## Far East Journal of Mathematical Sciences (FJMS)



Volume 110, Number 1, 2019, Pages 83-92

# ISSN: 0972-0871

#### ON c-SPACES AND HYPERGRAPHS

# A. K. Sruthi and P. T. Ramachandran

Department of Mathematics University of Calicut Calicut University P.O., 673635 Kerala, India

#### **Abstract**

In this paper, we examine the c-structure generated by the edge set of a hypergraph and prove that the elements of this c-structure induced by the hypergraph are the vertex sets of the connected hypersubgraphs. Further, we try to find some interrelations between a hypergraph and the c-space induced by that hypergraph.

#### 1. Introduction

The concept of connectedness has applications in the field of Digital Topology and Image Processing. A set with a *c*-structure on it is called *c*-space. In 1983, Börger [3] proposed an axiomatic approach to connectivity, known as the theory of connectivity class or *c*-structures. A systematic study of *c*-spaces was further carried out by Serra [12] and further extended by Heijmans [7], Ronse [10], Muscat and Buhagiar [8], Dugowson [6], Santhosh [11], etc. In this paper, we are trying to study the theory of *c*-spaces comparable with the theory of hypergraphs, which is relevant because hypergraphs too have applications in the field of image processing. Hope

Received: May 5, 2018; Accepted: August 13, 2018

2010 Mathematics Subject Classification: 54A05, 05C40, 05C65.

Keywords and phrases: c-space,  $\alpha$ -generated c-space, c-isomorphism,  $\alpha$ -uniform hypergraph, connected hypersubgraph.

that this will help us to develop the theory of c-spaces that has more applicability in the field of image processing.

#### 2. Preliminaries

A c-structure on a set X is a collection  $\mathcal{C}$  of subsets of X such that the following properties hold:

- (i)  $\emptyset \in \mathcal{C}$  and  $\{x\} \in \mathcal{C}$  for every  $x \in X$ .
- (ii) If  $\{C_i: i \in I\}$  is a nonempty collection of members of  $\mathcal{C}$  with  $\bigcap_{i \in I} C_i \neq \emptyset, \text{ then } \bigcup_{i \in I} C_i \in \mathcal{C}.$

The set X together with a c-structure C, that is, (X, C) is called a c-space [8] and elements of C are called *connected sets* of (X, C). The empty set and singleton sets of a c-structure are called *trivial connected sets* and the elements which are neither empty nor singleton of a c-space are called *non-trivial connected sets*.

For any set X, let  $\mathcal{D} = \{\emptyset\} \cup \{\{x\} : x \in X\}$ . Clearly,  $\mathcal{D}$  is a c-structure on X.

Let X and Y be two c-spaces and  $f: X \to Y$  be a function. f is called c-continuous [8] or catenuous [8], if it maps connected sets of X to connected sets of Y. Also, a bijection f is said to be a c-isomorphism or catenomorphism if both f and  $f^{-1}$  are c-continuous.

Let X be a set and  $\mathcal{B} \subseteq \mathcal{P}(X)$ . Then the intersection of all c-structures on X containing  $\mathcal{B}$  is a c-structure on X, called the c-structure generated by  $\mathcal{B}$  and is denoted by  $\langle \mathcal{B} \rangle$ . It is the smallest c-structure on X containing  $\mathcal{B}$ .

The non-trivial connected sets of a c-structure generated by  $\mathcal{B}$  are characterized by the condition that any two points of such a connected set C can be joined by a finite chain of elements of  $\mathcal{B}$ . That is, for all  $x, y \in C$ ,

we can find elements  $B_i$ , i = 0 to n in  $\mathcal{B}$  such that  $B_i \subseteq C$ ,  $B_i \cap B_{i+1} \neq \emptyset$  for i = 0 to n - 1 and  $x \in B_0$ ,  $y \in B_n$  for some positive integer n.

A hypergraph [13] H is an ordered pair  $(X, \mathcal{E})$ , where X is a set and  $\mathcal{E} = \{E_i : i \in I\}$  is a family of nonempty subsets of X. The elements of X are called *vertices* and the elements of  $\mathcal{E}$  are called the *edges* or *hyper edges*.

