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Abstract

In this paper, an analytical solution to nonlinear fractional

integro-differential equations based on a generalized fractional power

series expansion is presented. The fractional derivatives are of the

conformable type. The new approach is a modified form of the well-

known Taylor series expansion. Illustrative examples are presented to

demonstrate the accuracy and effectiveness of the proposed method.

1. Introduction

Fractional calculus and differential equations have been widely explored

due to their great importance in scientific and engineering problems. For

example, fractional calculus is applied in fluid-dynamic traffic modeling
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[10], signal processing [19], control theory [5], and economics [3]. For        

more details and applications of fractional derivatives, we refer the reader to     

[21, 15, 7, 6]. Several types of fractional derivatives have been introduced      

to date. The most popular of which are Riemann-Liouville and Caputo 

fractional derivatives, but these two kinds of derivatives do not satisfy         

the product rule. Recently, Khalil et al. [13] introduced a new definition           

of fractional derivative, called conformable fractional derivative, which 

satisfies the product rule. The basic properties of the conformable fractional 

derivative have been obtained [1, 22]. Real-world phenomena often are 

modeled by the linear and nonlinear fractional differential equations [4, 25]. 

Many mathematical formulations contain nonlinear integro-differential 

equations with fractional order. However, integro-differential equations are 

usually difficult to solve analytically, so it is necessary to obtain an efficient 

approximate solution. Rawashdeh [20] applied a collocation method to  

study the integro-differential equations of fractional order, and the authors of     

[24] applied a spectral collocation method to solve stochastic fractional 

integro-differential equations. Momani and Noor [16] applied the Adomian 

decomposition method (ADM) to approximate solutions for fourth-order 

integro-differential equations of fractional order. Nawaz [17] applied           

the variational iteration method and homotopy perturbation method for 

fourth-order fractional integro-differential equations, and the authors of [26] 

presented a computational method based on the second kind Chebyshev 

wavelet to solve fractional nonlinear Fredholm integro-differential 

equations. In [11], an approximated solution of fractional integro-differential 

equations using the Taylor expansion method is presented. Among these 

methods, the Taylor expansion method is the most attractive. To date, 

several fractional power series expansions have been presented in the 

literature [8, 9, 18, 2, 23, 14, 12]. In [2], a new algorithm for obtaining a 

series solution for a class of fractional differential equations was presented. 

Syam [23] investigated a numerical solution of fractional Lienard’s equation 

by using the residual power series method. In [14], a new method, called         

the restricted fractional differential transform method (RFDTM), was  

developed to solve rational- or irrational-order fractional differential 
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equations. Recently, Jaradat et al. [12] proposed a new method based on a 

Taylor series expansion to solve fractional (integro-)differential equations 

and compared numerical solutions with exact solutions. A new series 

expansion was proposed to obtain closed-form solutions of fractional 

(integro-)differential equations of the Caputo type. This expansion provides 

a more integrated representation of the fractional power series with a related 

convergence theorem called a generalized fractional power series (GFPS). 

In this paper, we adopt the conformable fractional derivative with GFPS 

and apply it to solve nonlinear integro-differential equations: 

            1

0
1,, qdytkthtyT q  (1) 

subject to the initial condition 

   ,0 0yy   (2) 

where ,10    ,tk  and  th  are smooth functions. The derivative used 

is the conformable fractional derivative. The paper is organized as follows. 

In Section 2, some preliminaries used in this work details the proposed 

method, which is the GFPS in the conformable fractional derivative are 

presented. Some analytical and numerical results are presented in Section 3. 

Section 4 gives the conclusions of the paper. 

2. The Generalized Conformable Fractional Power Series Method 

In this section, definitions and properties of the conformable fractional 

derivative and the GFPS are presented. The derivative in equation (1) is the 

conformable fractional derivative which was defined in [13]. Throughout the 

rest of this section, it is assumed that  .1,0  

Definition 2.1. Given a function   ,,0: f  the conformable 

fractional derivative of f order  is defined by 

       







 tfttf
tfT

1

0
lim  (3) 

for all .0t  
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Theorem 2.2. If f and g are -differentiable at a point where ,0t  

then 

     ,gbTfaTbgafT    

for all ., ba  

The power rule of the conformable fractional derivative is as follows. 

Theorem 2.3. The conformable fractional derivative of the power 

function is given by 

  ,  pp pttT  

for all .p  

The generalized fractional power series (GFPS) [12] was implemented  

to solve equation (1), starting with the following definition and properties 

related to the GFPS. 

Definition 2.4. A generalized fractional power series of the form 






 
0

2
20

1
11

2
0210

1
0100

ji

ji
ij tctctctctcctc   (4) 

was used, where ,0t  is called the generalized fractional power         

series (GFPS) about .0t  ijc  denotes the coefficients of the series, where 

 .0, ji  

Moreover, the GFPS can be naturally obtained as a Cauchy product of a 

fractional power series and a power series as follows: 

  










































0 00

,
ji j

j
j

i

i
i

ji
ij tbtatc  (5) 

where .jiij bac   
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Proposition 2.5. If 



0k

k
k ta  converges for some ,0 at  then it 

converges absolutely for  .,0 at   

Proof. See [12]. 

