Far East Journal of Mathematical Sciences (FJMS)
© 2019 Pushpa Publishing House, Allahabad, India http://www.pphmj.com
http://dx.doi.org/10.17654/MS110010083
Volume 110, Number 1, 2019, Pages 83-92

ON c-SPACES AND HYPERGRAPHS

A. K. Sruthi and P. T. Ramachandran

Department of Mathematics
University of Calicut
Calicut University P.O., 673635
Kerala, India

Abstract

In this paper, we examine the c-structure generated by the edge set of a hypergraph and prove that the elements of this c-structure induced by the hypergraph are the vertex sets of the connected hypersubgraphs. Further, we try to find some interrelations between a hypergraph and the c-space induced by that hypergraph.

1. Introduction

The concept of connectedness has applications in the field of Digital Topology and Image Processing. A set with a c-structure on it is called c space. In 1983, Börger [3] proposed an axiomatic approach to connectivity, known as the theory of connectivity class or c-structures. A systematic study of c-spaces was further carried out by Serra [12] and further extended by Heijmans [7], Ronse [10], Muscat and Buhagiar [8], Dugowson [6], Santhosh [11], etc. In this paper, we are trying to study the theory of c spaces comparable with the theory of hypergraphs, which is relevant because hypergraphs too have applications in the field of image processing. Hope
Received: May 5, 2018; Accepted: August 13, 2018
2010 Mathematics Subject Classification: 54A05, 05C40, 05C65.
Keywords and phrases: c-space, α-generated c-space, c-isomorphism, α-uniform hypergraph, connected hypersubgraph.
that this will help us to develop the theory of c-spaces that has more applicability in the field of image processing.

2. Preliminaries

A c-structure on a set X is a collection \mathcal{C} of subsets of X such that the following properties hold:
(i) $\varnothing \in \mathcal{C}$ and $\{x\} \in \mathcal{C}$ for every $x \in X$.
(ii) If $\left\{C_{i}: i \in I\right\}$ is a nonempty collection of members of \mathcal{C} with $\bigcap_{i \in I} C_{i} \neq \varnothing$, then $\bigcup_{i \in I} C_{i} \in \mathcal{C}$.

The set X together with a c-structure \mathcal{C}, that is, (X, \mathcal{C}) is called a c-space [8] and elements of \mathcal{C} are called connected sets of (X, \mathcal{C}). The empty set and singleton sets of a c-structure are called trivial connected sets and the elements which are neither empty nor singleton of a c-space are called non-trivial connected sets.

For any set X, let $\mathcal{D}=\{\varnothing\} \cup\{\{x\}: x \in X\}$. Clearly, \mathcal{D} is a c-structure on X.

Let X and Y be two c-spaces and $f: X \rightarrow Y$ be a function. f is called c-continuous [8] or catenuous [8], if it maps connected sets of X to connected sets of Y. Also, a bijection f is said to be a c-isomorphism or catenomorphism if both f and f^{-1} are c-continuous.

Let X be a set and $\mathcal{B} \subseteq \mathcal{P}(X)$. Then the intersection of all c-structures on X containing \mathcal{B} is a c-structure on X, called the c-structure generated by \mathcal{B} and is denoted by $\langle\mathcal{B}\rangle$. It is the smallest c-structure on X containing \mathcal{B}.

The non-trivial connected sets of a c-structure generated by \mathcal{B} are characterized by the condition that any two points of such a connected set C can be joined by a finite chain of elements of \mathcal{B}. That is, for all $x, y \in C$,
we can find elements $B_{i}, i=0$ to n in \mathcal{B} such that $B_{i} \subseteq C, B_{i} \cap B_{i+1} \neq \varnothing$ for $i=0$ to $n-1$ and $x \in B_{0}, y \in B_{n}$ for some positive integer n.

A hypergraph [13] H is an ordered pair (X, \mathcal{E}), where X is a set and $\mathcal{E}=\left\{E_{i}: i \in I\right\}$ is a family of nonempty subsets of X. The elements of X are called vertices and the elements of \mathcal{E} are called the edges or hyper edges.