Consider the hypergraph  $H = (X, \mathcal{E})$ . Then a hypergraph  $H' = (X', \mathcal{E}')$  is said to be a *hypersubgraph* [1] or *strong subhypergraph* [4] of H whenever  $X' \subseteq X$  and  $\mathcal{E}' \subseteq \mathcal{E}$ .

In a hypergraph  $H = (X, \mathcal{E})$ , a chain [2] from the vertex  $x_1$  to the vertex  $x_{q+1}$  is an alternated vertex-edge sequence  $(x_1, E_1, x_2, E_2, ..., E_q, x_{q+1})$  of distinct vertices and edges of H such that for i = 1, 2, ..., q,  $\{x_i, x_{i+1}\}$   $\subseteq E_i$ , where q is called the *length* of the chain.

Let  $H = (X, \mathcal{E})$  be a hypergraph. Then the vertices  $a, b \in X$  are said to be *connected* in H if there exists a chain from a to b. The hypergraph H is said to be *connected* if every pair of distinct vertices is connected in H.

Two hypergraphs  $H = (X, \mathcal{E})$  and  $H' = (X', \mathcal{E}')$  are said to be *isomorphic* [2] if there exists a bijection  $\phi: X \to X'$  such that, for every  $E \subseteq X$ ,  $E \in \mathcal{E}$  if and only if  $\phi(E) \in \mathcal{E}'$ .

## 3. Hypergraph Induced c-spaces

The edge set  $\mathcal{E}$  of a hypergraph  $H=(X,\mathcal{E})$  is a collection of nonempty subsets of X. Therefore,  $\mathcal{E}$  cannot be a c-structure on the set X. But there always exists a smallest c-structure on X containing  $\mathcal{E}$ .

**Example 3.1.** Consider the hypergraph  $H = (X, \mathcal{E})$ , where  $X = \{1, 2, 3, 4, 5\}$  and  $\mathcal{E} = \{\{1, 2\}, \{2, 3, 4\}, \{4, 5\}\}$ . Here the edge set  $\mathcal{E}$  contains neither empty set nor singleton sets, therefore  $\mathcal{E}$  is not a c-structure on X.

The *c*-structure on *X* generated by the edge set  $\mathcal{E}$  is given by  $\mathcal{C} = \langle \mathcal{B} \rangle = \mathcal{D} \cup \{\{1, 2\}, \{2, 3, 4\}, \{4, 5\}, \{1, 2, 3, 4\}, \{2, 3, 4, 5\}, \{1, 2, 3, 4, 5\}\}.$ 

**Definition 3.1.** Consider the hypergraph  $H = (X, \mathcal{E})$  and let  $\mathcal{C} = \langle \mathcal{E} \rangle$  be the *c*-structure generated by the edge set of H. Then  $\mathcal{C}$  is called the *c*-structure induced by the hypergraph H and the corresponding c-space  $(X, \mathcal{C})$  is called the c-space induced by the hypergraph H.

**Remark 3.1.** Any c-space can be considered as an induced c-space of some hypergraph. For any c-space  $(X, \mathcal{C})$ , let  $\mathcal{E} = \mathcal{C} - \{\emptyset\}$ . Then the c-space induced by the hypergraph  $H = (X, \mathcal{E})$  is same as the c-space  $(X, \mathcal{C})$ . But a c-space may be considered as an induced c-space of more than one hypergraph. Consider the following example:

**Example 3.2.** Consider the *c*-space  $(X, \mathcal{C})$ , where  $X = \{a, b, c, d\}$  and  $\mathcal{C} = \mathcal{D} \cup \{\{a, b\}, \{b, c\}, \{a, b, c\}\}$ . Let  $\mathcal{E}_1 = \{\{a, b\}, \{b, c\}\}, \mathcal{E}_2 = \{\{a, b\}, \{b, c\}\}, \{a, b, c\}\}$  and  $\mathcal{E}_3 = \mathcal{C} - \{\emptyset\}$ . Then the hypergraphs  $H_1 = (X, \mathcal{E}_1), H_2 = (X, \mathcal{E}_2)$  and  $H_3 = (X, \mathcal{E}_3)$  have the property that  $\langle \mathcal{E}_1 \rangle = \langle \mathcal{E}_2 \rangle = \langle \mathcal{E}_3 \rangle = \mathcal{C}$ .

