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Abstract

Relative survival analysis is a method which provides an estimate of the

effect on survival corrected for the effect of other independent causes of

death, using the natural mortality in the underlying general population

as the reference. This method is frequently used when the specific

causes of deaths are uncertain or unavailable as in some population or

hospital-based registries. We proposed a Markov Chain Monte Carlo

(MCMC) approach to perform relative survival analysis using a

proportional hazards regression model. We used gamma and normal

prior distributions, respectively, for the baseline mortality hazard

function and the regression parameters and we established the

likelihood function. Conditional posterior distributions cannot be

reduced analytically to well-known distributions and we used a

Metropolis within Gibbs sampling to obtain samples from the

conditional posterior distributions. The accuracy of the estimates

obtained by this MCMC approach were evaluated in simulations
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studies. Data from a population-based of pharyngeal cancer were used to

illustrate our approach.

1. Introduction

Survival analysis is often conduced using the popular Cox [8]
proportional hazards (PH) model, which constrains the hazard ratio,
describing the effect of a prognostic factor on disease-specific survival, to
be constant over time. However, when the specific causes of death are
uncertain or unavailable, as in some population or hospital-based
registries, Cox model does not differentiate whether covariates such as
age and sex, are strictly related to the disease specific mortality, the
natural mortality in the source population, or to both (Monnet et al. [29]).
This is an important point in cancer survival since age and sex are used
to modify therapeutic approaches. Indeed, comparisons between
population or hospital-based prognostic studies are difficult to interpret
because of the differences in the natural mortality of the populations
(Esteve et al. [10]; Monnet et al. [29]).

These problems can be solved using the so-called relative survival
analysis which provides an estimate of the patients’ survival corrected for
the effect of other independent causes of death, using the natural
mortality in the general population (Berkson and Gage [1]). Previous
study suggested the importance of this method to fully account for the
relationships between prognostic factors and mortality, and to separate
the impact of prognostic factors on cancer-related deaths from their
effects on other causes of death (Monnet et al. [29]). Several relative
survival regression models have been proposed (Buckley [5]; Hakulinen
and Tenkanen [17]; Esteve et al. [10]; Sasieni [31]) for which both the
baseline mortality hazard function and the regression parameters of the
prognostic factors need to be estimated.

Several Bayesian approaches to analysing the classical Cox model
have been developed (see for example Kalbfleisch [24]; Hjort [19]; Clayton
[7]; Laud et al. [26]; Chen et al. [6]; Ibrahim et al. [23]), and the accuracy
of the results and the potential advantages of using Bayesian methods for
analysing survival data have been presented. A potential advantage of
jointly modelling baseline hazard function and regression parameters of
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the prognostic factors comes from the use of Markov Chain Monte Carlo
(MCMC) simulation techniques to compute posterior quantities of
interest with accuracy.

To our knowledge, the use of MCMC simulation techniques have not

yet been applied in the framework of relative survival regression

analysis. We proposed a Metropolis within Gibbs sampling scheme for PH

relative survival regression model. The model and the algorithm used to

sample from the posterior distributions are described in Section 2. In

Section 3, we present results of simulations performed under different

assumptions about the censoring process and we illustrate our approach

using a real data set from a population-based study of pharyngeal cancer.

Section 5 contains a brief discussion.

2. The Method

2.1. The proportional hazards relative survival model

In a regressive relative survival model, the observed-mortality

hazard, oλ  at time t after diagnosis of an individual aged x at diagnosis

with a vector of covariates z is expressed as

( ) ( ) ( ) ( ),exp,,, 1 zz βtzxtxt beo λ++λ=λ (1)

where eλ  represents the expected hazard function in a general

population and depends only on ,1z  a subvector of z. The expected hazard

function is obtained from relevant mortality statistics using external

sources (Esteve et al. [10]) and therefore is usually assumed to be known

(in our study, eλ  is quantified based on published age-and-sex specific

mortality rates, hence, x is age at diagnosis and 1z  is sex). Terms on the

right side of equation (1) represent the disease-related mortality hazard

function, where ( ),tbλ  usually modelled parametrically, is the disease-

related mortality hazard function, i.e., the mortality hazard at time t for

patients with ,0=z  and where β  is a vector of regression parameters. In

this model, according to the PH assumption, the covariate effect on the

disease-related hazard ratio is assumed to be constant over time.
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Thus for a Bayesian purpose we have to establish the likelihood
function and to specify prior distributions for both the regression
parameters and the baseline mortality hazard function (the expected
hazard function is known and obtained from relevant mortality
statistics).

