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Abstract

Let { }1,1 ≥≤≤| nniXni  be an array of rowwise negatively associated

random variables under some suitable conditions. Then it is shown that

for some ∑ =≤≤
− →<< k

i nink
t Xnt 11

1 0max,
2
10  completely as ∞→n

if and only if ∞<tXE 2  and 0=niXE  and ∑ =≤≤
j
i nikj

n
X

r n 11max1

0→  completely as ∞→n  implies .
1

∞<
+
r

k
XE

1. Introduction

The concept of negatively associated random variables was introduced
by Joag-Dev and Proschan [7] although a very special case was first
introduced by Lehmann [9]. Many authors derived several important

properties about negatively associated ( )NA  sequences and also discussed

some applications in the area of statistics, probability, reliability and
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multivariate analysis. Compared to positively associated random
variables, the study of NA random variables has received less attention
in the literature. Readers may refer to Karlin and Rinott [8], Ebrahimi
and Ghosh [3], Block et al. [2], Newman [12], Joag-Dev [6], Joag-Dev and
Proschan [7], Matula [11] and Roussas [13] among others.

Recently, some authors focused on the problem of limiting behavior of
partial sums of NA sequences. Su et al. [15] derived some moment
inequalities of partial sums and a weak convergence for a strongly
stationary NA sequence. Su and Qin [14] studied some limiting results

for NA sequences. More recently, Liang and Su [10], and Baek et al. [1]

considered some complete convergence for weighted sums of NA

sequences.

Let { }nkX  be an array of random variables with 0=nkEX  for all n

and k and let .21 <≤ p  Then

∑
=

→
n

k
nkp

X
n 1

1
01  completely as ∞→n (1.1)

and where complete convergence is defined (Hsu and Robbins [4]) by

∑ ∑∞

=
∞<





 ε>

1 1
1

n nkp
X

n
P  for each .0>ε (1.2)

Hu et al. [5] showed that for an array of i.i.d. random variables { },nkX

(1.1) holds if and only if .2
11 ∞<pXE

The main purpose of this paper is to extend a similar results
above to rowwise NA random variables, since independent and

identically random variables are a special case of NA random variables.
That is, we investigate the necessary and sufficient condition for

0max1
111

→∑ =≤≤
k
i ninkt

X
n

 completely as ,∞→n  where 
2
10 << t

and let { }nk  and { }nr  be two increasing positive sequences satisfying

some conditions, then, we show that 0max1
11 →∑ =≤≤

j
i nikj

n
X

r n

completely as ∞→n  implies ∞<
+
r

k
XE

1
 in NA setting.
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Finally, in order to prove the strong law of large numbers for array of

NA random variables, we give an important definition and some lemmas

which will be used in obtaining the strong law of large numbers in the

next section.

Definition 1.1 [7]. Random variables nXX ...,,1  are said to be

negatively associated ( )NA  if for any two disjoint nonempty subsets 1A

and 2A  of { }n...,,1  and 1f  and 2f  are any two coordinatewise

nondecreasing functions,

( ( ) ( )) ,0,,, 2211 ≤∈∈ AjXfAiXfCov ji

whenever the covariance is finite. An infinite family of random variables

is NA. If every finite subfamily is NA.

Lemma 1.2 [10]. Let { }1≥| iXi  be a sequence of NA random

variables and { }1,1 ≥≤≤| nniani  be an array of real numbers. If

( ) δ<ε>≤≤ jnjnj XaP 1max  for δ small enough and n large enough, then

( ) ( ) ( )∑
=

≤≤
ε>=ε>

n

j
jnj

nj
jnj XaPOXaP

1
1
max1

for sufficient large n.