**Theorem 3.1.** Let  $H = (X, \mathcal{E})$  be a hypergraph and let  $(X, \mathcal{C})$  be the c-space induced by the hypergraph H. Then the members of  $\mathcal{C}$  are the vertex sets of the connected hypersubgraphs of H.

**Proof.** Let  $\mathcal{V}_H$  be the collection of all vertex sets of the connected hypersubgraphs of H. Suppose C is a trivial connected set of  $(X, \mathcal{C})$ . Then  $H' = (C, \varnothing)$  is a connected hypersubgraph of H and hence  $C \in \mathcal{V}_H$ . Now suppose C is a non-trivial connected set of  $(X, \mathcal{C})$ . Consider the hypersubgraph  $H' = (C, \{E_i \in \mathcal{E} : E_i \subseteq C\})$  of H. Let  $a, b \in C$ . Then there exist  $E_{k1}, E_{k2}, ..., E_{km}$  such that  $E_{ki} \subseteq C$  for i = 1, 2, ..., m and  $E_{ki} \cap E_{k(i+1)} \neq \varnothing$  for i = 1, 2, ..., m-1,  $a \in E_{k1}$  and  $b \in E_{km}$ . Now let  $x_i \in E_{ki} \cap E_{k(i+1)}$ . Then  $(a, E_{k1}, x_1, E_{k2}, ..., E_{k(m-1)}, x_{m-1}, E_{km}, b)$  is a chain from a to b. Therefore, a and b are connected in H'. This is true for

every  $a, b \in C$ . Therefore, H' is a connected hypersubgraph of H and hence  $C \in \mathcal{V}_H$ . This implies  $C \subseteq \mathcal{V}_H$ .

To prove  $C = \mathcal{V}_H$ , if possible suppose that there exists  $A \in \mathcal{V}_H$  such that  $A \notin C$ . Since  $A \in \mathcal{V}_H$ , there exists a connected hypersubgraph  $H' = (A, \mathcal{E}')$  for some  $\mathcal{E}' \subseteq \mathcal{E}$ . Then for every  $x, y \in A$ , there exists a chain from x to y, say,  $(x_1, E_1, x_2, E_2, ..., E_q, x_{q+1})$ , where  $x_1 = x, x_{q+1} = y$  and for k = 1, 2, ..., q and  $x_k, x_{k+1} \in E_k$ . Clearly,  $E_i \subseteq A$  for i = 1, 2, ..., q. Since  $x_{i+1} \in E_i \cap E_{i+1}$ ,  $E_i \cap E_{i+1} \neq \emptyset$  for i = 1, 2, ..., q-1. That is, for every  $x, y \in A$ , there exist basis elements  $E_1, E_2, ..., E_q$  such that  $x \in E_1$ ,  $y \in E_q$ ,  $E_i \subseteq A$  for i = 1, 2, ..., q and  $E_i \cap E_{i+1} \neq \emptyset$  for i = 1, 2, ..., q-1. This contradicts the assumption that  $A \notin C$ , therefore  $C = \mathcal{V}_H$ .

**Remark 3.2.** In simple graphs, the members of the c-structure induced by the edge set are the vertex sets of connected subgraphs of the given graph.

**Theorem 3.2.** If  $H = (X, \mathcal{E})$  and  $G = (Y, \mathcal{F})$  are two isomorphic hypergraphs, then the c-spaces induced by the hypergraphs H and G are c-isomorphic.

**Proof.** Let  $(X, \mathcal{C}_{\mathcal{E}})$  and  $(Y, \mathcal{C}_{\mathcal{F}})$  be the *c*-spaces induced by the hypergraphs H and G, respectively, and let  $\phi$  be the hypergraph isomorphism.