Consider the hypergraph $H=(X, \mathcal{E})$. Then a hypergraph $H^{\prime}=\left(X^{\prime}, \mathcal{E}^{\prime}\right)$ is said to be a hypersubgraph [1] or strong subhypergraph [4] of H whenever $X^{\prime} \subseteq X$ and $\mathcal{E}^{\prime} \subseteq \mathcal{E}$.

In a hypergraph $H=(X, \mathcal{E})$, a chain [2] from the vertex x_{1} to the vertex x_{q+1} is an alternated vertex-edge sequence $\left(x_{1}, E_{1}, x_{2}, E_{2}, \ldots, E_{q}, x_{q+1}\right)$ of distinct vertices and edges of H such that for $i=1,2, \ldots, q,\left\{x_{i}, x_{i+1}\right\}$ $\subseteq E_{i}$, where q is called the length of the chain.

Let $H=(X, \mathcal{E})$ be a hypergraph. Then the vertices $a, b \in X$ are said to be connected in H if there exists a chain from a to b. The hypergraph H is said to be connected if every pair of distinct vertices is connected in H.

Two hypergraphs $H=(X, \mathcal{E})$ and $H^{\prime}=\left(X^{\prime}, \mathcal{E}^{\prime}\right)$ are said to be isomorphic [2] if there exists a bijection $\phi: X \rightarrow X^{\prime}$ such that, for every $E \subseteq X, E \in \mathcal{E}$ if and only if $\phi(E) \in \mathcal{E}^{\prime}$.

3. Hypergraph Induced c-spaces

The edge set \mathcal{E} of a hypergraph $H=(X, \mathcal{E})$ is a collection of nonempty subsets of X. Therefore, \mathcal{E} cannot be a c-structure on the set X. But there always exists a smallest c-structure on X containing \mathcal{E}.

Example 3.1. Consider the hypergraph $H=(X, \mathcal{E})$, where $X=$ $\{1,2,3,4,5\}$ and $\mathcal{E}=\{\{1,2\},\{2,3,4\},\{4,5\}\}$. Here the edge set \mathcal{E} contains neither empty set nor singleton sets, therefore \mathcal{E} is not a c-structure on X.

The c-structure on X generated by the edge set \mathcal{E} is given by $\mathcal{C}=\langle\mathcal{B}\rangle=$ $\mathcal{D} \cup\{\{1,2\},\{2,3,4\},\{4,5\},\{1,2,3,4\},\{2,3,4,5\},\{1,2,3,4,5\}\}$.

Definition 3.1. Consider the hypergraph $H=(X, \mathcal{E})$ and let $\mathcal{C}=\langle\mathcal{E}\rangle$ be the c-structure generated by the edge set of H. Then \mathcal{C} is called the c-structure induced by the hypergraph H and the corresponding c-space (X, \mathcal{C}) is called the c-space induced by the hypergraph H.

Remark 3.1. Any c-space can be considered as an induced c-space of some hypergraph. For any c-space (X, \mathcal{C}), let $\mathcal{E}=\mathcal{C}-\{\varnothing\}$. Then the c-space induced by the hypergraph $H=(X, \mathcal{E})$ is same as the c-space (X, \mathcal{C}). But a c-space may be considered as an induced c-space of more than one hypergraph. Consider the following example:

Example 3.2. Consider the c-space (X, \mathcal{C}), where $X=\{a, b, c, d\}$ and $\mathcal{C}=\mathcal{D} \cup\{\{a, b\},\{b, c\},\{a, b, c\}\}$. Let $\mathcal{E}_{1}=\{\{a, b\},\{b, c\}\}, \mathcal{E}_{2}=\{\{a, b\},\{b, c\}$, $\{a, b, c\}\}$ and $\mathcal{E}_{3}=\mathcal{C}-\{\varnothing\}$. Then the hypergraphs $H_{1}=\left(X, \mathcal{E}_{1}\right), H_{2}=$ $\left(X, \mathcal{E}_{2}\right)$ and $H_{3}=\left(X, \mathcal{E}_{3}\right)$ have the property that $\left\langle\mathcal{E}_{1}\right\rangle=\left\langle\mathcal{E}_{2}\right\rangle=\left\langle\mathcal{E}_{3}\right\rangle=\mathcal{C}$.

