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Abstract

Let {X,;11 <i < n,n 21} be an array of rowwise negatively associated

random variables under some suitable conditions. Then it is shown that

-1/t

for some 0<t< %, n~ " maxi<p<p 2?;1 X,; = 0 completely as n —

if and only if E| X|2t <o and E|X,;|=0 and Lmaxlgjskn {=1Xm-

n

k+1
— 0 completely as n — o« implies E| X [ < oo

1. Introduction

The concept of negatively associated random variables was introduced
by Joag-Dev and Proschan [7] although a very special case was first
introduced by Lehmann [9]. Many authors derived several important
properties about negatively associated (NA) sequences and also discussed

some applications in the area of statistics, probability, reliability and
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multivariate analysis. Compared to positively associated random
variables, the study of NA random variables has received less attention
in the literature. Readers may refer to Karlin and Rinott [8], Ebrahimi
and Ghosh [3], Block et al. [2], Newman [12], Joag-Dev [6], Joag-Dev and
Proschan [7], Matula [11] and Roussas [13] among others.

Recently, some authors focused on the problem of limiting behavior of
partial sums of NA sequences. Su et al. [15] derived some moment
inequalities of partial sums and a weak convergence for a strongly
stationary NA sequence. Su and Qin [14] studied some limiting results
for NA sequences. More recently, Liang and Su [10], and Baek et al. [1]
considered some complete convergence for weighted sums of NA

sequences.

Let {X,;.} be an array of random variables with EX,; = 0 for all n
and kand let 1 £ p < 2. Then

n
LZXnk — 0 completely as n — (1.1)
/P et

and where complete convergence is defined (Hsu and Robbins [4]) by

Yo H| e X X

Hu et al. [5] showed that for an array of i.i.d. random variables {X,.},

> SJ < oo for each € > 0. (1.2)

(1.1) holds if and only if E| X7, |2p < oo,

The main purpose of this paper is to extend a similar results
above to rowwise NA random variables, since independent and
identically random variables are a special case of NA random variables.
That is, we investigate the necessary and sufficient condition for

and let {k,} and {r,} be two increasing positive sequences satisfying

— 0 completely as n — «, where 0 <t < =

1
n]'/t maxlSkSn 2

— 0

.- 1 j
some conditions, then, we show that —max1<]~<kn‘ Zi 1Xm-
T, == =

k+1
completely as n — o implies E| X |7 < e in NA setting.
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Finally, in order to prove the strong law of large numbers for array of
NA random variables, we give an important definition and some lemmas
which will be used in obtaining the strong law of large numbers in the
next section.

Definition 1.1 [7]. Random variables Xj, ..., X, are said to be
negatively associated (NA) if for any two disjoint nonempty subsets A;
and Ay of {l,..,n} and f; and fy are any two coordinatewise

nondecreasing functions,

Cov(f(X;, i€ Ay), fo(X;, j e Ag)) <0,
whenever the covariance is finite. An infinite family of random variables
is NA. If every finite subfamily is NA.

Lemma 1.2 [10]. Let {X;|i 21} be a sequence of NA random
variables and {a,;|1 <i<n,n =1} be an array of real numbers. If

P(maxicjc,|a,iX| > €) < 8 for 8 small enough and n large enough, then

n
D PlayX;| > &) = 01)P(max|a,;X;| > )
o 1<j<n

for sufficient large n.

Lemma 1.3 [5]. Forany r > 1, E| X | < « if and only if

0

an_lP(|X| > n) < o

n=1
More precisely,

r2_rz WP X|>n)<E| X[ <1+ rZrZ "I X | > n).

n=1 n=1
Lemma 14 [5].If r 21 and t > 0, then

1/t

n
E|X[I(X|<n¥) < rjo P X | > t)dt
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and

B X|I(X| > n") = n¥'P( X | > n¥t) + ﬁ/t P(X|> t)dt.

2. Main Results

Theorem 2.1. Let 0 <t < % and let {X,;|]1<i<n,n>1} be an
array of rowwise NA random variables such that EX,; = 0 and P(| X,; |
>x)= OM)P( X | > x) forall x >0. If E| X |* < o, then

k
ZXni
1=1

1
—— max

— 0 completely as n — oo,
WYt 1<k<n

Proof. We definethatfor 1 <i<n,n>1and 0 <t < l,

Yni = XniI(l Xni | = nl/t) + nl/tI(Xni > nl/t) G nl/tI(Xni < _nl/t)-

To prove Theorem 2.1, it suffices to show that

0 R k
ZP[&% me- - ZY,”- > snl/tJ <o forall € >0, (2.1)
n=1 1=1 =1
k
7 max Z}EYM« -0, 2.2)
1=
0 R
ZP[ max ZY,”- > snl/tJ < oo, for all € > 0. (2.3)
—) 1<k<n =

The proofs of (2.1)-(2.3) can be found in the following Lemmas 2.1-2.3.

Lemma 2.1. If E| X |* < o, then (2.1) holds.

Proof.
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oo n
< P[U X,; # Ym}
=1 i=1

n
P(l Xni | > nl/t)
i=1

M i

S
1l
—_

= > 0W)nP(| X | > n'")

n=1

<OME X <o
when 0 < ¢ <% since E| X|2t < oo,

Lemma 2.2. If E| X [*' < and EX,; = 0, then

k

D EY,
=1

max — 0.

l/t 1<k<nl

1
Proof. To prove maxj<j<
nl/t n

Y

YL E

< . Note that by EX,;

that 2 —77 MaX<j<n

have
k

_2 EYy;

o 1
2 _/ 1<k<n

o] 1 n
ZT/tZEl X | 1(] Xy | > nl/t)

<
n=1 n =1
o) n
1 1 1
+ Z nl/t /tP(l Xni | >n /t)

n=1 =1

: I + I (say).