2.2. Prior distributions

Several prior distributions have been used for the baseline mortality
hazard function in the Cox [8] PH model (Kalbfleisch [24]; Clayton [7];
Hjort [19]; Damien et al. [9]; Laud et al. [26]; Chen et al. [6]; Ibrahim et
al. [23]). Among these prior distributions, gamma prior distribution has
shown its efficiency and its ability to model the baseline mortality hazard
(Ibrahim and Chen [20]; Ibrahim et al. [22]; Chen et al. [6]). To
implement gamma prior distribution for the baseline mortality hazard

function ( )( )tbλ  in the regressive relative survival PH model, we have to

divide the time axis into M intervals such as ,0 10 Msss <<<≤  with

nM ts >  for all the n individuals of the data set ( )....,,1 ni =  In our

study, the partitioning of the time axis is based on the quantiles of the
distribution of the observed failure times in order to ensure an

approximate equal number of failures in each of the intervals ] ].,1 kk ss −

Denoted ( ) ( )1−λ−λ=δ kbkbk ss  the increment in the baseline mortality

hazard in the interval ] ],,1 kk ss −  ....,,1 Mk =  Assuming that the

baseline mortality hazard is random and it remains constant within each

of the intervals, the kδ ’s are random variables, independent a priori, and

have gamma distributions with shape and scale parameters defined,

respectively, by 1−− kk ss  and .kρ  Therefore, the joint prior density of

( )Mδδ= ...,,1∆  is the product of M independent gamma distributions

with form parameters 1−− kk ss  and scale parameter .kρ

Elicitation of pre-data knowledge about the regression coefficient
results in an appropriate choice of an informative or noninformative prior
distribution. Normal (informative) prior has proved to be a flexible and
useful class of priors for many regression problems even if, in information
theories of ,R  normal prior is the less informative prior (Bernardo and

Smith [2]). Furthermore, this choice allows the use of information coming
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from previous studies measuring the same covariates as in the current
study. Therefore, we choose a multivariate normal prior for .β

Assuming an a priori independence between the baseline mortality

hazard function and the regression parameters, the joint prior density of

( )∆β,  is ( ) ( ),21 ∆πβπ  where ( )⋅π  is the prior distribution.

2.3. The likelihood function

The cumulative distribution function determined by equation (1) at

time s is

( ) ( ) ( ) ( )( )








λ+λ−−= ∫ dtttsF
s

be
0

expexp1 zβ

( ) ( ) ( ) ( ) ( ) ,expexp1
0 1

100



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






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









−δ+λ−−λ−−≅ ∫ ∑

=

+
−

+s M

k
kkbe sssssdtt zβ (2)

where ( ) ( ),, 1zxtt ee +λ=λ  ( ) tt =+  if ,0>t  0 otherwise. Assuming that

( ) 00 =λ sb  and ( ) 1=sF  for Mss >  allows simplifications in (2). The

probability of a failure in the interval ] ] ,...,,1,,1 Mkss kk =−  is thus

( ) ( )1−−= kkk sFsFp  and since

( ) ( ) ( )∑ ∑ ∑
= =

−

=
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In the kth interval, the contribution to the likelihood function is kp

for a failure and ( ) ( )kk sFsS −= 1  for a right censored observation. For

notational convenience, observations are ordered so that in each of the
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kth intervals the first kd  observations are failures and the remaining kc

are censored. Thus, the likelihood function over all M intervals is

( ) ( )∏∏ ∏ ∏
= = =

+

= +

=|
M

k

d

i

M

k

cd

di

k
i

i
k

k kk

k

sSpDataL
1 1 1 1

, ∆β

and, after some algebra, we obtain
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where ( )tie,λ  is the expected hazard for the ith individual, and where
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2.4. The Metropolis within Gibbs sampling

In the Bayesian framework, posterior inference can be implemented

using Markov Chain Monte Carlo methods. Samples from ( )Data|π ∆β,

can be obtained using Gibbs sampling (Geman and Geman [12]; Gelfand

and Smith [11]), which require to sample iteratively from (a)

( )Data,β|π ∆  and then from (b) ( ),, Data∆β |π  i.e., new sample of ∆ is

used to sample from (b) and the new sample of β  obtained in this way is

used to sample from (a), and so on.

