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Abstract

In this paper, we examine the c-structure generated by the edge set of a
hypergraph and prove that the elements of this c-structure induced by
the hypergraph are the vertex sets of the connected hypersubgraphs.
Further, we try to find some interrelations between a hypergraph and
the c-space induced by that hypergraph.

1. Introduction

The concept of connectedness has applications in the field of Digital
Topology and Image Processing. A set with a c-structure on it is called c-
space. In 1983, Borger [3] proposed an axiomatic approach to connectivity,
known as the theory of connectivity class or c-structures. A systematic study
of c-spaces was further carried out by Serra [12] and further extended
by Heijmans [7], Ronse [10], Muscat and Buhagiar [8], Dugowson [6],
Santhosh [11], etc. In this paper, we are trying to study the theory of c-
spaces comparable with the theory of hypergraphs, which is relevant because
hypergraphs too have applications in the field of image processing. Hope
Received: May 5, 2018; Accepted: August 13, 2018
2010 Mathematics Subject Classification: 54A05, 05C40, 05C65.

Keywords and phrases: c-space, o-generated c-space, c-isomorphism, a-uniform hypergraph,
connected hypersubgraph.




84 A. K. Sruthi and P. T. Ramachandran
that this will help us to develop the theory of c-spaces that has more
applicability in the field of image processing.

2. Preliminaries

A c-structure on a set X is a collection C of subsets of X such that the
following properties hold:

(i) D eC and {x} € C forevery x e X.

(i) If {Cj:iel} is a nonempty collection of members of C with
ﬂCi + O, then UCi e C.
iel iel

The set X together with a c-structure C, that is, (X, C) is caled a
c-space [8] and elements of C are called connected sets of (X, C). The
empty set and singleton sets of a c-structure are called trivial connected sets
and the elements which are neither empty nor singleton of a c-space are
called non-trivial connected sets.

For any set X, let D = {J} U {{x}: x e X}. Clearly, D isac-structure

on X.

Let X and Y be two c-spacesand f : X — Y be afunction. f is called

c-continuous [8] or catenuous [8], if it maps connected sets of X to
connected sets of Y. Also, a bijection f is said to be a c-isomorphism or

catenomorphismif both f and f ~1 are c-continuous.

Let X be aset and B < P(X). Then the intersection of al c-structures

on X containing B is a c-structure on X, called the c-structure generated by
B and isdenoted by (B). It isthe smallest c-structure on X containing 5.

The non-trivial connected sets of a c-structure generated by B are
characterized by the condition that any two points of such a connected set C
can be joined by afinite chain of elements of 5. That is, for all x, y € C,
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we can find elements Bj, i =0 tonin B suchthat B c C, B (1 Bj,1 # &

fori=0ton-1and x € By, y € B, for some positive integer n.

A hypergraph [13] H is an ordered pair (X, £), where X is a set and
& ={E; :i e |} isafamily of nonempty subsets of X. The elements of X are
called vertices and the elements of £ are called the edges or hyper edges.

Consider the hypergraph H = (X, £). Then a hypergraph H'= (X", £’)
is said to be a hypersubgraph [1] or strong subhypergraph [4] of H
whenever X' = X and &' c €.

Inahypergraph H =(X, &), achain [2] from the vertex x; to the vertex
Xq+1 IS an aternated vertex-edge sequence (g, Eq, Xo, Ep, ..., Eqs Xq41)
of distinct vertices and edges of H such that for i =1, 2, ..., 9, {%, X1}
c Ej, where gqiscalled the length of the chain.

Let H = (X, &) be a hypergraph. Then the vertices a, b e X are sad
to be connected in H if there exists a chain from a to b. The hypergraph H is
said to be connected if every pair of distinct verticesis connected in H.

Two hypergraphs H = (X, &) and H'=(X', &) are sad to be
isomorphic [2] if there exists a bijection ¢ : X — X' such that, for every
Ec X, Ee& ifandonlyif ¢(E) e &".

3. Hypergraph Induced c-spaces

The edge set £ of a hypergraph H = (X, &) is a collection of
nonempty subsets of X. Therefore, £ cannot be a c-structure on the set X.
But there always exists a smallest c-structure on X containing &.