Theorem 3.1. Let $H=(X, \mathcal{E})$ be a hypergraph and let (X, \mathcal{C}) be the c-space induced by the hypergraph H. Then the members of \mathcal{C} are the vertex sets of the connected hypersubgraphs of H.

Proof. Let \mathcal{V}_{H} be the collection of all vertex sets of the connected hypersubgraphs of H. Suppose C is a trivial connected set of (X, \mathcal{C}). Then $H^{\prime}=(C, \varnothing)$ is a connected hypersubgraph of H and hence $C \in \mathcal{V}_{H}$. Now suppose C is a non-trivial connected set of (X, \mathcal{C}). Consider the hypersubgraph $H^{\prime}=\left(C,\left\{E_{i} \in \mathcal{E}: E_{i} \subseteq C\right\}\right)$ of H. Let $a, b \in C$. Then there exist $E_{k 1}, E_{k 2}, \ldots, E_{k m}$ such that $E_{k i} \subseteq C$ for $i=1,2, \ldots, m$ and $E_{k i} \cap E_{k(i+1)} \neq \varnothing$ for $i=1,2, \ldots, m-1, \quad a \in E_{k 1}$ and $b \in E_{k m}$. Now let $x_{i} \in E_{k i} \cap E_{k(i+1)}$. Then $\left(a, E_{k 1}, x_{1}, E_{k 2}, \ldots, E_{k(m-1)}, x_{m-1}, E_{k m}, b\right)$ is a chain from a to b. Therefore, a and b are connected in H^{\prime}. This is true for
every $a, b \in C$. Therefore, H^{\prime} is a connected hypersubgraph of H and hence $C \in \mathcal{V}_{H}$. This implies $\mathcal{C} \subseteq \mathcal{V}_{H}$.

To prove $\mathcal{C}=\mathcal{V}_{H}$, if possible suppose that there exists $A \in \mathcal{V}_{H}$ such that $A \notin \mathcal{C}$. Since $A \in \mathcal{V}_{H}$, there exists a connected hypersubgraph $H^{\prime}=$ $\left(A, \mathcal{E}^{\prime}\right)$ for some $\mathcal{E}^{\prime} \subseteq \mathcal{E}$. Then for every $x, y \in A$, there exists a chain from x to y, say, $\left(x_{1}, E_{1}, x_{2}, E_{2}, \ldots, E_{q}, x_{q+1}\right)$, where $x_{1}=x, x_{q+1}=y$ and for $k=1,2, \ldots, q$ and $x_{k}, x_{k+1} \in E_{k}$. Clearly, $E_{i} \subseteq A$ for $i=1,2, \ldots, q$. Since $x_{i+1} \in E_{i} \cap E_{i+1}, E_{i} \cap E_{i+1} \neq \varnothing$ for $i=1,2, \ldots, q-1$. That is, for every $x, y \in A$, there exist basis elements $E_{1}, E_{2}, \ldots, E_{q}$ such that $x \in E_{1}$, $y \in E_{q}, E_{i} \subseteq A$ for $i=1,2, \ldots, q$ and $E_{i} \cap E_{i+1} \neq \varnothing$ for $i=1,2, \ldots, q-1$. This contradicts the assumption that $A \notin \mathcal{C}$, therefore $\mathcal{C}=\mathcal{V}_{H}$.

Remark 3.2. In simple graphs, the members of the c-structure induced by the edge set are the vertex sets of connected subgraphs of the given graph.

Theorem 3.2. If $H=(X, \mathcal{E})$ and $G=(Y, \mathcal{F})$ are two isomorphic hypergraphs, then the c-spaces induced by the hypergraphs H and G are c-isomorphic.

Proof. Let $\left(X, \mathcal{C}_{\mathcal{E}}\right)$ and $\left(Y, \mathcal{C}_{\mathcal{F}}\right)$ be the c-spaces induced by the hypergraphs H and G, respectively, and let ϕ be the hypergraph isomorphism.