Lemma 1.3 [5]. For any ,1≥r  ∞<rXE  if and only if

( )∑
∞

=

− ∞<>
1

1 .
n

r nXPn

More precisely,

( ) ( )∑ ∑
∞

=

∞

=

−−− >+≤≤>
1 1

11 .212
n n

rrrrr nXPnrXEnXPnr

Lemma 1.4 [5]. If 1≥r  and ,0>t  then

( ) ( )∫ >≤≤ −
tn

rtr dttXPtrnXIXE
1

0

11
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and

( ) ( ) ( )∫
∞

>+>=>
tn

ttt dttXPnXPnnXIXE
1

.111

2. Main Results

Theorem 2.1. Let 
2
10 << t  and let { }1,1 ≥≤≤| nniXni  be an

array of rowwise NA random variables such that 0=niEX  and ( niXP

) ( ) ( )xXPOx >=> 1  for all .0≥x  If ,2 ∞<tXE  then

0max1

1
11

→∑
=

≤≤

k

i
ni

nkt
X

n
 completely as .∞→n

Proof. We define that for 1,1 ≥≤≤ nni  and ,
2
10 << t

( ) ( ) ( ).11111 t
ni

tt
ni

tt
ninini nXInnXInnXIXY −<−>+≤=

To prove Theorem 2.1, it suffices to show that

∞<












ε≥−∑ ∑ ∑

∞

= = =
≤≤

1

1

1 1
1
max

n

t
k

i

k

i
nini

nk
nYXP  for all ,0>ε (2.1)

,0max1

1
11

→∑
=

≤≤

k

i
ni

nkt
EY

n
(2.2)

∑ ∑
∞

= =
≤≤

∞<












ε≥

1

1

1
1

,max
n

t
k

i
ni

nk
nYP  for all .0>ε (2.3)

The proofs of (2.1)-(2.3) can be found in the following Lemmas 2.1-2.3.

Lemma 2.1. If ,2 ∞<tXE  then (2.1) holds.

Proof.

∑ ∑ ∑
∞

= = =
≤≤ 













ε≥−
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t
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i
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nYXP
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∑
∞

= =












≠≤

1 1n

n

i
nini YXP U

( )∑∑
∞

= =

>≤
1 1

1

n

n

i

t
ni nXP

( ) ( )∑
∞

=

>=
1

11
n

tnXnPO

( ) ,1 2 ∞<≤ tXEO

when 
2
10 << t  since .2 ∞<tXE

Lemma 2.2. If ∞<tXE 2  and ,0=niEX  then

.0max1

1
11

→∑
=

≤≤

k

i
ni

nkt
EY

n

Proof. To prove ,0max1
111

→∑ =≤≤
k
i ninkt

EY
n

 it suffices to show

that .max1
1 111

∞<∑ ∑∞
= =≤≤n

k
i ninkt

EY
n

 Note that by ,0=niEX  we

have

∑ ∑
∞

= =
≤≤

1 1
11
max1
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ninkt
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First, to estimate ,1I  by using Lemma 1.4,

( ) ( )∑ ∑ ∫
∞

= =

∞









>+>=

1 1

11
11 1

1
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t

ni
t
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( ) ( ) ( ) ( )∑ ∑ ∫
∞

=

∞

=

∞
′=>+>=

1 1
11

1
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:11
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t
IdxxXP

n

nOnXnPO  (say).

Letting snx t1=  and applying Lemma 1.3, we have

( ) ( ) ( ) ( )∑ ∑ ∫
∞

=

∞

=

∞
>+>=′

1 1
1

11
1 11

n n

tt dssnXPnOnXnPOI
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1
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∞
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As to ,2I  we have
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Lemma 2.3. If ,2 ∞<tXE  then ∞<






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for all .0>ε
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Proof. From the definition of NA random variables, we know that

{ }1,1 ≥≤≤| nkiYni  is still an array of rowwise NA random variables.

Thus, we obtain that

∑ ∑
∞

= =
≤≤ 




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First, we prove that .3 ∞<I  Let ( ) ( ).xXPxG nini ≤=  Then we have
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Also, the proof of 4I  is similar to that of Lemma 2.3.
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Corollary 1 below is a corresponding result for a sequence of rowwise

NA random variables.