Clearly,  $\phi: X \to Y$  is a bijection. To prove  $\phi: (X, \mathcal{C}_{\mathcal{E}}) \to (Y, \mathcal{C}_{\mathcal{F}})$  is c-continuous, let  $C \in \mathcal{C}_{\mathcal{E}}$ . If C is a trivial connected set of  $(X, \mathcal{C}_{\mathcal{E}})$ , then clearly  $\phi(C) \in \mathcal{C}_{\mathcal{F}}$ . Now suppose C is a nontrivial connected set of  $(X, \mathcal{C}_{\mathcal{E}})$ . For  $y, y' \in \phi(C)$ , there exist  $x, x' \in C$  such that  $\phi(x) = y$  and  $\phi(x') = y'$ . But  $C \in \mathcal{C}_{\mathcal{E}}$  and  $\mathcal{C}_{\mathcal{E}} = \langle \mathcal{E} \rangle$  implies the existence of the elements  $E_i$ , i = 0 to n in  $\mathcal{E}$  such that  $E_i \subseteq C$ ,  $E_i \cap E_{i+1} \neq \emptyset$  for i = 0 to n - 1 and  $x \in E_0$ ,  $x' \in E_n$  for some positive integer n. Take  $F_i = \phi(E_i)$  for i = 0 to n, then

 $F_i \in \mathcal{F}$  for i = 0 to n,  $F_i \subseteq \phi(C)$ ,  $F_i \cap F_{i+1} \neq \emptyset$  for i = 0 to n-1 and  $y \in F_0$ ,  $y' \in F_n$ . This implies  $\phi(C) \in \mathcal{C}_{\mathcal{F}}$  and hence  $\phi$  is c-continuous. Similarly we can prove that  $\phi^{-1}$  is c-continuous. Therefore,  $\phi: (X, \mathcal{C}_{\mathcal{E}}) \to (Y, \mathcal{C}_{\mathcal{F}})$  is a c-isomorphism.

**Note 3.1.** Let  $\mathcal{C}$  be a c-structure on X and  $\mathcal{B} \subseteq \mathcal{C}$  be such that  $\langle \mathcal{B} \rangle = \mathcal{C}$ . Then  $(X, \mathcal{B})$  is a hypergraph if and only if  $B \neq \emptyset$  for each  $B \in \mathcal{B}$ .

**Theorem 3.3.** Let  $(X, \mathcal{C})$  and  $(Y, \mathcal{C}')$  be two c-spaces and  $f: (X, \mathcal{C}) \to (Y, \mathcal{C}')$  be a c-isomorphism and let  $\mathcal{B} = \{B_i : i \in I\} \subseteq \mathcal{C}$  be such that  $\mathcal{C} = \langle \mathcal{B} \rangle$ .

- (i) Then  $C' = \langle f(\mathcal{B}) \rangle$ .
- (ii) If  $(X, \mathcal{B})$  is a hypergraph, then  $(Y, f(\mathcal{B}))$  is a hypergraph. Also, the hypergraphs  $(X, \mathcal{B})$  and  $(Y, f(\mathcal{B}))$  are isomorphic.
- **Proof.** (i) Consider  $f(\mathcal{B}) = \{f(B_i) : i \in I\}$ . Since f is c-continuous and  $B_i \in \mathcal{B} \subseteq \mathcal{C}$ , we get  $f(B_i) \in \mathcal{C}'$ ,  $\forall i \in I$ . This implies  $f(\mathcal{B}) \subseteq \mathcal{C}'$ . Consider a nontrivial connected set  $C' \in \mathcal{C}'$  and let  $c_1'$ ,  $c_2' \in C'$ . Then  $C = f^{-1}(C')$  is a nontrivial connected set of  $\mathcal{C}$  and  $f^{-1}(c_1')$ ,  $f^{-1}(c_2') \in C$ . Then there exist  $B_i$ , i = 0 to n in  $\mathcal{B}$  such that  $B_i \subseteq C$ ,  $B_i \cap B_{i+1} \neq \emptyset$  for i = 0 to n-1 and  $f^{-1}(c_1') \in B_0$ ,  $f^{-1}(c_2') \in B_n$  for some positive integer n. This implies  $c_1' \in f(B_0)$ ,  $c_2' \in f(B_n)$  and  $f(B_i) \cap f(B_{i+1}) \neq \emptyset$  for i = 0 to n-1. Therefore,  $C' \in \langle f(\mathcal{B}) \rangle$  and hence  $C' = \langle f(\mathcal{B}) \rangle$ .
- (ii) Consider the *c*-isomorphism  $f:(X,\mathcal{C})\to (Y,\mathcal{C}')$ . Suppose that  $(X,\mathcal{B})$  is a hypergraph. Then  $B_i\neq\varnothing$  for each  $i\in I$ . But this implies  $f(B_i)\neq\varnothing$  for every  $i\in I$ . Therefore,  $(Y,f(\mathcal{B}))$  is a hypergraph. Now consider the map  $\phi:X\to Y$  defined by  $\phi(x)=f(x)$ . Clearly,  $\phi$  is an isomorphism between the hypergraphs  $(X,\mathcal{B})$  and  $(Y,f(\mathcal{B}))$ .