Clearly, $\phi: X \rightarrow Y$ is a bijection. To prove $\phi:\left(X, \mathcal{C}_{\mathcal{E}}\right) \rightarrow\left(Y, \mathcal{C}_{\mathcal{F}}\right)$ is c-continuous, let $C \in \mathcal{C}_{\mathcal{E}}$. If C is a trivial connected set of $\left(X, \mathcal{C}_{\mathcal{E}}\right)$, then clearly $\phi(C) \in \mathcal{C}_{\mathcal{F}}$. Now suppose C is a nontrivial connected set of $\left(X, \mathcal{C}_{\mathcal{E}}\right)$. For $y, y^{\prime} \in \phi(C)$, there exist $x, x^{\prime} \in C$ such that $\phi(x)=y$ and $\phi\left(x^{\prime}\right)=y^{\prime}$. But $C \in \mathcal{C}_{\mathcal{E}}$ and $\mathcal{C}_{\mathcal{E}}=\langle\mathcal{E}\rangle$ implies the existence of the elements $E_{i}, i=0$ to n in \mathcal{E} such that $E_{i} \subseteq C, E_{i} \cap E_{i+1} \neq \varnothing$ for $i=0$ to $n-1$ and $x \in E_{0}$, $x^{\prime} \in E_{n}$ for some positive integer n. Take $F_{i}=\phi\left(E_{i}\right)$ for $i=0$ to n, then
$F_{i} \in \mathcal{F}$ for $i=0$ to $n, F_{i} \subseteq \phi(C), F_{i} \cap F_{i+1} \neq \varnothing$ for $i=0$ to $n-1$ and $y \in F_{0}, \quad y^{\prime} \in F_{n}$. This implies $\phi(C) \in \mathcal{C}_{\mathcal{F}}$ and hence ϕ is c-continuous. Similarly we can prove that ϕ^{-1} is c-continuous. Therefore, $\phi:\left(X, \mathcal{C}_{\mathcal{E}}\right) \rightarrow$ $\left(Y, \mathcal{C}_{\mathcal{F}}\right)$ is a c-isomorphism.

Note 3.1. Let \mathcal{C} be a c-structure on X and $\mathcal{B} \subseteq \mathcal{C}$ be such that $\langle\mathcal{B}\rangle=\mathcal{C}$. Then (X, \mathcal{B}) is a hypergraph if and only if $B \neq \varnothing$ for each $B \in \mathcal{B}$.

Theorem 3.3. Let (X, \mathcal{C}) and $\left(Y, \mathcal{C}^{\prime}\right)$ be two c-spaces and $f:(X, \mathcal{C})$ $\rightarrow\left(Y, \mathcal{C}^{\prime}\right)$ be a c-isomorphism and let $\mathcal{B}=\left\{B_{i}: i \in I\right\} \subseteq \mathcal{C}$ be such that $\mathcal{C}=\langle\mathcal{B}\rangle$.
(i) Then $\mathcal{C}^{\prime}=\langle f(\mathcal{B})\rangle$.
(ii) If (X, \mathcal{B}) is a hypergraph, then $(Y, f(\mathcal{B}))$ is a hypergraph. Also, the hypergraphs (X, \mathcal{B}) and $(Y, f(\mathcal{B}))$ are isomorphic.

