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Abstract

In this paper, we show that Tenenbein’s double sampling estimate of
prevalence is usually biased if the validation is drawn from an external
population. An explicit large sample bias formula was derived for
Tenenbein’s estimates when the double samples are from two arbitrary
populations. Based on the large sample bias result, we identified three
possible sources of the bias which also lead to matching conditions for
the detection and reduction of the bias. Two sources of biases can be
reduced by propensity score matching and the remaining bias is a
continuous function of the difference between the two sampling
populations. Simulation results are presented to demonstrate that the
existence of bias when any one of the three matching conditions was
violated. A case study on estimating prevalence of endometrial
abnormality among postmenopausal women is presented. Our conclusion
is that external validation can lead to bias in the classical two-phase
sampling estimates. Therefore, population difference should be carefully
examined before applying traditional two-phase sampling estimates with
external validation.

1. Introduction

1.1. Background of two-phase sampling

Two-phase sampling or double sampling is a cost-effective sampling
design largely used in medical screening and epidemiological studies,
Aebischer [1], Chen [5], Cochran [8], Deming [10], Duncan-Jones and
Henderson [12], Lie et al. [18], Lamba and Singh [17], Pepe [22], Pickel
and Dunn [23] and Kuha and Skinner [16]. Double sampling assumes
that both a screening test and a gold standard are available. At phase I, a
screening sample is drawn from the target population and the screening
test is applied on this sample. At phase II, either simple random sampling
or stratified random sampling is used to draw a random subsample of the
screening sample and the gold-standard test is applied on this validation
sample. Two-phase sampling is cost-effective because the gold standard is
applied only on the validation sample which is usually smaller than the
screening sample. On the other hand, accuracy and precision of the
estimates are not sacrificed because the information on both the gold-
standard and the screening test from the validation sample can be used
to adjust the estimates to achieve better properties. Tenenbein [35, 36]
showed maximum likelihood estimates the prevalence of the disease in
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the target population, the sensitivity and specificity of the screening test
can be obtained from double sampling data.

1.2. External validation

A key requirement of double sampling is that the validation sample

must be representative of the screening sample. This is guaranteed in

two-phase sampling because of the fact that the phase II validation

sample must be a random subsample of the phase I screening sample.

This type of validation is called internal validation. However, in practice,

the validation may be done externally in another population. Kuha and

Skinner [16] cited the Panel Study of Income Dynamics. In that study,

the survey was validated by comparing to the company record of a

separate sample in another site.

Begg and Greenes [3] discussed the system transfer problem, i.e.,

whether the estimates obtained at one clinic can be transferred to

another. In general, external validation will raise the question that if the

two populations from which the screening and validation samples are

drawn are systematically different, will double sampling estimation such

as the Tenenbein’s estimates be still valid?

This population difference is the structural difference of the

underlying data-generating mechanism of the two samples. To be more

precise, denote the disease status and the screening outcome as D and S,

respectively; ∆ is a binary indicator variable with 1=∆  and 0=∆
represents that the subject is in the validation sample and screening

sample, respectively. Denote the concomitant variables as X. If we view

the two-phase samples are from two populations, denote the joint

distribution of ( )XSD ,,  in two populations as ( )1,, =∆|XSDP  and

( ),0,, =∆|XSDP  respectively. An obvious form of population

homogeneity assumption is ( ) ( )0,,1,, =∆|==∆| XSDPXSDP  which we

term  as Total Homogeneity Assumption (THA). Other two assumptions on

population homogeneity are: ( ) ( )0,1, =∆|==∆| SDPSDP  which we term

as Homogeneity Assumption (HA) or ( ) ( )0,,1,, =∆|==∆| XSDPXSDP

which we term as Conditional Homogeneity Assumption (CHA). A less

restrictive homogeneity assumption is the well-known Conditional



w
w

w
.p

ph
m

j.c
om

MING JI et al.180

Independence Assumption (CIA): ( ) ( ).0,,1,, =∆|==∆| SXDPSXDP

All these assumptions may fail in external validation. The motivation of

this paper is to investigate the performance of the classic double

sampling estimates (particularly, their bias) when there exists population

heterogeneity.

