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Abstract 

In recent years, several improved and extended probability 

distributions have been discovered from the current distributions to 

facilitate their applications in many fields. A new three-parameter 

distribution extended from the power Lindley distribution, the so- 

called the type I half logistic power Lindley (TIHLPL), is introduced 

for modeling lifetime data. Some mathematical properties of the         

type I half logistic power Lindley distribution are provided. Explicit 

expressions for the moments, probability weighted moments and order 

statistics are investigated. Maximum likelihood estimation technique 

employed to estimate the model parameters is presented. In addition, 

the superiority of the subject distribution is illustrated with an 

application to two real data sets. Indeed, the TIHLPL model yields a 

better fit to these data than the other distributions. 

1. Introduction 

The Lindley distribution is a very well-known distribution that has     

been extensively used over the past decades for modeling data in reliability, 

biology, insurance, finance, and lifetime analysis. The Lindley distribution 

was introduced by Lindley [21] to analyze failure time data. The motivation 

for introducing the Lindley distribution arises from its ability to model 

failure time data with increasing, decreasing, unimodal and bathtub       

shaped hazard rates. This distribution represents a good alternative to           

the exponential failure time distributions that suffer from not exhibiting 

unimodal and bathtub shaped failure rates. The need for extended forms of 
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the Lindley distribution arises in many applied areas. The emergence of such 

distributions in the statistics literature is only very recent. For some extended 

forms of the Lindley distribution and applications, the reader is referred         

to generalized Lindley (Nadarajah et al. [23]), a new generalized Lindley 

(Elbatal et al. [11]), transmuted quasi Lindley distribution (Elbatal and 

Elgarhy [10]), transmuted generalized Lindley distribution (Elgarhy et al. 

[13]) and the odd log-logistic Marshall-Olkin power Lindley distribution 

(Alizadeh et al. [3]). The pdf and cdf of the Lindley distribution are, 

respectively, given by 
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Using the transformation X, Ghitany et al. [15] derived the power Lindley 

(PL) distribution given by 
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The PL distribution does not provide enough flexibility for analyzing 

different types of lifetime data. To increase the flexibility for modelling 

purposes, it will be useful to consider further alternatives to this distribution. 

Recently, new generated families of continuous distributions have 

attracted several statisticians to develop new models. These families are 

obtained by introducing one or more additional shape parameter(s) to the 

baseline distribution. Some of the generated families are: the beta-G (Eugene 

et al. [14]), gamma-G (Zografos and Balakrishanan [26]), Kumaraswamy-G 
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(Cordeiro and de Castro [6]), McDonald-G (Alexander et al. [2]), 

transformed-transformer (Alzaatreh et al. [5]), type 1 half logistic family 

(TIHL-G) (Cordeiro et al. [8]), Garhy-G (Elgarhy et al. [13]), Kumaraswamy 

Weibull-G (Hassan and Elgarhy [17]), exponentiated Weibull-generated 

family (Hassan and Elgarhy [18]), type II half logistic-G (TIIHL-G) (Hassan 

et al. [19]), and odd Fréchet-G (Haq and Elgarhy [16]) and Muth-G by 

(Almarashi and Elgarhy [4]). 

The cumulative distribution function (cdf) of the TIHL-G family is given 

by 
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where   is the shape parameter. The probability density function (pdf) 

corresponding to (3) is given by 
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The new model is referred to as the type I half logistic power                 

Lindley distribution. Based on the TIHL-G family, we construct the TIHLPL 

distribution as well as we provide the main statistical distributions. The 

remainder of the paper is organized as follows: In Section 2, we define          

the TIHLPL distribution and provide its special models. In Section 3, we 

derive a very useful representation for the TIHLPL density and distribution 

functions. Further, we derive some mathematical properties of the subject 

distribution. The maximum likelihood method is used to estimate the      

model parameters in Section 4. In Section 5, we prove the importance of            

the TIHLPL distribution using two real data sets. Finally, we give some 

concluding remarks in Section 6. 
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2. The New Model 

In this section, we introduce the three-parameter type I half logistic 

power Lindley TIHLPL distribution. Using (2) in (3), the cdf of the TIHLPL 

distribution can be written as 
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The pdf corresponding to (5) is as follows: 
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Further, the survival function of X, denoted by  ,xF  is as follows: 
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Additionally, the hazard rate function (hrf), say  ,xh  can be written as 

follows: 
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Figure 1. Plots of pdf and hrf for selected parameter values. 

