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Abstract

A predator-prey model of the Lotka-Volterra type is considered in

annular habitat with the domain which demonstrates 2 -periodicity

properties for all species at fixed time. The model is described by

two nonlinear partial differential equations of parabolic type. Initial

conditions are formulated so that predator and prey do not interact

with each other at initial time interval. Dynamics of migration and

further interaction between the species is investigated by solution of

the formulated mixed problem by the numerical method of lines.

The inverse problem of the parameter identification of the problem

is also solved by the method of lines. In this case, it is assumed that

the information about the predator and prey is incomplete, i.e., the

populations are assumed to be known in small domain of the habitat.

It is shown that the formulated solution method guarantees accurate

identification of all unknown parameters of the model and hence, the
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complete reconstruction of the predator-prey interaction on the habitat.

The obtained parameters can be used for prediction of further

dynamics of the species interaction and values of their steady-states.

1. Introduction

The term “annular habitat” appeared in the seventies of 20th century

in Russian School of Mathematical Ecology governed by Markman and

Bazykin [1]. Their fundamental book [2], which was first published in

Russian, was further translated in English and contained a chapter devoted to

the annular habitats where spatially homogeneous oscillations of populations

and stable dissipative structures were investigated. The annular habitats

demonstrate a 2 -periodicity of species distributions at fixed time and

also well known as the periodic habitats. The last name is the most popular

between mathematicians, which demonstrates interest to this type of

problems [3-6]. In this paper, we use the original term “annular habitat”.

There are numerous examples of species living in habitats, which can be

theoretically treated as the annular habitats. For example, bacteria population

surrounding circular edges of puddles, plants and animals living at constant

height levels of mountains, species co-existing on banks surrounding big

lakes, etc. Mathematical models of population dynamics have to take into

consideration different aspects of species competition and co-existence in

the annular habitats, such as growing and saturation of prey, predator-prey

interaction, formalized in different types of trophic functions, prey and

predator migrations in the habitat, etc.

2. Problem Statement

The paper is devoted to numerical analysis of the diffusive predator-prey

system of the Lotka-Volterra type in the annular habitat. The following

assumptions are as follows:

 in the absence of predator, the prey population is growing in

accordance with the logistic law, which is formalized in the model by

combination of linear and quadratic terms,
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 in the absence of prey, the predator population demonstrates decay

proportional to combination of linear and quadratic terms, i.e., it takes into

consideration internal competition of prey for the food,

 the trophic function has type one in accordance with the classification

proposed in [1] and [2], as it was accepted in the classical Lotka-Volterra

model, and

 the species migration in the annular habitat is described by the

dissipative terms proportional to second partial derivatives of predator

and prey populations with respect to polar angle, characterizing the spatial

distribution in the habitat.

3. Governing Equations, Periodic and Initial Conditions

Following the assumptions in Section 2, the governing system of

equations is as follows:
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where   ,txx is population of prey depending on time t and polar angle,

,  characterizing the spatial coordinate of the annular habitat,   ,tyy

is population of predator, coefficients for ija for  3,2,1, ji  and

yx DD ,  and are assumed to be positive constants. This is the system of two

nonlinear partial differential equations of parabolic type. The system is

considered in the finite time interval  ,,0 Tt  for ,0T and  .2,0 

Due to 2 -periodicity of the annular habitat, the corresponding periodicity

conditions of the prey and predator populations are:
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Initial conditions are:

    Xtx ,0 and    .,0  Yty (3)

The system of equations (1), periodicity conditions (2) and initial

conditions (3) form a mixed problem, which will be solved numerically

using the method of lines (Section 4).

4. Method of Lines: Solution of the Annular Habitat

Predator(prey) Problem (1)-(3)

In the method of lines [7], the following three-points finite difference

scheme for approximation of the second derivatives [8]:
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where
M
 2

- interval between two neighbor lines,  txx mm  and

 tyy mm  are functions of time only. That is why the method of lines

can be interpreted as the method of conversion of the original system of two

partial differential equations (1) of order four into the truncated system of

2M ordinary differential equations. This system is as follows:
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2221 mymmmmmm yDyxayayaMzy   (5)

where Mmmmm zyzxMm  ,,...,,2,1 and
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due to 2 -periodicity (2).

