2 0), (82)
iel®

where

d(z, i) = nr(z By, 1/dB( )
, 1) =my uf(z, i)xyf v }Lg(z, i)ng F\Cr

“g(zf i)yy l/d
U Hw(z, i)x,, v “g(gz, i)ny Bg(cg) |f- (33)

Proof. The proof is similar to that of Theorem 1 and we will sketch

the differences.

(1) First, we show that cr and Cq defined by (31) are finite and
strictly positive. Notice that if Rf(x*, i) > 0, then for u >0 and s >0

write

f(x, + ¢ Lsui) _ e + ttsui) f(x, + ¢ 1si)  vp(t) Uf(ts_l)
fx, +t74) (o, +t7tsi) vf(ts_l) flx, +t74) ve(t)
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Using (24) and (25) we get Af(su)= s_yfdkf(u). It follows that
limg_,., Ag(su) = 0, so that mg(Bf(l)) < « for [ > 0. On the other hand,

sB(l) = {su : su > 0, s_yfdkf(u) > s_yfdl}
= {su : su >0, As(su) > s_yfdl}
= B(s ). (34)
Since As(u) > 0 we have mg(By(1)) > 0. Similarly,
Ag(su) = s_ygdkg(u), sBg(l) = Bg(s_Ygdl) and 0 <cg < o0,
(ii) By taking a,, = ysb, and b, = ch}f vf(nl/ 4 we have

a,x +b, = ch;fvf(nl/d)(l +yfx) = ch}[fx;;fvf(nl/d).

Let x, € Qf and let I be an open cube such that I N Qf = {x,}. Then
using (30) , (31) and (34) we get

_1/d
-1/d flx, + Z/d u) R %1
vr(n'?) 't

nmd{bu cu >0, (x, +n 7 %i) e I,

1/d )
Zmd{u cu >0, (x, + nfl/du) € Lf(x*+—ri/du) > ch}lfxyyf}
icrd vy (%) !

= D maiBy(erRy B (x.. i)z 1))
icl?

_ o Y 1=1/ved
> mallesRy Ry (., i)z, T By (1)
icl?

1Vvr .
R/ " (x,, i)
_ Yyg 2 * _ .
= ¢f —Rf xyfmd(Bf(l))— Euf(x*,z)xyf.

ield ield
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Now, proceeding as in the proof of Theorem 1 we get

nP(f(€) > apx +b,) — Z Zuf(x*, i)x,, =%y

x*eQ}r ieLd

(iii) Take ¢, =v4,d, and d, = ch;gvg(nl/d). Let z,eD-=

Q;? N Qg,. Then by (30), (31), (33) and (34)
ui u
mgu:u >0, x*+—e1,f(z*+—]>ax+b
d{ ( nl/dj ni/d " "

or g(z* +%) > ¢,y + dn}
n

- md{Bf(ch}(fRfl(Z*, l)x;;,f ) U Bg(ch;;gRél(Z*, l)y;;g )}

maillus (2o, 8)2, OBy (ep)]U [y (2, 1)3y, )V By(cg )}

[“'f(z*’ i)xyf v p’g(z*’ i)yyg]g(z*’ i)

And the proof can be completed as in Theorem 1.

1
U ==

8+

Example 3. (a) Let f(i, ug) = (

1N
U —§D for (up, ug) €

-1
ug — = D otherwise. Let g(u;, ug)

o4 {3+

1 1
I =00, D=(3.3) wO-t

= (ud + u%)71 for (uy, ug) € [
. 1 1
otherwise. Then [ f= (§’ gj
vg(t) = t2, vE =12, v =1 A, ug) = 2wy +ug),  Ag(wy, ug) =
2/ui +u3), ¢ =2, cg=m/2, pp(n)=1/8 and p,((0,0), (1, 1) =
ug((%, %), ) =1/5. Take a, =+n, b, =2Vn and ¢, =d, =5nn/4. A

direct computation shows that for (U;, Uy) uniformly distributed on

-2
[0, 1%, Xy, = (1 + %xj Yy, = 1+ y)™! and for n large
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nP(f(Ul’ U2) > apXx + bn or g(Ul, U2) > Cpy t+ dn)

1/2
* s o AV,

x Y
4 e or ui +up < —
T

=T+T+4m2 u1>0,u2>0:u1+u2<

vf
2
Then the representation (32) and (33) follow.
Remark 3. (a) By Remark 2, if d =1, we have As(u) = 7 and
Br(l) = (u < Al ). It follows that By(cs)= Bglcg)=(u<1) and
cg =cg =1. Also, for all z2eQ;NQ, and ie{-1,+1} we have
J(z, i) = 1. Thus Theorem 1 follows as a particular case of Theorem 2.

(b) If in Theorem 2 we had &;, &y, ... i.i.d. with a common distribution

Hon Q c R?, then enough to assume that f = f(H') and ¢ = g(H™)

satisfy Condition 2. Clearly, under the hypotheses of Theorem 2 we also
have Corollary 1 and the dependence test (21).
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