The conditional posterior distribution of ( )Mδδ= ...,,1∆  is given by

( ) ( ) ( )∆π|∆β∝β|∆π 2,, DataLData (4)
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and this of β  is given by

( ) ( ) ( ).,, 1 βπ|∆β∝∆|βπ DataLData (5)

However, in our case, both conditional posterior distributions of ∆
(equation (4)) and β  (equation (5)) cannot be reduced analytically to well-

known distributions and therefore it is not possible to sample directly by

standard methods. As suggested by Tierney [32], a common way to solve

this problem is to used a Metropolis sampling (Metropolis et al. [28])

within the Gibbs sampling scheme in order to obtain samples from the

conditional posterior distributions: to sample from (4) we generated a

proposal value from a multivariate normal distribution ( ( ) ),, ∆∆κ∆ VcN

and to sample from (5) we generated a proposal value from a multivariate

normal distribution ( ( ) ),, ββκβ VcN  where ( )c∆  and ( )cβ  are, respectively,

the current values of ∆ and ,β  ∆V  and βV  are variances-covariances

matrix, and where ∆κ  and βκ  are scaling factors (the detail of the

algorithm is given in Appendix). For the Metropolis algorithm to work

effectively, ,βκ  ,∆κ  βV  and ∆V  need to be chosen carefully: the scaling

factors must be chosen so that the acceptance ratio (the proportion of the

proposed values from the posterior distribution accepted by the

algorithm) was around 0.3 and the variances-covariances matrix may be

elicited using a priori information about the variances-covariances matrix

(Roberts [30]).

3. Results

3.1. Simulation studies

We conduced simulation studies to assess our sampling method.

Survival data was generated from an exponential distribution assuming

that the observed-mortality hazard function is the sum of the expected

hazard function in a general population and of the disease-related

mortality hazard function. The general population all-causes mortality

was assumed to depend only on age and gender and the disease-related

mortality hazard function was assumed to depend on two binary
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prognostic factors ( 1z  and ,2z  which are independent of age and ),sex

having effects ( )5.1ln1 =β  and ( )2ln2 =β  on the disease-related part of

the hazard function.

Two scenarios were considered when determining the “true”

distribution of the binary covariates. Firstly, we assumed

( ) 0,corr 21 =zz  and 1z  and 2z  were generated as Bernoulli variables

with parameter 21  each. In the second scenario, we assumed

( ) 7.0,corr 21 =zz  and the two covariates were generated from the binary

distributions with [ ] [ ] 5.010 11 ==== zPzP   and [ ] 7.011 12 ==|= zzP

for 1z  and ,2z  respectively.

Censoring times were always generated from the exponential

distribution, with hazard selected so as to obtain approximately 15% or

50% overall censoring level. Then, individual’s observed time was

determined as ( ),,min iii CST =  where iS  and iC  denoted the

individual’s survival and censoring time, respectively. For each case, we

generated 1000 random samples of size 100.

For all generated samples, analysed independently of each other, we

used starting values and prior parameters close to the true values of

regression parameters. These choices are pragmatic insofar as analysis

based on real data set frequently used maximum likelihood estimates for

priors (Mallick et al. [27]; Kozumi [25]). The prior for the kδ  was

( ),1,1−− kk ssG  with ] ]kk ss ,1−  chosen to contain approximately the

same number of failures.

Since some variability may occur in simulated data, the length of the

chain was chosen so that stabilisation was achieved. Thanks to

preliminary tests (data not shown), we ran the sampler for an initial

burn-in period (2000 iterations), after which some stabilisation was

appeared, and estimations was based on the last of the sample (45000

iterations), where the stabilisation was achieved.
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Table 1. Results of simulation studies obtained with MCMC and Esteve
et al. [10] Maximum Likelihood Method (MLM) according to the right

random censorship and to the correlation of ( )21, zz

15% of censor 50% of censor

True values MCMC
Method

MLM Bayesian
Method

MLM

( ) 0,corr 21 =zz ( )5.1ln1 =β aBias -0.031 -0.003 -0.116 -0.051
bSD 0.173 0.251 0.141 0.370

cASD 0.183 0.246 0.204 0.351
dECR 95.7% 94.5% 97.2% 94.7%

( )2ln2 =β aBias 0.035 -0.020 -0.096 -0.111
bSD 0.179 0.273 0.140 0.367

cASD 0.182 0.252 0.203 0.356
dECR 95.4% 93.1% 97.5% 92.5%

( ) 7.0,corr 21 =zz ( )5.1ln1 =β aBias -0.043 -0.018 -0.161 -0.081
bSD 0.125 0.455 0.128 0.606

cASD 0.164 0.426 0.183 0.798
dECR 98.9% 93.7% 93.7% 96.7%

( )2ln2 =β aBias -0.007 0.000 -0.134 -0.166
bSD 0.126 0.450 0.130 0.637

cASD 0.166 0.424 0.185 0.817
dECR 99.5% 94.7% 97.2% 92.2%

a
The bias corresponds to ,ˆ ββ −  where β̂  represents the mean of the estimates of the true

value .β

b
SD denotes the sample standard deviation of the estimates.