Corollary 1. Let 
2
10 << t  and let { }1≥| iXi  be a sequence of NA

random variables such that 0=iEX  for all i and ( ) => xXP i

( ) ( )xXPO >1  for all .0≥x  If ,2 ∞<tXE  then

∑
=

≤≤
→

k

i
inkt

X
n 1

11
0max1  completely as .∞→n

Theorem 2.2. Let 
2
10 << t  and let { }1,1 ≥≤≤| nniXni  be an

array of rowwise NA random variables such that ( ) => 0XP

( ) ( )xXPO ni >1  for all .0≥x  Assume that ∑ =≤≤
k
i ninkt

X
n 111

max1

0→  completely as ,∞→n  then ∞<tXE 2  and .0=niEX

Proof. From the assumptions, for any ,0>ε

,max
1

1

1
1

∞<












ε≥∑ ∑

∞

= =
≤≤

n

t
k

i
ni

nk
nXP (2.4)

By Lemma 1.2, we obtain that

( ) ( )∑ ∑
= =

≤≤ 












ε≥=ε≥

n

i

t
k

i
ni

nk

t
ni nXPOnXP

1

1

1
1

1 ,max1

which, together with (2.4) and assumptions, we have

( )∑
∞

=

∞<ε≥
1

1

n

tnXnP

which is equivalent to ,2 ∞<tXE  by Lemma 1.3.
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Now, under ,2 ∞<tXE  we obtain from Theorem 2.1 that

( )∑ ∑
∞

= =
≤≤

∞<












ε≥−

1

1

1
1
max

n

t
k

i
nini

nk
nEXXP  for any 0>ε (2.5)

(2.4) and (2.5) yield .0=niEX

Theorem 2.3. Let { }1,1 ≥≤≤| nkiX nni  be an array of rowwise

NA random variables with ( ) ( ) ≤>≤> xXPCxXPC niin,11 inf

( ) ( )xXPCxXPC niin >≤> 2,2 sup  for all .0≥x  Assume that { }nk

and { }nr  are two sequences satisfying ,, 21
k

n
r

n nbknbr ≤≥  for some

.0,,, 21 >krbb  Let

0max1

1
1

→∑
=

≤≤

j

i
nikjn

X
r n

 completely as .∞→n

If ,1 rk <+  then .
1

∞<
+
r

k
XE

Proof. Note that 0max1

11
→∑

=≤≤

j

i
ninjn

X
r

 completely as ,∞→n  i.e.,

∑ ∑
∞

= =
≤≤

∞<












ε≥

1 1
1

,max
n

n

j

i
ni

kj
rXP

n
 for all .0>ε (2.6)

Since ,max2max
111 ∑
=≤≤≤≤

≤
j

i
nikjnjkj

XX
nn

 (2.6) implies

( )∑
∞

=
≤≤

∞<≥
1

1
max

n
nj

nj
nXP (2.7)

and

( ) 0max
1

→≥
≤≤ nnjkj

rXP
n

 as .∞→n (2.8)
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By (2.7) and (2.8), and using Lemma 1.2, we obtain that

( ) ( ) ( )∑
=

≤≤
≥=>

n

n

k

i
nnj

kj
nni rXPOrXP

1
1

,max1

which, together with (2.7), it follows that

( )∑∑
∞

= =

∞<>
1 1

.
n

k

i
nni

n

rXP

Thus, using the assumptions of Theorem 2.3, we have

( )∑
∞

=

∞<>
1

1 ,
n

r
n nbXPk

which is equivalent to .
1

∞<
+
r

k
XE

Corollary 2. Let { }1,1 ≥≤≤| nkiX nni  be an array of rowwise

identically distributed NA random variables. Assume that { }nk  and { }nr

are two sequences satisfying ,~,~ k
n

r
n nknr  for some ,0, >kr  where

nn ba ~  means that nnn aCbaC 21 ≤≤  for large enough n. If

(1) ,1 rk <+  or

(2) trkr <+≤ 1  for some 
2
10 << t  and ,0=niEX  then

0max1
11 →∑ =≤≤

j
i nikj

n
X

r n
 completely as ∞→n  if and only if

.
1

∞<
+
r

k
XE
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