Corollary 2.6. If 
0k

k
k tb  converges for some ,0 bt  then it 

converges absolutely for  .,0 bt   

Proof. See [12]. 

Theorem 2.7. Consider the two power series 



0k

k
k taA  and 




0k
k

k tbB  such that A converges absolutely to a for ,0 att  and  

B converges to b for .0 btt  Then the Cauchy product of A and B 

converges to ab for ,0 ctt  where  .,min bac ttt   

Proof. See [12]. 

Theorem 2.8. If  ty  is a generalized fractional power series, 

  



0

,
ji

ji
ijtcty  then the conformable fractional derivative of  ty  

of order  within the interval of convergence of 0t  is given by 

         








 
1 1

0
1

0
i j

j
j

i
i tjctictyT  

  





 

0

1
1,1 .11

ji

ji
ji tjic  (6) 

Proof. Since  ty  converges, the conformable fractional derivative of 

order  can be operated term-by-term within the interval of convergence of 

.0t  Then equation (6) is obtained. 

To solve problems (1) and (2), we assumed that solution  ty  takes the 

form 
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   





0

,
ji

ji
ijtcty  (7) 

where   00 yy   and ijc  are constants to be determined. Clearly, .000 yc   

The proposed expansion (6) is utilized to introduce a parallel scheme        

to the power series solution method. Illustrative examples are presented            

to demonstrate the accuracy and effectiveness of the proposed method in 

Section 3. 

3. Numerical Results 

In this section, three examples of the nonlinear integro-differential 

equations are presented to exhibit the usefulness of the expansion (6). It 

should be noted here that all the necessary calculations and graphical 

analyses were done with MATLAB 2017a. 

Example 3.1. Consider the nonlinear Fredholm fractional integro-

differential equation 

      1

0
10,10, tdtytetetyT tt  (8) 

subject to the initial condition,   .00 y  

In accordance with the previous discussion and using the initial 

condition, the proposed generalized fractional power series solution to 

equation (8) has the form 

   





1

.
ji

ji
ijtcty  (9) 

By substituting equation (9) into equation (8), the coefficients ,ijc  

,1 ji  are determined by equating the coefficients of like powers of t 

through determining a formal recurrence relation. This obtains 
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 
      ,

!1
1

1
11

13

2

2
211 





















 



j
jjj

j
c  (10) 

  !
1

1 jj
j

c j 
  for ...,,4,3,2,0j  (11) 

and 0ijc  otherwise. Therefore, the exact solution of equation (8) is 

    














2

1
11 ,

!
1

j

jt
jj

jt
tcty  (12) 

with 11c  as in equation (10). Particularly, with ,1  the exact solution for 

the classical version of equation (8) is thus obtained as 

  







2

1
2 .

!
j

t
j

te
j

t
ttty  (13) 

Figure 1 illustrates the approximate solutions for ,75.0,5.0,25.0  1 

in  .1,0I  

 

Figure 1. The approximate solution of Example 3.1 for ,5.0,25.0  

.1,75.0  
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Example 3.2. Consider the Volterra integro-differential equation 

        t
ytdytyT

0
.00,10,10,1  (14) 

Upon substituting all the relevant quantities into equation (14) and 

collecting powers of t, we have 

,
1

10 
c  (15) 

 
        











 iiii
c

i

ii 1121
11

,1  for ...,,3,2,1i  (16) 

where 0ijc  otherwise. Then the exact solution is 

    







 



1

1
,1 ,

1

i

ii
ii tctty  (17) 

where iic ,1  satisfies equation (16). 

Particularly, we can see the approximate solutions for ,1  which are 

derived for different values of t. Then the exact solution in a closed form      

is   .sin tty   Figure 2 shows the effect of  on the solution for   

1,75.0,5.0,25.0  in  .1,0I  

Example 3.3. Consider the nonlinear Fredholm fractional integro-

differential equation 

       
1

0

42
1

2
3

2
1

1260
2 dyt

t
tttyT  (18) 

subject to the initial condition,   .00 y  
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Figure 2. The approximate solution of Example 3.2 for ,5.0,25.0  

.1,75.0  

Since the definite integral in equation (18) completely depends on the 

variable , the solution is spanned by the monomials  .,, 22
3

ttt  That is, 

   2
02

2
3

1101 tctctcty   (19) 

with 

    .2
2
3 2

3

0211
2
1

01
2
1

tctctctyT   (20) 

By substituting all the relevant quantities into equation (18) and equating 

the coefficients of like powers of t from both sides, we obtain ,101 c  

,102 c  and 11c  satisfies 

 .012
20995
1024

21
4

255
128

11
2
11

3
1111 





 





  cccc  (21) 

Subsequently, we have exact solutions of the form   ,2
3

11
2 tcttty   

where 11c  satisfies equation (21). 
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4. Conclusions 

In this paper, the analytical solution to nonlinear integro-differential 

equations based on the GFPS was demonstrated. Three numerical examples 

were presented. Figures 1 and 2 showed that as  increases, the approximate 

solution decreases. The results reveal that exact solutions are obtained in the 

form of a rapidly convergent series with an easily computable component.  

In conclusion, the proposed scheme could be used further to study identical 

applications. It could be extended to solve a variety of fractional differential 

and integral equations in the science and engineering fields. 
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