c
ASD denotes the average of the standard error estimates.

d
ECR denotes the proportion of samples in which the 95% credible interval, or the 95%

confidence interval includes the true value .β

Table 1 shows that the bias for Bayesian estimates is minor with 15%
of right censored data and, generally, Bayesian estimates and maximum
likelihood estimates (MLE) obtained with the Esteve et al. [10] PH model
are not very different. As expected, more the censorship increases and
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more the bias is greater. Furthermore, the accuracy is better with the
MCMC method (the sample standard deviation (SD) of the estimates
ranging from 0.125 to 0.179), while, considering the previous case, SD
obtained from the MLE method ranging from 0.251 to 0.637. The average
of the standard error estimates obtained with our MCMC method is
smaller than those obtained from the Esteve et al. method. Finally, the
proportion of samples in which the 95% credible interval includes the
true value of the parameter is greater than 95% in almost all the cases
with the MCMC method (the smaller value is 93.7%). The proportion of
samples in which the 95% confidence interval includes the true value of
the parameter is between 92.2% and 96.7% with the frequentist Esteve et
al. method.

3.2. Analyses of pharyngeal cancer data

Here, we illustrate our approach using a subset of previously
analysed population-based survival data (Giorgi et al. [16]) for 306
incident cases of pharyngeal male cancer, diagnosed between 1985 and
1987 and identified by the Bas-Rhin cancer registry (France). The
analysis focus on the three prognostic factors of the Tumour Nodes

Metastasis (TNM) classification (size of the tumour: T l -T2 vs T3-T4;

nodal invasion: absent vs present: metastasis extension: absent vs

present; see Table 2).

Table 2. Description of the pharyngeal male cancer prognostic factors
analysed

Prognostic Factors Number  (Percent)∗ Deaths at 5 years (%)†

T T1-T2 152 (49.7%) 97 (43.7%)

T3-T4 154 (50.3%) 125 (56.3%)

N Absent 122 (39.9%) 74 (33.3%)

Present 184 (60.1%) 148 (66.7%)

M Absent 293 (95.7%) 209 (94.1%)

Present 13 (4.3%) 13 (5.9%)

Overall 306 (100%) 222 (72.5%)

∗Percent of all 306 patients.
†
Percent of patients, in a given category, who died within first 5 years after diagnosis.
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Bayesian estimates of the regression parameter for the TNM
prognostic factors were obtained using the MCMC algorithm described in
Section 2. The MCMC simulation was run for an initial burn-in period of
2000 iterations and estimations were based on the last 45000 iterations.
Convergence of the chain was achieved using visual inspection of its trace
plus the Heidelberger and Welch [18] convergence diagnostic, a robust
convergence diagnostic test limiting calculus using just a single chain
and provided with some others tests in the free software CODA (Best et
al. [3]).

Table 3. Estimates of adjusted∗ regression parameters, with standard

deviation, obtained for relative survival, with our MCMC method and the
Esteve et al. [10] Maximum Likelihood Method (MLM), and for crude
survival, with the Cox PH model [8], in a population-based study of 306
French pharyngeal male cancer

Relative survival Crude survival

MCMC Method Esteve et al. MLM Cox model

Prognostic

factors

Estimate SD Estimate SD Estimate SD

T3-T4† 0.515 0.158 0.474 0.146 0.404 0.140

N present† 0.695 0.165 0.663 0.156 0.558 0.147

M present† 1.269 0.198 1.168 0.295 0.937 0.302

∗All estimates are adjusted for age.
†
Referent categories are: T1-T2, N absent and M absent, respectively.

Table 3 shows the values of the regression coefficients, with standard
deviation, obtained from the relative survival analyses. The prognostic
effects of these three factors on relative survival are important and
significant (all the three 95% credible intervals, and the three confidence
intervals, do not include 0). Bayesian estimates and Esteve et al.
maximum likelihood estimates are in the same way, but, as in simulation
studies, these latter are slightly lower (discrepancy ranging from 0.03 to
0.15). Thus, we can assume that estimates obtained from the maximum
likelihood method are under-estimates. Because there is few cases with
metastasis (Table 2), the estimate of the effect of metastasis prognostic
factor is less accurate than estimates of the other prognostic factors.
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Table 3 compares also estimates adjusted for age obtained with the
relative survival methods (the MCMC method and the Esteve et al. [10]
maximum likelihood method) to those obtained with the crude survival
method using the Cox [8] model. It shows that relative survival approach
changes the estimated effects of TNM prognostic factors compared with
Cox PH estimates. Similar results, in other clinical applications, have
been found before (Monnet et al. [29]; Bolard et al. [4]; Giorgi et al. [15])
suggesting that relative survival approach is important to fully account
for the relationships between prognostic factors and mortality, and to
separate their impact on cancer-related deaths from their effects on other
causes of death.