Initial conditions (3) for system (5)-(6) are formulated so that the

initial distribution of prey at  0t is given in points ,...,,2,1 Mm   and

initial distribution of predators is given in points ,1 MMm

.2...,,2 MM   Solution of the formulated initial value problem is

performed by one of the standard numerical ODEs.

5. Solution of Direct Initial Value Problems

For the solution of the direct problem, it is assumed that coefficients

yx DDaaa ,,...,,, 231211 are known. Let us assume that these coefficients

are: ,75.011 a ,100.5 4
12

a ,1025.6 3
13

a ,0.121 a 22a

,105.7 3 ,1025.6 13
3

23 aa   3100.4 xD and .100.8 3yD

Duration of time interval is assumed to be 40T and  .,0 Tt  Let us

select number of intervals in the annular habitat to be .360M It means

that lines of solution will be separated by angular increment 1
2 
M

(one arc degree). Number of temporal intervals in  40,0 T  is selected as

.400N Hence, 7202 M nonlinear ordinary differential equations will

be solved and solution of the problem in 3102884007202  NM

points will be obtained.
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Initial distribution of the prey population at time  0t is assumed to

be:

    .
4
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Initial distribution of the predator population at initial time is:
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The initial distribution of the prey and predator is shown in Figure 1. So,

at the initial time instant, the species are practically isolated from each other.

Figure 1. Initial distribution of the prey and predator in annular habitat

 .2,0 

Reformulation of the initial value conditions for the method of lines is

shown in Figure 2, where 7202...,,2,1  Mkk and for Mm ...,,2,1

:360

    .Predator,Prey Mmzmz MmMmmm   (9)

It follows from Figure 2 that what follows the distribution of prey will

be displayed as a surface of contour plots for lines with number

360...,,2,1m and population of predator will be displayed as the

corresponding plots for lines with numbers ,1 MMm ...,,2M

.720...,,362,3612 M
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Figure 2. Initial distribution of prey and predator in annular habitat for the

method of lines.

Figure 3. Surface plot of prey-predator interactions.

Figure 4. Contour plot of prey-predator interactions.
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Solution of the initial value problem (5)-(9) is performed by the Adams-

Backward Differential Formula (AdamsBDF) built-in algorithm in the

MathCad15 software. Laptop with 8GB RAM INTEL CORE I7, 2.8GHz

processor needs less than 250 seconds for solution of this problem. The

solution is shown in Figure 3 as a surface plot and in Figure 4 as a contour

plot.

Graphs of both prey and predator at polar angle ,
2
  which

correspond to lines 90 and 450, are shown in Figure 5, where prey   t






 

2
,tx and predator   .

2
, 





  tyt

Figure 5. Graphs of prey (solid line) and predator (dashed line) at .
2


It follows from Figures 3, 4 and 5 that at small initial time interval

of living in the habitat, the prey and predator do not interact and hence,

the population of prey is increasing in accordance with the logistic law

and demonstrates tendency to saturation while the predator population

is decreasing substantially in the absence of food. Simultaneously both

the populations start migrating in the habitat and meet each other,

thus, stipulating intensive interaction between themselves. There are two

different mechanisms of this interaction: on one hand, the intensive
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nonlinear oscillatory behavior of interaction between two populations

is occurred when maximum of prey stipulates maximum growth of the

predator and vice versa. At maximum of the predator, the prey population

demonstrates maximum rate of its drop. On the other hand, the species

interaction gives rise to two pairs of quasi-travelling waves of approximately

constant amplitudes, which propagate in opposite directions with equal

speed. The first pair of the quasi-travelling waves belongs to the prey

population, which propagates in the habitat with maximum possible speed.