Example 3.1. Consider the hypergraph H = (X, &), where X =
{1,2,3 4,5 and &€ ={{1, 2}, {2, 3, 4}, {4, 5}}. Herethe edge set £ contains
neither empty set nor singleton sets, therefore £ is not a c-structure on X.
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The c-structure on X generated by the edge set £ is given by C = (B) =
DU 2}, {2, 3 4},{4,5,{1, 2,3 4},{2,3, 4,5, {1, 2, 3 4,5}}.

Definition 3.1. Consider the hypergraph H = (X, £) and let C = (£)
be the c-structure generated by the edge set of H. Then C is called the
c-structure induced by the hypergraph H and the corresponding c-space
(X, C) iscaled the c-space induced by the hypergraph H.

Remark 3.1. Any c-space can be considered as an induced c-space
of some hypergraph. For any c-space (X, C), let £ = C - {J}. Then the
c-space induced by the hypergraph H = (X, £) is same as the c-space
(X, C). But ac-space may be considered as an induced c-space of more than
one hypergraph. Consider the following example:

Example 3.2. Consider the c-space (X, C), where X = {a, b, ¢, d} and
C=DU{{a b}, {b,c},{a,b,c}}. Let £&1={{a,b},{b,c}}, £>={{a b}, {b,c},
{a, b, c}} and £3=C-{J}. Then the hypergraphs H; = (X, &), Hy =
(X, &€,) and Hz = (X, £3) havethe property that (£1) = (£5) = (€3) = C.

Theorem 3.1. Let H = (X, &) be a hypergraph and let (X, C) be the

c-space induced by the hypergraph H. Then the members of C are the vertex
sets of the connected hyper subgraphs of H.

Proof. Let V be the collection of all vertex sets of the connected
hypersubgraphs of H. Suppose C is a trivial connected set of (X, C). Then
H' = (C, &) is a connected hypersubgraph of H and hence C e V.
Now suppose C is a non-trivial connected set of (X, C). Consider the
hypersubgraph H' = (C,{E; e £: E; < C}) of H. Let a,be C. Then
there exist Eyy, Exo, ..., Eyyy such that Ej < C for i =1 2, .., m and
B NExisy =@ for i=12 .., m-1 aeEqy and be Eg, Now let
% € B N Exir1)- Then (a, Eyq, X1, Exo, -y Ex(m-1)» Xm-1, Exkm, D) isa

chain from a to b. Therefore, a and b are connected in H'. Thisis true for
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every a, b e C. Therefore, H' is aconnected hypersubgraph of H and hence
C e Vy. ThisimpliesC c V.

To prove C =V, if possible suppose that there exists A e V such
that A¢ C. Since A€ Vy, there exists a connected hypersubgraph H' =
(A &) for some &' < £. Then for every x, y € A there exists a chain
from x to y, say, (%, By, X2, Ep, ..., Eqy Xg41), Where X = X, Xq41 =Y
andfor k=1,2,..,q9 and X, X1 € Ex. Clearly, EEc Afori=12,..,q.
Since .1 ENE, ENE=9 fori=12,..,q-1 That is, for
every X, y € A thereexist basiselements E;, Ey, ..., Eq such that x € E,
y e Eq, EEcAfori=12..,qand EENE1 =D fori=12 ..,q9-1

This contradicts the assumption that A ¢ C, therefore C = V. O

Remark 3.2. In simple graphs, the members of the c-structure induced
by the edge set are the vertex sets of connected subgraphs of the given graph.

Theorem 3.2. If H=(X,€&) and G = (Y, F) are two isomorphic
hypergraphs, then the c-spaces induced by the hypergraphs H and G are
c-isomorphic.

Proof. Let (X,Cg) and (Y,Cx) be the c-spaces induced by
the hypergraphs H and G, respectively, and let ¢ be the hypergraph
isomorphism.

