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Abstract

To examine the relationship between Inverse Autocorrelation Function

(IACF) and Autocorrelation Function (ACF) as well as its effects in

Transfer Function (TF) modelling we considered TF models with and

without outlier input series. Transfer function models could be useful in

investigating series with causal relationship, that is, where an output

series is related to one or more input series. Here, a TF of order q, r,  TF

( )rq,  is defined for the two observable stationary time series and the

contribution of outlier input series as well as its effects on output series

generated was examined. In this paper, a precise mathematical

relationship between the inverse Autocorrelation Function and

Autocorrelation is derived. The usefulness of TF models for investigating

causal relationship is indicated. The theoretical basis of the relative

efficiency of using IACF in TF modelling was developed. A variety of

simulated and real life data were used to demonstrate the applicability

and efficiency of the model.

1. Introduction

Cleveland [4] introduced the concept of Inverse Autocorrelations for
discrete stationary time series, as being the autocorrelations associated
with the reciprocal of the series spectrum.
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The autocovariances kγ  of a stationary series { }tX  of zero mean are

defined by

( )kttk XX +=γ ,cov

and the autocorrelations

.0γγ=ρ kk

The autocovariance generating function of { }tX  is

( ) ∑
∞

∞−=

γ=γ
k

k
kZz , (1)

where Z denotes a dummy variable.

The autocorrelation generating function is given by

( ) ( )
( )0γ
γ=ρ z

z

( )∑
∞

∞−=

ρ=
k

kzk . (2)

The inverse autocovariances of { }tX  are defined in such a way that

their generating function is the reciprocal of (1). Thus the inverse

autocovariance generating function ( )ziγ  is defined by

( ) ( ) 1=γγ zz i

and ( )kiγ  is the coefficient of kz  in the expansion of ( )ziγ  in  positive

and negative powers of Z.

The inverse autocorrelation coefficient at lag K denoted by ( )kiρ  and

defined by

( ) ( ) ( ) .1,0,0 ±=γγ=ρ kzk iii (3)

Cleveland [4] and Harter [8] have described the use of inverse
autocorrelations in the identification of Box and Jenkins models. It has
been shown by Cleveland [4] and Chatfield [3] that the IACF behaves for
moving average processes in exactly the same way as the ACF behaves
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for autoregressive processes. Oyetunji [12] used the method of subset
selection proposed by Haggan and Oyetunji [7] to replace
autocorrelations with inverse autocorrelations for the purpose of
demonstrating that moving average modelling can be as straightforward
as autoregressive modelling.

Aberrant observations are often encountered in data analysis.

Outliers in time series depending on their nature may have a moderate

to significant impact on the effectiveness of the standard methodology for

time series analysis. TF models could be useful in investigating series

with causal relationship. The purposes of TF modelling are to identify

and estimate the TF and the noise model based on the available

information of the input series tX  and the output series .tY

A TF ( )rq,  is defined as a linear regression equation between

( )qttt YYY −− ...,,, 1  and ( ),...,,, 21 rttt XXX −−−  where { }tY  and { }tX  are

assumed to be two observable stationary time series.

In this paper, the attention is focussed on deriving a precise

mathematical relationship between IACF and ACF and thereby

illustrating its importance in TF modelling in the outlier free and

contaminated series.

2. The Mathematical Relationship between IACF and ACF

Let { }tX  be a real-valued stationary process with absolutely

summable autocovariance sequence kγ  and spectral density function

( )wf  such that

( ) ∑
∞

−∞=

−γπ=
k

iwk
kewf .21 (4)

The sequence kγ  can be recovered from ( )wf  through the inverse Fourier

transform

( )∫
π

π−
=γ .dwewf iwk

k (5)
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Cleveland [4] denotes the reciprocal of ( )wf  by

( ) ( ).1 wfwfi = (6)

He defined the inverse autocovariance function of { }tX  by

( ) ( )∫
π

π−
=γ .dwewfk iwk

ii (7)

Considering (3) and (7), the inverse transform is given by

( ) ( )∑
∞

−∞=

γπ=
k

i
iwk

i kewf 2 (8)

it follows that

( ) ( ) ( )∑
∞

−∞=

πγπ=γ
k

ki kkk .2sin112 (9)

To express ( ),kiγ  we consider these two cases:

Case I. When ,0=k  (9) fails to exist and (7) becomes

 ( ) ∫
π

π−
γπ=γ dwi 0120

∫
π

π−
γπ=γπ≥ .212 0

2
0dw (10)

Case II. When ,0≠k  (9) becomes

( ) ( ) ( )∑
=

πγπ=γ
k

ij
ji jjk .2 sin114 (11)

Hence, the inverse autocovariance function is given by

( )
( ) ( )










≠πγπ

=γπ

=γ ∑
=

.0,2 sin114

,0,2

1

0
2

kjj

k

k k

j
j

i (12)
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3. IACF in Transfer Function Modelling

Box and Jenkins [1] express mathematically a basic transfer

relationship for a bivariate stochastic process for tX  and tY  as

( ) ( ) ,ttt XBYB ε+θ=φ (13)

where

( ) ,1 ∑
=

φ−=φ
r

ij

j
jBB

( ) ∑
=

θ−=θ
r

ij

j
j BB 1

and tε  is a white noise process.