The second pair of the quasi-travelling waves, which has slight delay with

respect to the first pair of waves, belongs to the predator. In principle, the

predator can migrate in the habitat faster than the prey because the diffusion

coefficient of the predator is larger than the diffusion coefficient of

prey  ,yx DD   but as we see from Figures 3 and 4, both the populations

migrate in the habitat with the same rate. By means of this propagation,

the amplitudes of both the populations of predator and prey are maintained

at constant levels. Eventually, the two pairs of travelling waves collide,

forming characteristic spikes, and this means that the whole annular habitat

becomes populated. Starting from that moment, the two domains of decaying

oscillatory behavior exist in the habitat. In the first zone, the decaying

oscillations exist in the domain surrounding the area, where the maximum of

prey population occurred. In the first domain, the decaying oscillations exist

in the area surrounding the place where the colliding of two pairs of quasi-

travelling waves has occurred. Amplitude of oscillations in the first domain

is larger than in the second one. Eventually, the decaying oscillations tend

to steady state values and distribution of the predator and prey populations

equalizes over the whole annular habitat. The steady state values,

corresponding conditions 0
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6. Solution of Inverse Problem of Parameter Identification with

Incomplete Information

Let us assume that the values of parameters yx DDaaa ,,...,,, 231211

for the problem, considered in Section 3, are unknown, but information

about prey and predator populations is available on three neighbor lines, say

nnnnnn xzxzxz ,91,91,90,90,89,89 ,,  and ,,89,449 nn yz  nz ,450

,,90 ny nn yz ,91,451  for .399...,,3,21...,,3,2  Nn Hence, the

information about the species interaction in the habitat is incomplete because

we do not know what is going on 71462 M lines. Moreover, it will

also mean that the knowledge of, say, initial (or terminal, or intermediate)

conditions on the habitat gives us the possibility to make predictions on

predator-prey populations for every finite time interval. It is necessary to

mention that the line selection is not arbitrary in general case and it must be

done so that the lines are located in the domain where interactions between

species are the most intensive. To solve the problem, let us formulate the

following overdetermined system of equations from (5), which is linear with

respect to the unknown parameters of the system :,,...,,, 231211 yx DDaaa
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The overdetermined system (11) is solved by the least squares method

[7]. To realize this, we compose four matrices:
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and obtain the result as following estimations of the unknown parameters:

     ,21
1

11131211 MMMMDaaa TTT
x  

     .43
1
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y   (14)
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Application of this method to the data, generated in the previous section,

gives the following parameters estimation (in the brackets, we reproduce

original values of the corresponding parameters):

Table 1. Comparison of exact and estimated values of parameters

Parameter Exact Estimated Relative error %

11a 0.750000 0.752000 0.23

12a 0.000500 0.000501 0.24

13a 0.006250 0.006264 0.23

xD 0.004000 0.003942 1.45

21a 1.000000 1.002000 0.23

22a 0.000745 0.000749 0.07

23a 0.006250 0.006260 0.15

yD 0.008000 0.008180 2.25

As we see accuracy of determination of  ,3,2,1, jiaij  parameters

are higher than accuracy of estimation of yx DD , parameters. This can be

explained by more accurate numerical calculation of the first derivatives

than the second ones.

7. Conclusions

The mixed problem including the system of two nonlinear partial

differential equations of parabolic type, 2 -periodicity conditions and initial

conditions was formulated on the annular habitat. In the direct approach, it is

assumed that the values of all parameters are known and the problem was

solved by the method of lines. The solution is given in terms of the surface

and contour plots of the interacting prey and predator populations versus

time and polar angle of the habitat. It was shown that the species migrations

in the habitat are described by the quasi-travelling waves with constant

rates of propagation. After populating the habitat, the predator-prey

interaction is characterized by the decaying oscillatory behavior, which

eventually tends to the theoretically predicted steady-state values. The

method of inverse problem solution by the method of lines was proposed.
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It was shown that complete identification of the unknown constants can

be achieved at incomplete information about species in the domain, where

their interaction is the most effective. The relative errors of the estimated

unknown parameters have been calculated.
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