Clearly, ¢ : X — Y isabijection. Toprove ¢ : (X, Cg) > (Y, Cx) is
c-continuous, let C € Cg. If Cisatrivia connected set of (X, Cg), then
clearly ¢(C) € C~. Now suppose C isanontrivial connected set of (X, Cg¢).
For y, y' € ¢(C), thereexist x, X' € C suchthat ¢(x) =y and ¢(x’) = y'".
But C e Cg and C¢ = (€) implies the existence of the elements E;, i =0
tonin £ suchthat Ef < C, EENE =Y fori=0ton-1and x € Eg,
X' e E, for some positive integer n. Take F = ¢(E;) for i = 0 to n, then
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FFeF fori=0ton, FFc¢(C), FNFK, =< fori=0ton-1and
ye Fy, Y €F, Thisimplies ¢(C) e C» and hence ¢ is c-continuous.
Similarly we can prove that ¢~ is c-continuous. Therefore, ¢ (X, C¢) >

(Y, Cr) isac-isomorphism. O

Note3.1. Let C beac-structureon X and B < C be such that (B) = C.
Then (X, B) isahypergraphif and only if B = & for each B € B.

Theorem 3.3. Let (X, C) and (Y, C") be two c-spacesand f : (X, C)
— (Y, C') be a c-isomorphismand let B=1{B; :iel}c C be such that
C = (B).

(i) Then C' = (f(B)).

(ii) If (X, B) is a hypergraph, then (Y, f(B)) is a hypergraph. Also,
the hypergraphs (X, B) and (Y, f(B)) areisomorphic.

Proof. (i) Consider f(B)={f(Bj):i e |}. Sincef is c-continuous and
B e BcC, weget f(B)e (', Viel. Thisimplies f(B) < C'. Consider
a nontrivial connected set C' e ¢’ and let ¢f, ¢y € C. Then C = f(C")
is a nontrivial connected set of C and f‘l(oi), f‘l(c’z) e C. Then there
exist B, i=0tonin B suchthat B cC, BB 1= fori=0to
n-1and fY(c])e By fYc,)e B, for some positive integer n. This
implies ¢ € f(By), ¢, e f(B,) and f(Bj)N f(Bj,1)# Y for i =0 to
n—1. Therefore, C' e (f(B)) and hence C' = (f(B)).

(i) Consider the c-isomorphism f : (X, C) — (Y, C'). Suppose that
(X, B) is a hypergraph. Then B; = & for each i e |. But this implies
f(Bj) = for every i e |. Therefore, (Y, f(B)) is a hypergraph. Now
consider the map ¢: X — Y defined by ¢(x) = f(x). Clearly, ¢ is an
isomorphism between the hypergraphs (X, B) and (Y, f(B)). O
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Remark 3.3. By the above theorem, if we have two c-isomorphic
c-spaces (X, C) and (Y, C'), consider the collection of nonempty connected
sets B < C suchthat C = (B). Such acollection always exists, for example
B =C —{J}. Then the c-spaces induced by the isomorphic hypergraphs
H=(X,B)and G=(Y, f(B)) ae (X, C) and (Y, &), respectively, where

f isthe given c-isomorphism.
4. |solated Edge and t-closed Set

Here we examine the interrelation between the isolated edges of a
hypergraph and the t-closed sets of the c-space induced by that hypergraph.

Definition 4.1[8]. Let (X, C) beac-spaceand A< X. A point x € X
is said to touch the set A if thereisanonempty C < A suchthat {x} UC is
connected. The set of all points touching the set A is denoted by t(A). If

A c X containsall of itstouching points, then it is said to be t-closed.

Definition 4.2 [5]. Consider the hypergraph H = (X, £) andlet E € £.

Then E issaid to be an isolated edge if for all E' € £ with E' # E, EN E'
# & impliesthat E' c E.

Theorem 4.1. Let H = (X, &£) be a hypergraph and let E € £ be an

isolated edge. Then E is t-closed in the c-space induced by the hypergraph
H.