Proof. (i) Consider $f(\mathcal{B})=\left\{f\left(B_{i}\right): i \in I\right\}$. Since f is c-continuous and $B_{i} \in \mathcal{B} \subseteq \mathcal{C}$, we get $f\left(B_{i}\right) \in \mathcal{C}^{\prime}, \forall i \in I$. This implies $f(\mathcal{B}) \subseteq \mathcal{C}^{\prime}$. Consider a nontrivial connected set $C^{\prime} \in \mathcal{C}^{\prime}$ and let $c_{1}^{\prime}, c_{2}^{\prime} \in C^{\prime}$. Then $C=f^{-1}\left(C^{\prime}\right)$ is a nontrivial connected set of \mathcal{C} and $f^{-1}\left(c_{1}^{\prime}\right), f^{-1}\left(c_{2}^{\prime}\right) \in C$. Then there exist $B_{i}, \quad i=0$ to n in \mathcal{B} such that $B_{i} \subseteq C, B_{i} \cap B_{i+1} \neq \varnothing$ for $i=0$ to $n-1$ and $f^{-1}\left(c_{1}^{\prime}\right) \in B_{0}, \quad f^{-1}\left(c_{2}^{\prime}\right) \in B_{n}$ for some positive integer n. This implies $c_{1}^{\prime} \in f\left(B_{0}\right), c_{2}^{\prime} \in f\left(B_{n}\right)$ and $f\left(B_{i}\right) \cap f\left(B_{i+1}\right) \neq \varnothing$ for $i=0$ to $n-1$. Therefore, $C^{\prime} \in\langle f(\mathcal{B})\rangle$ and hence $\mathcal{C}^{\prime}=\langle f(\mathcal{B})\rangle$.
(ii) Consider the c-isomorphism $f:(X, \mathcal{C}) \rightarrow\left(Y, \mathcal{C}^{\prime}\right)$. Suppose that (X, \mathcal{B}) is a hypergraph. Then $B_{i} \neq \varnothing$ for each $i \in I$. But this implies $f\left(B_{i}\right) \neq \varnothing$ for every $i \in I$. Therefore, $(Y, f(\mathcal{B}))$ is a hypergraph. Now consider the map $\phi: X \rightarrow Y$ defined by $\phi(x)=f(x)$. Clearly, ϕ is an isomorphism between the hypergraphs (X, \mathcal{B}) and $(Y, f(\mathcal{B}))$.

On c-spaces and Hypergraphs
Remark 3.3. By the above theorem, if we have two c-isomorphic c-spaces (X, \mathcal{C}) and $\left(Y, \mathcal{C}^{\prime}\right)$, consider the collection of nonempty connected sets $\mathcal{B} \subseteq \mathcal{C}$ such that $\mathcal{C}=\langle\mathcal{B}\rangle$. Such a collection always exists, for example $\mathcal{B}=\mathcal{C}-\{\varnothing\}$. Then the c-spaces induced by the isomorphic hypergraphs $H=(X, \mathcal{B})$ and $G=(Y, f(\mathcal{B}))$ are (X, \mathcal{C}) and (Y, \mathcal{E}), respectively, where f is the given c-isomorphism.

4. Isolated Edge and t-closed Set

Here we examine the interrelation between the isolated edges of a hypergraph and the t-closed sets of the c-space induced by that hypergraph.

Definition 4.1 [8]. Let (X, \mathcal{C}) be a c-space and $A \subseteq X$. A point $x \in X$ is said to touch the set A if there is a nonempty $C \subseteq A$ such that $\{x\} \cup C$ is connected. The set of all points touching the set A is denoted by $t(A)$. If $A \subseteq X$ contains all of its touching points, then it is said to be t-closed.

Definition 4.2 [5]. Consider the hypergraph $H=(X, \mathcal{E})$ and let $E \in \mathcal{E}$. Then E is said to be an isolated edge if for all $E^{\prime} \in \mathcal{E}$ with $E^{\prime} \neq E, E \cap E^{\prime}$ $\neq \varnothing$ implies that $E^{\prime} \subseteq E$.

Theorem 4.1. Let $H=(X, \mathcal{E})$ be a hypergraph and let $E \in \mathcal{E}$ be an isolated edge. Then E is t-closed in the c-space induced by the hypergraph H.

Proof. Suppose (X, \mathcal{C}) is the c-space induced by the hypergraph H. To prove E is t-closed in the c-space (X, \mathcal{C}), it is enough to show that $t(E)=E$. It is clear that $E \subseteq t(E)$. Let x be a touching point of E. Then there exists a nonempty subset $C \subseteq E$ such that $A=\{x\} \cup C \in \mathcal{C}$. If $x \in C$ then $x \in E$. If $x \notin C$, then take $y \in C$ which exists since C is nonempty. Then there exists $E_{i}, \quad i=0$ to n in \mathcal{E} such that $E_{i} \subseteq C$, $E_{i} \cap E_{i+1} \neq \varnothing$ for $i=0$ to $n-1$ and $x \in E_{0}, \quad y \in E_{n}$ for some positive
integer n. But $x \in E_{0}$ implies $x \in E$. Thus we get $x \in E$ whenever $x \in t(E)$ and hence E is t-closed.