219

it suffices to show

=0, we
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First, to estimate I;, by using Lemma 1.4,

0 n
1
I = Z IRV
i=1

n=1 2

o0

nl/t

[nl/tP(| X, | > ntft) I P(X,;|> x)dx}

n *® ’
=0 Y nP( X[ > nt)+ 0‘”2%]# P(X|> x)dx = I (say).
n=1 n=1
Letting x = nYts and applying Lemma 1.3, we have

I =00 nP(X|> )+ 00)> n j :’ P(X| > n¥ts)ds
n=1 n=1
< O1)E| X |2t +0(1) Ilw;anlelt > n)ds

<OME|X [ + OVE| X P'| s %ds
1

~OME|X [* < .

As to I,, we have

= O(l)ian X|>nt)

n=1
21
<OME X <.

k

E:}%i

Lemma 2.3. If E| X|2t < oo, then ZPL max
n=1 1=1

1<k<n

> snl/t} < oo

for all € > 0.
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Proof. From the definition of NA random variables, we know that

{Y,; 11 <i <k, n 21} is still an array of rowwise NA random variables.

Thus, we obtain that

o k t
1
<003, E{mk 2t ]
n=1 1=1
oo 1 n
<0, E Yy, |
n=1 =1
<O0)| D LN B Xy [1( Xyt | < 2+ D LN P X, | > 1)
n=1 =1 n=1 =1

= 13 + I4 (say).
First, we prove that I3 < . Let G,;(x) = P(| X,; | < x). Then we have

0 n
1
Iy = 00) Y > B Xy [ 1( Xy | < V")

n=1 =1
i/t t
0 (ﬁj dGyi(x)

n 1 1/t

Jo J.(ns)l/t dGnl(x)ds

o1

P((ns)l/t < X< n't)ds
: 0
-1

S
Il
—

<0(1) j Olz nP( X | > (ns)/)ds
n=1

< OME| X | < o,

Also, the proof of I is similar to that of Lemma 2.3.



222 CHUNG, CHOI, CHO, LEE, LEE and RU

Corollary 1 below is a corresponding result for a sequence of rowwise
NA random variables.

Corollary 1. Let 0 <t < % and let {X;|i 21} be a sequence of NA
random variables such that EX; =0 for all i and P(X;|>x)=
O(1)P( X | > x) forall x > 0. If E| X |* < o, then

1

k
erél&xn ZXi — 0 completely as n — oo,
1=

Theorem 2.2. Let 0 <t < % and let {X,;|1<i<n,n>1} be an

array of rowwise NA random variables such that P(X|>0)=

O1)P( X,;|>x) for all x =20. Assume that %maxlgkgn Zf_l X,
" -
— 0 completely as n — o, then E|X|* < ® and EX,; = 0.
Proof. From the assumptions, for any € > 0,
0 k
Pl max| Y X, | = en'/' | < e, (2.4)
—) 1<k<n Py

By Lemma 1.2, we obtain that

Zn:p(| X, | = en'/t) = omp[ max

1=1

which, together with (2.4) and assumptions, we have

ZnP(|X| > en'!) < o0

n=1

which is equivalent to E| X |2t < o0, by Lemma 1.3.
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Now, under E| X |2t < o, we obtain from Theorem 2.1 that

k

Z (Xni - EXni)

> anl/tj < o forany € > 0 (2.5)

(2.4) and (2.5) yield EX,; = 0.

Theorem 2.3. Let {X,;|1<i<k,, n>1} be an array of rowwise

NA random variables with C{P( X | > x) < C; inf, ; P(| X,; | > x) <
Cy sup, ; P(| X,;| > x) < CoP( X | > x) for all x > 0. Assume that {k,}
and {r,} are two sequences satisfying r, > bn’, k, < bznk, for some

by, by, 7, k > 0. Let

J

zXni

— max

_ — 0 completely as n — oo.
r, 1<j<k,

k+1
Ifk+1<r, then E| X |7 <oo.

J
Proof. Note that L max 2 X
=1

_ — 0 completely as n — o, i.e.,
Tp 15jsn| =

o0
ZP max
1<j<ky,

n=1

J
Z Xni
i=1

> arnJ < oo, for all € > 0. (2.6)

Since max |X,;| < 2 max , (2.6) implies
1sjskn| nil 1<j<k, (2.6) imp

j
D Xni
=1

ZP( max |X,;i| > n) < o 2.7)
1<j<n
n=1
and
P(max | X,;|>1n,) = 0 as n — o (2.8)

1<j<k,
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By (2.7) and (2.8), and using Lemma 1.2, we obtain that

k,

D P( X, | > 1) = 00)P( max [X,] > 1),
P 1<j<k,

which, together with (2.7), it follows that

bl

n

Z P(|X,;|>n) <o

~
Il
—

n=1

Thus, using the assumptions of Theorem 2.3, we have

D kP(X|>bn") <o,
n=1

k+1
which is equivalent to E| X |77 < os.

Corollary 2. Let {X,;|1<i<k,, n21} be an array of rowwise

identically distributed NA random variables. Assume that {k,} and {r,}

are two sequences satisfying r, ~n', k, ~ nk, for some r, k > 0, where

a, ~ b, meansthat Cia, <b, < Cya, forlargeenough n.If

Q) E+1<r, or
@2 r<k+l<tr for some 0<t<% and EX,; =0, then

— 0 completely as n — o if and only if

1 J

P maxlsjgkn‘ Yy Xni
k+1

EX[7 <o
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