4. Discussion

In this article, we propose a Markov Chain Monte Carlo approach to
perform relative survival analysis using a proportional hazards
regression model. A Metropolis within Gibbs sampling scheme allows us
to obtain estimates of the regression parameters whereas our posterior
distributions cannot be reduced to well-known distributions. Simulations
indicate that our estimates are reasonably unbiased, even when the
covariates are correlated between them and when the censoring level
increases. Furthermore, compared to the maximum likelihood method,
our MCMC method reduces the variability of the estimates. Our
application to pharyngeal cancer data shows the differences between
results of crude survival approach and results of the relative survival,
which allows to separate the effect of prognostic factors on cancer-related
deaths from their effects on other causes of death.

As explained previously, we could not sample directly from the
posterior distributions implying the use of MCMC techniques. In order to
improve our algorithm, we tried to reduce posterior distributions to well-
known distributions using latent variables, as in Chen et al. [6] for the
Cox model, but without success. Another way to have algorithm less
computationally expensive is to use adaptive rejection sampling (Gilks
[13]) which requires the posterior distribution to be log-concave.
Nevertheless, in our relative survival model the posterior distribution
given in (5) is not log-concave and consequently we could not use such
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algorithms. If necessary, a possible improvement of the algorithm used
for this work will consist, for example, on the use of the adaptive
rejection Metropolis sampling (ARMS) of Gilks et al. [14] which have the
advantage to deal with non-log-concavity.

As for all Bayesian methods, results can depend on the choice of the
prior parameters. There are several ways for prior elicitation: one can use
literature knowledge, MLE of the current data set (Mallick et al. [27];
Kozumi [25]), or estimates obtained from a previous study similar to the
current study (Ibrahim et al. [23]). Weak informative prior distribution
was used in our simulation studies and results suggested that our
method performs well. It is not the purpose of this paper to perform a
robustness analysis of the prior distribution of the regression parameters
what could be done, for example, using a mixing of unimodal symmetric
distributions. The use of a gamma prior distribution for the baseline

mortality hazard function implies to divided the time axis into M

intervals and several schemes for the choice of the subintervals

] ] ,...,,1,,1 Mkss kk =−  could be considered in the way to have, for

example: (i) approximately the same number of failures and/or censored,
(ii) equal lengths with at least one failure observation in each intervals or
(iii) a decreasing number of failures. To access the impact of the choice of
the subintervals, we conduced another analysis on the pharyngeal data

with ] ]kk ss ,1−  having approximately equal lengths, with at least one

failure observation in each intervals (results not shown). As in Ibrahim
and Chen [21], which used an extended Gamma process prior for the
baseline mortality hazard function in the Cox PH model and which
considered different partitioning schemes for the time axis, our estimates
seem not to be too sensitive to the choice of the subintervals. This is
convenient since it allows the users some flexibility in the choice of the
subintervals.

The R/S-PLUS code for implementing our Bayesian method is freely
available on our Web site at http://cybertim.timone.univ-mrs.fr/LERTIM
/Recherche/RSBayes.txt.
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Appendix

The Metropolis within Gibbs sampling algorithm is as follows:

0. Set .0=c

1. Initialise ( )c∆  and ( ).cβ

2. Generate ∗∆  from ( ( ) )., ∆∆κ∆ VcN

Generate u from uniform (0, 1) and

if ( ( ) )
( ( ) ( ) )

,
,

,,1min 








|π
|π≤

∗

Data

Data
u

cc

c

β∆
β∆  then

set ( ) .1 ∗+ = ∆∆ c

Otherwise

set ( ) ( ).1 cc ∆∆ =+

3. Generate ∗β  from ( ( ) )., ββVκβ cN

    Generate u from uniform (0, 1) and

if ( ( ) )
( ( ) ( ) )

,
,

,,1min
1

1










|π

|π≤
+

+∗

Data

Data
u

cc

c

∆β
∆β  then

set ( ) .1 ∗+ = ββ c

Otherwise

set ( ) ( ).1 cc ββ =+

4. Set .1+= cc

Repeat Step 2 to Step 4 a sufficiently long time, until the process
becomes stationary .
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