Remark 4.1. Let $A \subseteq X$ be a t-closed set of a c-space (X, \mathcal{C}) and let $\mathcal{B} \subseteq \mathcal{C}$ be such that $\langle\mathcal{B}\rangle=\mathcal{C}$. Then A need not be an isolated edge of the hypergraph $H=(X, \mathcal{B})$, whenever H is a hypergraph. Consider the following example:

Example 4.1. Consider the c-space (X, \mathcal{C}), where $X=\{a, b, c, d\}$ and $\mathcal{C}=\mathcal{D} \cup\{\{a, b\},\{c, d\},\{b, c, d\},\{a, b, c, d\}\}$. Since $t(\{a, b\})=\{a, b\}$, we have $\{a, b\}$ is t-closed in the c-space (X, \mathcal{C}). Let $\mathcal{B}=\{\{a, b\},\{c, d\},\{b, c, d\}\}$. Clearly, (X, \mathcal{B}) is a hypergraph. But $\{a, b\}$ is not an isolated edge of the hypergraph $H=(X, \mathcal{B})$, since $\{a, b\} \cap\{b, c, d\} \neq \varnothing$ and $\{b, c, d\} \nsubseteq\{a, b\}$.

5. α-generated c-space and α-uniform Hypergraphs

In this section, we analyze the relation of α-generated c-spaces and α-uniform hypergraphs.

Definition 5.1 [9]. Let X be any set and α be any cardinal with $\alpha \leq|X|$. Then a c-structure \mathcal{C} on X is said to be α-generated if there is a subcollection $\mathcal{B} \subseteq\{A \in \mathcal{C}:|A| \leq \alpha\}$ such that $\mathcal{C}=\langle\mathcal{B}\rangle$.

Definition 5.2 [2]. Consider the hypergraph $H=(X, \mathcal{E})$ and let $|E|=r$ for all $E \in \mathcal{E}$. Then the hypergraph $H=(X, \mathcal{E})$ is called r-uniform.

Theorem 5.1. Let $H=(X, \mathcal{E})$ be an α-uniform hypergraph. Then the c-space induced by the hypergraph H is α-generated.

Proof. Let (X, \mathcal{C}) be the c-space induced by the hypergraph H. To prove (X, \mathcal{C}) is α-generated, it is enough to show that there exists $\mathcal{B} \subseteq$ $\{A \in \mathcal{C}:|A| \leq \alpha\}$ such that $\mathcal{C}=\langle\mathcal{B}\rangle$. Take $\mathcal{B}=\{A \in \mathcal{C}:|A|=\alpha\}$. Then $\mathcal{B}=\mathcal{E}$ and hence $\langle\mathcal{B}\rangle=\langle\mathcal{E}\rangle=\mathcal{C}$.

Remark 5.1. Converse of the above result is not true. That is, if the c-space induced by the hypergraph $H=(X, \mathcal{B})$ is α-generated, then H need not be α-uniform. This is shown by the following example:

Example 5.1. Consider the c-space (X, \mathcal{C}), where $X=\{1,2,3, \ldots, 10\}$ and
$\mathcal{C}=\mathcal{D} \cup\{\{1,2\},\{3,6,7\},\{4,9\},\{5,6\},\{8,9,10\},\{3,5,6,7\},\{4,8,9,10\}\}$.
Then $\mathcal{B}=\{\{1,2\},\{3,6,7\},\{4,9\},\{5,6\},\{8,9,10\}\}$ generates \mathcal{C}. Here c-space (X, \mathcal{C}) is 3-generated, but the hypergraph $H=(X, \mathcal{B})$ is not 3-uniform.