**Remark 3.3.** By the above theorem, if we have two c-isomorphic c-spaces  $(X, \mathcal{C})$  and  $(Y, \mathcal{C}')$ , consider the collection of nonempty connected sets  $\mathcal{B} \subseteq \mathcal{C}$  such that  $\mathcal{C} = \langle \mathcal{B} \rangle$ . Such a collection always exists, for example  $\mathcal{B} = \mathcal{C} - \{\emptyset\}$ . Then the c-spaces induced by the isomorphic hypergraphs  $H = (X, \mathcal{B})$  and  $G = (Y, f(\mathcal{B}))$  are  $(X, \mathcal{C})$  and  $(Y, \mathcal{E})$ , respectively, where f is the given c-isomorphism.

# 4. Isolated Edge and t-closed Set

Here we examine the interrelation between the isolated edges of a hypergraph and the t-closed sets of the c-space induced by that hypergraph.

**Definition 4.1** [8]. Let  $(X, \mathcal{C})$  be a c-space and  $A \subseteq X$ . A point  $x \in X$  is said to *touch* the set A if there is a nonempty  $C \subseteq A$  such that  $\{x\} \cup C$  is connected. The set of all points touching the set A is denoted by t(A). If  $A \subseteq X$  contains all of its touching points, then it is said to be t-closed.

**Definition 4.2** [5]. Consider the hypergraph  $H = (X, \mathcal{E})$  and let  $E \in \mathcal{E}$ . Then E is said to be an *isolated edge* if for all  $E' \in \mathcal{E}$  with  $E' \neq E$ ,  $E \cap E' \neq \emptyset$  implies that  $E' \subseteq E$ .

**Theorem 4.1.** Let  $H = (X, \mathcal{E})$  be a hypergraph and let  $E \in \mathcal{E}$  be an isolated edge. Then E is t-closed in the c-space induced by the hypergraph H.

**Proof.** Suppose  $(X, \mathcal{C})$  is the *c*-space induced by the hypergraph H. To prove E is *t*-closed in the *c*-space  $(X, \mathcal{C})$ , it is enough to show that t(E) = E. It is clear that  $E \subseteq t(E)$ . Let x be a touching point of E. Then there exists a nonempty subset  $C \subseteq E$  such that  $A = \{x\} \cup C \in \mathcal{C}$ . If  $x \in C$  then  $x \in E$ . If  $x \notin C$ , then take  $y \in C$  which exists since C is nonempty. Then there exists  $E_i$ , i = 0 to n in  $\mathcal{E}$  such that  $E_i \subseteq C$ ,  $E_i \cap E_{i+1} \neq \emptyset$  for i = 0 to n - 1 and  $x \in E_0$ ,  $y \in E_n$  for some positive

integer n. But  $x \in E_0$  implies  $x \in E$ . Thus we get  $x \in E$  whenever  $x \in t(E)$  and hence E is t-closed.