Equation (13) is said to be a transfer function model denoted by

( )drq ,,TF  in which ( )Bφ  is of order r, ( )Bθ  is of order q and the series

in the model requires differencing d times to attain stationarity.

Suppose we have two stochastic processes { }tX  and { };tY  a TF model

of order ( )rq,  abbreviated as ( )rq,TF  is defined by

( ) ( ) ,......1 101 tbt
r

rt
q

q NXBwBwwYBB ++++=δ−−δ− − (14)

where B is the backward shift operator, b is the delay in the response of Y

to a change in X, tN  is the error process which is assumed to follow an

ARMA process.

The main identification and fitting of a TF model defined by (14) is
discussed in Box and Jenkins [1].

In this paper, we consider a particular class of TF models in which

the error process is assumed to be white noise, and define a ( )rq,TF  as

,...... 1111 trtrtqtqtt eXwXwYYY +++=δ−−δ− −−−− (15)
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where { }te  is assumed to be a white noise process with variance 2σ  and,

{ }tX  and { }tY  are marginally and jointly stationary.

With rq +  parameters in the model, we are likely to have more

parameters than in the corresponding univariate autoregressive models.

Oyetunji [11], reduced the number of parameters in the TF model,
that is, by constraining some parameters to zero.

Shangodoyin [13] considered the estimation of the dynamic
parameter space and the analysis of the residuals of TF model in the
presence of outlier input series and noticed that the magnitudes of
outliers have a bandwagon effect on the autocovariances generated in the
series.

Rewriting (15) as outlier free (OF) and outlier contaminated (OC)
transfer function models respectively, we have

trtrtqtqtt eXwXwYYY ++++δ++δ= −−−− ...... 1111 (16)

and

rtrtqtqtt ZwZwYYY −−−− +++δ++δ= ...... 1111

....11 trtrt eDwDw ++++ −− (17)

Multiplying (16) and (17) by ktY −  and taking expectations for

qk ...,,2,1=  and also assuming that ktY −  is uncorrelated with ,te  we

obtain a set of q linear simultaneous equations for both the OF and OC

models and express the inverse autocovariance function ( )kiγ  as

( ) ( ) ( )

( ) ( ) ( )




























γ+γδ=γ

γ+γδ=γ

∑ ∑

∑ ∑

= =

−−

= =

−−

q

j

r

j

jq
iyj

jq
iyjiy

q

j

r

j

j
ixyj

j
iyjiy

wq

w

1 1

1 1

111

MMM (18)
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for the OF model and

( ) ( ) [ ( ) ( ) ]

( ) ( ) [ ( ) ] 



























γ+γ+γδ=γ

γ+γ+γδ=γ

∑ ∑

∑ ∑

= =

−−

= =

−−−

q

j

r

j

jq
iyiyj

jq
iyjiy

q

j

r

j

j
iDY

j
izyj

j
iyjiy

wq

w

1 1

1 1

1111

MMM (19)

for the OC model, where iyγ  and ixyγ  denote the inverse autocovariance

function of the series { }tY  and the inverse cross covariance function of X

and Y.

Multiplying (16) by ktX −  and (17) by ( )ktkt DZ −− +  and taking

expectations for rk ...,,2,1=  results to a set of r linear simultaneous

equations for both the OF and OC models respectively and we have

( ) ( ) ( )

( ) ( ) ( )




























γ+γδ=γ

γ+γδ=γ

∑ ∑

∑ ∑

= =

−−

= =

−−

q

j

r

j

jr
ixj

jr
ixyjixy

q

j

r

j

j
ixj

j
ixyjixy

wr

w

1 1

1 1

111

MMM (20)

and

( ) [ ( ) ( ) ] [ ( ) ( ) ]

( ) ( ) [ ( ) ( ) ] [ ( ) ( ) ( ) ]

.