For ,1  the pdf (6) reduces to a new model called TIHL-Lindley 

distribution. The pdf and hrf plots for the TIIHLPL are presented in Figure 

1. As seen from Figure 1, densities of TIIHLPL distribution take different 

shapes like, symmetric, left skewed, reversed J shaped and unimodal. And       

it is clear from Figure 1 that the hrf plots take different shapes according      

to different values of parameters. It can be increasing, decreasing, up-side 

down and J shaped. 

3. Some Statistical Properties 

This section provides some statistical properties of TIHLPL distribution. 

3.1. Important representation 

The pdf and cdf expansions of TIHLPL are provided, which are useful  

in studying most statistical properties of TIHLPL distribution. From a 

generalized binomial series, it is known that, for ,1z  and   is a positive 

real non-integer, 
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Then, by applying the binomial theorem (7) in pdf (6), we have 
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Now, using the generalized binomial theorem, we can write 
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Inserting the expansion (9), then the pdf (8) will be converted to 
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Further, an extra expansion for the    ,sxF  for s an integer, is derived, 

again the binomial expansion is worked out: 
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Again using the binomial expansion,   sxF  is given by 
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where 
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3.2. The probability weighted moments (PWMs) 

For a random variable X, the PWMs, denoted by ,, sr  can be calculated 

according to the following relation: 
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Inserting (10), (11) in (12), the PWMs of TIHLPL will be converted to 
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3.3. Moments 

In this subsection, we derive the rth moment for the TIHLPL 

distribution. If X has the pdf (10), then rth moment is obtained as follows: 
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mean                                                                   variance 

Figure 2. Plots of mean and variance. 

               

skewness                                                               kurtosis 

Figure 3. Plots of skewness and Kurtosis. 

Figures 2 and 3 illustrate the mean, variance, skewness and kurtosis 

whose forms depend basically on the parameters   and .  

Furthermore, for a random variable X, the moment generating function 

of TIHLPL distribution is given by 
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3.4. Order statistics 

Order statistics have been extensively applied in many fields of 

statistics, such as reliability and life testing. Let nXXX ...,,, 21  be 

independent and identically distributed random variables with their 

corresponding continuous distribution function  .xF  Let    21 XX    

 nX  be the corresponding ordered random sample from a population 

of size n. According to David [9], the pdf of the rth order statistic is defined 

as 
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 ,B  stands for beta function. The pdf of the rth order statistic for TIHLPL 

distribution is derived by substituting (11) and (12) in (13), replacing s with 
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The distribution of the smallest and largest order statistics can be obtained 

individually from (14) by setting 1r  and .nr   Further, the kth moment 

of rth order statistics for TIHLPL distribution is defined by: 
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4. Maximum Likelihood Method 

This section deals with the maximum likelihood estimators of the 

unknown parameters for the TIHLPL distribution on the basis of complete 

samples. Let nXX ...,,1  be the observed values from the TIHLPL 

distribution with set of parameters   .,, T  The log-likelihood 

function for parameter vector  T ,,  is obtained as follows: 
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The elements of the score function     UUUU ,,  are given by 
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Setting ,U  U  and U  equal to zero and solving these equations 

simultaneously yield the maximum likelihood estimate (MLE)   ˆ,ˆ,ˆˆ  
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of   .,, T  These equations cannot be solved analytically and 

statistical software can be used to solve them numerically using iterative 

methods. 

5. Data Analysis 

In this section, we use two real data sets to illustrate the importance and 

flexibility of the TIHLPL distribution. We compare the fits of the TIHLPL 

model with some models namely: the Weibull Weibull (WW) (Abouelmagd 

et al. [1]), the beta Weibull (BW) (Lee et al. [20]), Mcdonald Weibull 

(McW) (Cordeiro et al. [7]) and exponentiated Weibull (EW) (Mudholkar 

and Srivastava [22]) distributions. 

The maximized log-likelihood  ,2  Akaike information criterion 

(AIC), the corrected Akaike information criterion (CAIC), Bayesian 

information criterion (BIC), Hannan-Quinn information criterion (HQIC), 

Anderson-Darling  A  and Cramér-von Mises  W  statistics are used for 

model selection. 

Example 1. The data have been obtained from Nicholas and Padgett 

[24]. The data represent tensile strength of 100 observations of carbon fibers 

and they are: 

3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 

2.17, 3.51, 1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 

3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 

2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17, 2.97, 3.68, 0.81, 

1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 

3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 

2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 0.98, 1.59, 

1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65. 