**Remark 4.1.** Let  $A \subseteq X$  be a *t*-closed set of a *c*-space  $(X, \mathcal{C})$  and let  $\mathcal{B} \subseteq \mathcal{C}$  be such that  $\langle \mathcal{B} \rangle = \mathcal{C}$ . Then A need not be an isolated edge of the hypergraph  $H = (X, \mathcal{B})$ , whenever H is a hypergraph. Consider the following example:

**Example 4.1.** Consider the *c*-space  $(X, \mathcal{C})$ , where  $X = \{a, b, c, d\}$  and  $\mathcal{C} = \mathcal{D} \cup \{\{a, b\}, \{c, d\}, \{b, c, d\}, \{a, b, c, d\}\}$ . Since  $t(\{a, b\}) = \{a, b\}$ , we have  $\{a, b\}$  is *t*-closed in the *c*-space  $(X, \mathcal{C})$ . Let  $\mathcal{B} = \{\{a, b\}, \{c, d\}, \{b, c, d\}\}$ . Clearly,  $(X, \mathcal{B})$  is a hypergraph. But  $\{a, b\}$  is not an isolated edge of the hypergraph  $H = (X, \mathcal{B})$ , since  $\{a, b\} \cap \{b, c, d\} \neq \emptyset$  and  $\{b, c, d\} \nsubseteq \{a, b\}$ .

# 5. $\alpha$ -generated c-space and $\alpha$ -uniform Hypergraphs

In this section, we analyze the relation of  $\alpha$ -generated c-spaces and  $\alpha$ -uniform hypergraphs.

**Definition 5.1** [9]. Let X be any set and  $\alpha$  be any cardinal with  $\alpha \leq |X|$ . Then a c-structure C on X is said to be  $\alpha$ -generated if there is a subcollection  $\mathcal{B} \subseteq \{A \in \mathcal{C} : |A| \leq \alpha\}$  such that  $\mathcal{C} = \langle \mathcal{B} \rangle$ .

**Definition 5.2** [2]. Consider the hypergraph  $H = (X, \mathcal{E})$  and let |E| = r for all  $E \in \mathcal{E}$ . Then the hypergraph  $H = (X, \mathcal{E})$  is called *r-uniform*.

**Theorem 5.1.** Let  $H = (X, \mathcal{E})$  be an  $\alpha$ -uniform hypergraph. Then the c-space induced by the hypergraph H is  $\alpha$ -generated.

**Proof.** Let  $(X, \mathcal{C})$  be the c-space induced by the hypergraph H. To prove  $(X, \mathcal{C})$  is  $\alpha$ -generated, it is enough to show that there exists  $\mathcal{B} \subseteq \{A \in \mathcal{C} : |A| \leq \alpha\}$  such that  $\mathcal{C} = \langle \mathcal{B} \rangle$ . Take  $\mathcal{B} = \{A \in \mathcal{C} : |A| = \alpha\}$ . Then  $\mathcal{B} = \mathcal{E}$  and hence  $\langle \mathcal{B} \rangle = \langle \mathcal{E} \rangle = \mathcal{C}$ .

**Remark 5.1.** Converse of the above result is not true. That is, if the c-space induced by the hypergraph  $H = (X, \mathcal{B})$  is  $\alpha$ -generated, then H need not be  $\alpha$ -uniform. This is shown by the following example:

**Example 5.1.** Consider the c-space  $(X, \mathcal{C})$ , where  $X = \{1, 2, 3, ..., 10\}$  and

 $\mathcal{C} = \mathcal{D} \cup \{\{1, 2\}, \{3, 6, 7\}, \{4, 9\}, \{5, 6\}, \{8, 9, 10\}, \{3, 5, 6, 7\}, \{4, 8, 9, 10\}\}.$ 

Then  $\mathcal{B} = \{\{1, 2\}, \{3, 6, 7\}, \{4, 9\}, \{5, 6\}, \{8, 9, 10\}\}$  generates  $\mathcal{C}$ . Here c-space  $(X, \mathcal{C})$  is 3-generated, but the hypergraph  $H = (X, \mathcal{B})$  is not 3-uniform.

**Note 5.1.** Let  $(X, \mathcal{C})$  be a *c*-space such that  $\mathcal{C} \neq \mathcal{D}$ . Then the following are equivalent:

- (i) there exists  $\mathcal{B} \subseteq \{A \in \mathcal{C} : |A| \le 2\}$  such that  $\langle \mathcal{B} \rangle = \mathcal{C}$ ,
- (ii) there exists  $\mathcal{B}' \subseteq \{A \in \mathcal{C} : |A| = 2\}$  such that  $\langle \mathcal{B}' \rangle = \mathcal{C}$ .