2

21
1 1

1111





























γ+γ+γ+γ+γδ=γ+γ

γ+γ+γ+γ+γδ=γ+γ

∑ ∑

∑ ∑

= =

−−−−−

= =

−−−−

q

ij

r

ij

jr
iZD

jr
iD

jr
izj

jr
iDY

jr
izyj

r
iDYizy

q

j

r

j
iZD

j
iD

j
izj

j
iDY

j
izyjiDYizy

wr

w

MMM

(21)

Combining (18) and (20) for the OF model and (19) and (21) for the
OC model, we obtain sets of rq +  linear simultaneous equations and

using the relationship

( ) ( )kk ZYYZ γ=−γ
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we express them in matrix form as

,θ∑=γ (22)

where

,












γ

γ
=γ

ixY

iY

,












∑∑

∑∑
=∑

XXXY

YXYY

,










 δ
=θ

w

[ ] ,...,, T
iyiyiy γγ=γ

[ ] ,...,,, 21
T

qδδδ=δ

[ ] ,...,,, 21
T

rwwww =

[ ] ,...,, T
ixyixyixy γγ=γ

for the OF model and

[ ]TiDYizyiDYizyixy γ+γγ+γ=γ ...,,

for the OC model.

Considering the errors in (16) and (17) with appropriate starting
values, the least squares estimates of

( )wU ,δ= (23)

are those values U which minimize the sum of squares

( ) teUS ∑=  as a function of U.

Hartley [9] and, Draper and Smith [5] discussed the estimation
methods of (23) and more specifically for time series models by Box and
Jenkins [1].
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Following Tsay [14], the proposed method only uses the least squares
method to obtain parameter estimates.

Shangodoyin [13] compared two well-known test statistics in
assessing the existence of and how to distinguish between the additive
and innovation outliers.

Empirical Illustration

We present a variety of examples to illustrate the feasibility of the
method. We assumed an outlier input series and used Tsay [14] detection
technique to observe the timings of the outliers. The estimates of the
coefficients are computed with their standard errors. The model was
checked for adequacy and a comparison is made between contaminated
and uncontaminated TF models.

Series A is the stack-loss data (Brownlee [2]), Series B is the first
word-Gessel adaptive score (Mickey et al. [10]), Series C is the Gas

Furnace data (Box and Jenkins [1]), Series 1S  and 2S  are the simulated

series of sizes 25 and 100.

Series A

We estimated the TF ( )2,2  for both the OF and OC input series

tttttt eXXYYY +−++= −−−− 2121 587.0640.0280.0477.0

for the OF series and

tttttt eXXYYY +−++= −−−− 2121 085.0172.0305.0314.0

for the OC series.

The model standard error with outliers is about 2.123 multiple of the
model standard error without outliers.

The magnitude of the standard error of estimates of 21, δδ  and 1w  is

smaller for OF than what was obtained for the OC model. The test
criterion indicates that both models fitted adequately.

Series B

When the input is outlier free and contaminated we fitted a TF ( )2,2
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and obtained

tttttt eXXYYY ++++= −−−− 2121 312.0945.0480.0331.0

for the OF model and

tttttt eXXYYY ++++= −−−− 2121 038.0866.0108.0709.0

for the OC model.

The standard error of the model reveals that the OC model is about
1.624 multiple of that obtained for the OF model.

Series C

We obtained a TF ( )1,2  which is

ttttt eXYYY +−−= −−− 121 253.0766.0766.1

for the OF model and

ttttt eXYYY +−+= −−− 121 101.0439.0554.0

for the OC model.

The standard error of the model is higher in the OC model than in
the OF model. It is about 3.67 multiple of that obtained for the OF model.

Series 1S

This is the first simulated series of size 25. We fitted the TF ( )1,1

models to both series. For the OF, we fitted

tttt eXYY ++= −− 11 074.0214.0

and for the OC, we fitted

.809.0133.0 11 tttt eXYY +−= −−

This reveals that the standard error for the OC model is about 3.67
multiple of that obtained for the OF model.

Series 2S

We fitted the TF ( )2,2  models for both the OF and OC as

tttttt eXXYYY +++−−= −−−− 2121 012.0044.0026.0078.0
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and

.051.0005.0036.0011.0 2121 tttttt eXXYYY ++++−= −−−−

The model standard error shows that the OC model is about 1.76
multiple of that obtained for the OF model.

Implications of the result

We have defined a class of Transfer Function model, which has a lot
to recommend on the contributions of outliers in empirical work on TF
modelling. It was noticed that outliers affect the inverse autocorrelation
structure of a time series and hence the distribution of the estimates of
TF models. They also bias the estimated inverse autocorrelation function.
The standard error of the model is also affected. The existence of outliers
may cause substantive biases in TF modelling and can seriously
jeopardize the function as model identification tool. We suggest that with
the existence of outliers a check is very necessary whether the TF models
can be used in investigating one-way dependence between two stationary
processes. This will be achieved by looking at the order of the fitted TF

model. If r is much greater than q, then this will suggest that the series

{ }tY  is heavily dependent on { }.tX  For further research work, maximum

likelihood estimates given by Fox [6] can be compared with the least
squares estimates to measure the nearness of the magnitude of outliers
to the true value.
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