For the data in Example 1, Table 1 gives the MLEs of the fitted models 

and their standard errors (SEs) in parenthesis. The values of goodness-of-fit 

statistics are listed in Table 2. 
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Table 1. The MLEs and SEs of the model parameters for first data set 

Model Estimates (SEs) 

TIHLPL   ,,  310256.9   

(0.0037) 

12.878 

(3.698) 

2.356 

(0.157) 

  

WW   ,,,  18.394 

(1.582) 

13.273 

(0.236) 

0.493 

(0.073) 

0.159 

(0.086) 
 

BW  ,,, ba  34.051 

(0.961) 

14.541 

(0.19) 

0.833 

(0.11) 

0.427 

(0.077) 
 

McW  cba ,,,,   35.28 

(0.916) 

18.125 

(0.254) 

0.813 

(0.13) 

0.399 

(0.085) 

1.548 

(6.993) 

EW  a,,   5.77 

(0.103) 

0.295 

(0.057) 

1135 

(0.662) 

  

Table 2. Goodness-of-fit statistics for first data set 

Model 2  AIC CAIC BIC HQIC A  W  

TIHLPL 286.062 292.062 292.312 292.062 295.225 0.44532 0.05693 

WW 299.747 307.747 309.347 305.656 309.54 0.45081 0.06256 

BW 317.214 325.214 326.814 325.214 329.431 1.22496 0.23356 

McW 308.116 318.116 319.716 318.116 323.388 1.22090 0.23286 

EW 373.861 377.861 378.305 376.815 378.757 2.81959 0.51324 

Example 2. The second data set is obtained from Tahir et al. [25] and 

represents failure times of 84 aircraft windshield. The data are: 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 

3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 

2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 

2.038, 2.82, 3.0, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 

4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 

2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 

2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 

1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663. 

Table 3 lists the MLEs of the fitted models and their SEs in parenthesis. 

The values of goodness-of-fit statistics are presented in Table 4. 
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Table 3. The MLEs and SEs for second data set 

Model Estimates (SEs) 

TIHLPL   ,,  310138.9   

(0.00486) 

19.605 

(4.816) 

2.008 

(0.176) 

  

WW   ,,,  20.862 

(1.44) 

3.752 

(0.298) 

0.199 

(0.069) 

0.545 

(0.113) 

 

BW  ,,, ba  53.874 

(2.717) 

20.528 

(0.278) 

1.076 

(0.278) 

0.231 

(0.184) 

 

McW  cba ,,,,   51.321 

(5.329) 

19.762 

(0.605) 

1.119 

(0.48) 

0.23 

(0.424) 

1.525 

(38.539) 

EW  a,,   7.017 

(0.134) 

0.144 

(0.063) 

1773 

(0.827) 

  

Table 4. Goodness-of-fit statistics for second data set 

Model 2  AIC CAIC BIC HQIC A  W  

TIHLPL 257.777 263.777 264.077 263.55 266.708 0.5966 0.06727 

WW 261.389 269.389 269.895 269.086 273.298 0.65619 0.07529 

BW 289.948 297.948 298.455 297.645 301.857 3.34711 0.48715 

McW 283.983 293.983 294.752 293.604 298.869 3.33313 0.4847 

EW 320.347 326.347 326.647 324.196 326.302 32.74879 7.04167 

 
(a)                                                            (b) 

Figure 4. Estimated pdf and cdf plots for first data set. 
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It is observed from Table 4 that the WW distribution gives a better       

fit than other fitted models. Plots of the histogram, fitted densities and 

estimated cdfs are displayed in Figure 5. 

 

(a)                                                            (b) 

Figure 5. Estimated pdf and cdf plots for second data set. 

It is noted from Tables 2 and 4 that the TIHLPL distribution provides a 

better fit than other competitive fitted models. It has the smallest values for 

goodness-of-fit statistics among all fitted models. Plots of the histogram, 

fitted densities and estimated cdfs are shown in Figures 4 and 5, 

respectively. These figures supported the conclusion drawn from the 

numerical values in Tables 2 and 4. 

6. Conclusion 

In this paper, we propose a three-parameter model extended from the 

power Lindley model, named the TIHLPL distribution. The TIHLPL model 

is motivated by the wide use of the PL distribution in practice and also for 

the fact that the generalization provides more flexibility to analyze positive 

real-life data. We derive explicit expressions for the moments and order 

statistics. The maximum likelihood estimation of the model parameters            

is investigated. The practical importance of the TIHLPL distribution is 

demonstrated by means of two data sets. 
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