**Note 5.2.** Consider a 2-generated c-space  $(X, \mathcal{C})$  with  $\mathcal{C} \neq \mathcal{D}$ . Then  $\{A \in \mathcal{C} : |A| = 2\} \neq \emptyset$ .

**Theorem 5.2.** Let  $(X, \mathcal{C})$  be a 2-generated c-space. Then there exists  $\mathcal{B} \subset \mathcal{C}$  with  $\langle \mathcal{B} \rangle = \mathcal{C}$  such that the hypergraph  $(X, \mathcal{B})$  is 2-uniform.

**Proof.** Consider the 2-generated c-space  $(X, \mathcal{C})$ . If  $\mathcal{C} = \mathcal{D}$ , take  $\mathcal{B} = \emptyset$ . Then  $\langle \mathcal{B} \rangle = \mathcal{D} = \mathcal{C}$  and clearly the hypergraph  $H = (X, \mathcal{B})$  is 2-uniform. Now suppose that  $\mathcal{C} \neq \mathcal{D}$ . Since  $(X, \mathcal{C})$  is 2-generated, there exists  $\mathcal{B} \subseteq \{A \in \mathcal{C} : |A| \le 2\}$  such that  $\langle \mathcal{B} \rangle = \mathcal{C}$ . Then there exists  $\mathcal{B}' \subseteq \{A \in \mathcal{C} : |A| = 2\}$  such that  $\langle \mathcal{B}' \rangle = \mathcal{C}$  and clearly  $\mathcal{B}' \neq \emptyset$ . But the hypergraph  $(X, \mathcal{B}')$  is 2-uniform.

**Remark 5.2.** Since 2-uniform hypergraphs are graphs, we can say that corresponding to every 2-generated c-space, there exists a graph such that the c-structure induced by that graph coincides with the given c-structure.

## Acknowledgment

The first author acknowledges the financial support from the University Grants Commission, Government of India.

#### References

- [1] M. A. Bahmanian and M. Sajna, Connection and separation in hypergraphs, Theory Appl. Graphs 2 (2015), Art. 5, 24 pp.
- [2] C. Berge, Graphs and Hypergraphs, American Elsevier Pub. Co., Revised Edition, 1973.
- [3] R. Börger, Connectivity spaces and component categories, Categorical Topology, International Conference on Categorical Topology, 1983.
- [4] M. Dewar, D. Pike and J. Proos, Connectivity in hypergraphs, Canad. Math. Bull. 61 (2018), 252-271.
- [5] R. Dharmarajan and K. Kannan, A hypergraph-based algorithm for image restoration from salt and pepper noise, AEU-International Journal of Electronics and Communications 64 (2010), 1114-1122.
- [6] S. Dugowson, On connectivity spaces, Cah. Topol. Geom. Differ. Categ. 51 (2010), 282-315.
- [7] H. J. Heijmans, Connected morphological operators for binary images, Computer Vision and Image Understanding 73 (1999), 99-120.
- [8] J. Muscat and D. Buhagiar, Connective spaces, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 39 (2006), 1-13.
- [9] K. P. Ratheesh and N. M. Madhavan Namboothiri, On *c*-spaces and connective spaces, South Asian Journal of Mathematics 4 (2013), 1-13.
- [10] C. Ronse, Set-theoretical algebraic approaches to connectivity in continuous or digital spaces, Journal of Mathematical Imaging and Vision 8 (1998), 41-58.
- [11] P. K. Santhosh, Some problems on *c*-spaces, Thesis for Ph.D. Degree, University of Calicut, 2015.
- [12] J. Serra, Connections for sets and functions, Fund. Inform. 41 (2000), 147-186.
- [13] V. I. Voloshin, Introduction to Graph and hypergraph Theory, Nova Science Publishers, 2009.

# A. K. Sruthi: sruthipremanak@gmail.com