Note 5.1. Let (X, \mathcal{C}) be a c-space such that $\mathcal{C} \neq \mathcal{D}$. Then the following are equivalent:
(i) there exists $\mathcal{B} \subseteq\{A \in \mathcal{C}:|A| \leq 2\}$ such that $\langle\mathcal{B}\rangle=\mathcal{C}$,
(ii) there exists $\mathcal{B}^{\prime} \subseteq\{A \in \mathcal{C}:|A|=2\}$ such that $\left\langle\mathcal{B}^{\prime}\right\rangle=\mathcal{C}$.

Note 5.2. Consider a 2 -generated c-space (X, \mathcal{C}) with $\mathcal{C} \neq \mathcal{D}$. Then $\{A \in \mathcal{C}:|A|=2\} \neq \varnothing$.

Theorem 5.2. Let (X, \mathcal{C}) be a 2-generated c-space. Then there exists $\mathcal{B} \subseteq \mathcal{C}$ with $\langle\mathcal{B}\rangle=\mathcal{C}$ such that the hypergraph (X, \mathcal{B}) is 2 -uniform.

Proof. Consider the 2-generated c-space (X, \mathcal{C}). If $\mathcal{C}=\mathcal{D}$, take $\mathcal{B}=\varnothing$. Then $\langle\mathcal{B}\rangle=\mathcal{D}=\mathcal{C}$ and clearly the hypergraph $H=(X, \mathcal{B})$ is 2-uniform. Now suppose that $\mathcal{C} \neq \mathcal{D}$. Since (X, \mathcal{C}) is 2-generated, there exists $\mathcal{B} \subseteq$ $\{A \in \mathcal{C}:|A| \leq 2\}$ such that $\langle\mathcal{B}\rangle=\mathcal{C}$. Then there exists $\mathcal{B}^{\prime} \subseteq\{A \in \mathcal{C}:|A|=2\}$ such that $\left\langle\mathcal{B}^{\prime}\right\rangle=\mathcal{C}$ and clearly $\mathcal{B}^{\prime} \neq \varnothing$. But the hypergraph $\left(X, \mathcal{B}^{\prime}\right)$ is 2-uniform.

Remark 5.2. Since 2 -uniform hypergraphs are graphs, we can say that corresponding to every 2 -generated c-space, there exists a graph such that the c-structure induced by that graph coincides with the given c-structure.

Acknowledgment

The first author acknowledges the financial support from the University Grants Commission, Government of India.

References

[1] M. A. Bahmanian and M. Sajna, Connection and separation in hypergraphs, Theory Appl. Graphs 2 (2015), Art. 5, 24 pp.
[2] C. Berge, Graphs and Hypergraphs, American Elsevier Pub. Co., Revised Edition, 1973.
[3] R. Börger, Connectivity spaces and component categories, Categorical Topology, International Conference on Categorical Topology, 1983.
[4] M. Dewar, D. Pike and J. Proos, Connectivity in hypergraphs, Canad. Math. Bull. 61 (2018), 252-271.
[5] R. Dharmarajan and K. Kannan, A hypergraph-based algorithm for image restoration from salt and pepper noise, AEU-International Journal of Electronics and Communications 64 (2010), 1114-1122.
[6] S. Dugowson, On connectivity spaces, Cah. Topol. Geom. Differ. Categ. 51 (2010), 282-315.
[7] H. J. Heijmans, Connected morphological operators for binary images, Computer Vision and Image Understanding 73 (1999), 99-120.
[8] J. Muscat and D. Buhagiar, Connective spaces, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 39 (2006), 1-13.
[9] K. P. Ratheesh and N. M. Madhavan Namboothiri, On c-spaces and connective spaces, South Asian Journal of Mathematics 4 (2013), 1-13.
[10] C. Ronse, Set-theoretical algebraic approaches to connectivity in continuous or digital spaces, Journal of Mathematical Imaging and Vision 8 (1998), 41-58.
[11] P. K. Santhosh, Some problems on c-spaces, Thesis for Ph.D. Degree, University of Calicut, 2015.
[12] J. Serra, Connections for sets and functions, Fund. Inform. 41 (2000), 147-186.
[13] V. I. Voloshin, Introduction to Graph and hypergraph Theory, Nova Science Publishers, 2009.
A. K. Sruthi: sruthipremanak@gmail.com

