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Abstract

The authors discuss the monotonicity of the ratio of gamma functions

and obtain double inequalities which extend Guo and Qi’s result.

A complete monotonicity result of a function involving the gamma

function is proved in this note.

1. Introduction

For real and positive values of x the classical gamma function is

usually defined as

( ) ∫
∞

−−=Γ
0

1 .dtetx tx (1.1)

The psi or digamma function, the logarithmic derivative of the gamma
function, can be expressed as [10],
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where 05772156649.0=γ  is the Euler-Mascheroni constant.

The gamma function has been investigated intensively by many
authors in recent past years. Over the past half century many authors
have obtained numerous interesting inequalities for these important
functions (see [1]-[9]).

In [5], Guo and Qi obtained the following result: The function
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(1.3)

is decreasing in 1≥x  for fixed .0≥y  In this note, we shall extend this

result to 0>x  and obtain another similar result from which double

inequalities for the ratio of the gamma functions follow. At the same
time, we are about to prove a complete monotonicity result of a function
involving the gamma function.

2. Main Results

The following double inequalities of the second logarithmic derivative
of the gamma function belong to M. Merkle:

Lemma 2.1 [6]. For ( ),,0 ∞∈x
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Theorem 2.2. The function
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is strictly decreasing in 0>x  for fixed ,0≥y  and the function
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x

is strictly increasing in 0>x  for fixed .0≥y  In particular, for all
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( )∞∈ ,0x  and [ ),,0 ∞∈y  we have
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Proof. Taking the logarithm yields

( ) ( ) ( )[ ] ( ).1log1log1log1log ++−+Γ−++Γ= yxyyx
x

xf (2.3)

Differentiating with respect to x on both sides of (2.3) gives
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By direct computation and using inequalities (2.1), we have
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Thus, the function ( )xf1  is strictly decreasing, and then ( ) ( ) .0011 =< fxf

Therefore ( ) 0<′ xf  and ( )xf  is strictly decreasing on ( ).,0 ∞
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Straightforward calculation for 0>x  produces

( ) ( ) ( )[ ]1log1log1log +Γ−++Γ= yyx
x

xg

( ).1log
2
1 ++− yx (2.4)

By differentiation with respect to x on both sides of (2.4) and using
inequalities (2.1), we have that
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Therefore, the function ( )xg1  is strictly increasing, and ( ) ( ) .0011 => gxg

Thus ( ) 0>′ xg  and then ( )xg  is strictly increasing on ( ).,0 ∞
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The double inequalities (2.2) follow from the monotonicity of the

functions f and g. This completes the proof.

Next, we shall discuss the complete monotonicity of a function
involving the gamma function. The following lemma is needed in our
discussion.

Lemma 2.3. For any ,0>t
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By L’Hôpital’s Rule, we have ( ) .
2
10 =+h  ( ) 1=∞h  is clear.

Straightforward calculation produces
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Therefore, the function ( )th1  is strictly increasing, and ( ) ( )011 hth >

.0=  Thus ( ) 0>′ th  and then ( )th  is strictly increasing on ( ).,0 ∞  The

inequalities (2.5) follow from the monotonicity and the limiting values of

( ).th

Theorem 2.4. The function
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.∞=  ( ,Here  strictly completely monotone means ( ) ( )( ) 01 >− xf nn  for all

( ) ).,,0 Nnx ∈∞∈
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Proof. The main ingredient of the proof is Binet’s integral

representation (cf. [10])
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We obtain
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