Proof. Suppose (X, C) is the c-space induced by the hypergraph H.
To prove E is t-closed in the c-space (X, C), it is enough to show
that t(E) = E. It is clear that E < t(E). Let x be a touching point of E.
Then there exists a nonempty subset C < E suchthat A= {x}UC e C. If
xeC then xe E. If x¢ C, then take y € C which exists since C is
nonempty. Then there exists E;j, i=0 to nin £ such that E < C,

EENEu =Y fori=0ton-1and xe Ey, ye E, for some positive
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integer n. But xe Ey implies x e E. Thus we get x e E whenever

x € t(E) and hence E ist-closed. O

Remark 4.1. Let Ac X beat-closed set of a c-space (X, C) and let
B < C be such that (B) =C. Then A need not be an isolated edge of
the hypergraph H = (X, B), whenever H is a hypergraph. Consider the
following example:

Example 4.1. Consider the c-space (X, C), where X = {a, b, c, d} and
C =DU{{a b}, {c, d}, {b, c, d}, {a, b, c, d}}. Since t({a, b}) = {a, b}, we
have {a, b} ist-closed in the c-space (X, C). Let B = {{a, b}, {c, d}, {b, c, d}}.
Clearly, (X, B) is a hypergraph. But {a, b} is not an isolated edge of the
hypergraph H = (X, B), since {a, b} N {b, ¢, d} = & and {b,c,d} ¢ {a, b}.

5. a-generated c-space and a-uniform Hypergraphs

In this section, we analyze the relation of o-generated c-spaces and
o-uniform hypergraphs.

Definition 5.1 [9]. Let X be any set and o be any cardinal with
a <| X |. Then ac-structure C on X is said to be a-generated if there isa
subcollection B < {Ae C :| A| < a} suchthat C = (B).

Definition 5.2 [2]. Consider the hypergraph H =(X, &) and let |[E|=r
foral E e £. Thenthehypergraph H = (X, &) iscaled r-uniform.

Theorem 5.1. Let H = (X, &) be an a-uniform hypergraph. Then the
c-space induced by the hypergraph H is a-generated.

Proof. Let (X, C) be the c-space induced by the hypergraph H. To
prove (X, C) is a-generated, it is enough to show that there exists B <
{AeC:|A|<a} suchthat C=(B). Take B={AeC:|A|=0a}. Then
B = & and hence (B) = (£) = C. a
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Remark 5.1. Converse of the above result is not true. That is, if the

c-space induced by the hypergraph H = (X, B) is a-generated, then H need
not be a-uniform. Thisis shown by the following example:

Example 5.1. Consider the c-space (X, C), where X ={1, 2, 3, ..., 10}

and
C=DU{ 2}, {3 6, 7}, {4, 9}, {5, 6}, {8, 9,10}, {3, 5, 6, 7}, {4, 8, 9, 10}}.

Then B ={{1, 2}, {3, 6, 7}, {4, 9}, {5, 6}, {8, 9,10}} generates C. Here c-space
(X, C) is3-generated, but the hypergraph H = (X, B) isnot 3-uniform.

Note 5.1. Let (X, C) be ac-space such that C # D. Then the following

are equivalent:
(i) thereexists B < {Ae C:| A| < 2} suchthat (B)=C,
(i) thereexists B' < {Ae C :| A| = 2} suchthat (B') = C.

Note 5.2. Consider a 2-generated c-space (X, C) with C # D. Then
{AeC:|A|=2}= .

Theorem 5.2. Let (X, C) be a 2-generated c-space. Then there exists
B < C with (B) = C such that the hypergraph (X, B) is 2-uniform.

Proof. Consider the 2-generated c-space (X, C). If C=D, take B=<.
Then (B) = D = C and clearly the hypergraph H = (X, B) is 2-uniform.
Now suppose that C = D. Since (X, C) is 2-generated, there exists B <
{AeC:|A|<2} suchthat (B) = C. Thenthereexists B'c {AeC:| A|=2}
such that (B) =C and clearly B’ = &. But the hypergraph (X, B') is
2-uniform. O

Remark 5.2. Since 2-uniform hypergraphs are graphs, we can say that

corresponding to every 2-generated c-space, there exists a graph such that
the c-structure induced by that graph coincides with the given c-structure.
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