There is a vast literature on statistical methodology on two-phase
sampling which is closely related to studies of misclassification, sampling
survey and surrogate markers, Chen [5], Kuha and Skinner [16] and
Pepe [22]. For example, Tenenbein [35, 36] showed that for a binary
screening test, joint maximum likelihood estimates for prevalence,
sensitivity and specificity can be obtained from double sampling.
Cochran’s book [8] contains detailed description on two-phase sampling.
Dorfman [11], Rao and Sitter [25], and Sitter [34] provided different
types of variance estimators. Begg and Greenes [3] developed unbiased
estimates in the context of verification bias. Chu and Cheng [6] on
nonparametric regression modeling of misclassified binary data using a
similar approach. Clayton et al. [7] studied longitudinal two-phase
sampling at two time points and compared different estimation methods
by inverse probability weighting, mean score imputation and MCMC.
However, these statistical methods on two-phase sampling assume some
type of homogeneity of the phase I and phase II populations. For
example, Tenenbein’s [35] maximum likelihood estimates are based on
the assumption that all the subjects in the two samples have constant
prevalence, sensitivity and specificity, which is equivalent to the HA.
Begg and Greenes [3] unbiased estimates assume CIA. The CIA is also
important for Pepe’s [22] imputation method.

1.3. Organization of the paper

The paper is organized as follows. In Section 2, we give a brief
introduction of three types of estimates for prevalence under two-phase
sampling, namely, the Tenenbein’s (TN) estimate, the Begg-Greenes (BG)
estimate and the Inverse Probability Weighted (IWP) estimate of
prevalence. In Section 3, we analyze the large sample bias for the TN
estimate of prevalence for an arbitrary pair of screening and validation
samples. Three matching conditions, which are different from HCA or
CIA, are summarized. Three potential sources of bias are identified and
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their implications are discussed. In Section 4, we present a simulation
study comparing different estimates in the presence of population
heterogeneity. A case study on estimating prevalence of endometrial
abnormalities among postmenopausal women treated with Raloxifene is
also presented in Section 5. Discussion and further research are
presented in Section 6.

2. Classical Double Sampling Estimates

In this section, we describe Tenenbein’s maximum likelihood
estimates using double sampling.

2.1. Tenenbein’s MLE estimates

Tenenbein [35] proposed a maximum likelihood estimation of
prevalence, sensitivity and specificity from binomial data from double

sampling. First, a random sample of size N is sampled from the

population and is screened for a disease. Then, a subsample of size

( )Nn ≤  of these N patients, i.e., the validation sample, is selected and

tested for the disease using the gold-standard diagnostic test. Thus, the

remaining nN −  patients, the screening sample, were evaluated for

their disease status using the screening test only. Table 1 presents the

validation sample counts where ijn  is the number of patients whose

screening test result iS =  and diagnostic test result ,jD =  where i and

j equal 0 for a negative result and 1 for a positive result. Table 2 presents

the screening sample counts where m and mnN −−  are the numbers of

patients who were tested positive and negative, respectively.

Tenenbein [35] showed that the MLE of prevalence ( ),p  sensitivity

( )η  and specificity ( )θ  could be obtained under the double-sampling

scheme. Define ( )θη,,p  and ( )21,, λλπ  as follows:

( ),1Pr == Dp     ( ),11Pr =|==η DS

( ),00Pr =|==θ DS     ( ),1Pr ==π S

( )11Pr1 =|==λ SD   and  ( ).00Pr2 =|==λ SD



w
w

w
.p

ph
m

j.c
om

MING JI et al.182

Tenenbein showed that the MLEs for ( )θη,,p  are as follows:
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The asymptotic variance for TNp̂  by using the delta method is

( ) ( ) ,1ˆvar K
N
pqK

n
pqpTN +−=

where

( )
( ) .1,
1

1 pqpqK −=
π−π
−θ+η=

Note that Tenenbein’s estimates implicitly assumed that the
prevalence, sensitivity and specificity are constant in both the screening
and validation samples for all subjects. When there are no disease cases,

i.e., ,01011 == nn  the MLE of sensitivity, specificity and variance of the

prevalence as shown above do not exist. To solve this problem, we
introduce the following jackknife estimate of standard error for variance
estimation:

( ) ( ( ) ( ) )∑ ⋅− −
−

=
i

i
TN pp

N
Npse ,ˆˆ

1
ˆ 2

where

( ) ( )∑ −⋅ =
i

ip
N

p .ˆ1ˆ

The definition of the ( )sˆ ip −  can be found in Appendix I.

3. Large Sample Bias of Tenenbein’s Estimate of Prevalence

3.1. Population-averaged prevalence

In this section, we outline a framework to study external validation
bias in double sampling. Rather than assuming constant prevalence,
sensitivity and specificity, we assume the prevalence of the disease and
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the error rates of the screening test are functions of their concomitant
variables. This conditional approach is more realistic because the
probability of disease occurrence for an individual varies with each
individual’s characteristics. So are the probabilities of an individual
being tested positive or negative on the screening test. Another reason to
use this covariate-adjusted approach is that it includes the constant
prevalence, sensitivity and specificity approach as a special case.

We define the following parameters of interest:

( ) ( ) ( ) ( ),,,11Pr,,1Pr ixXDSxixXDxp ii =∆==|==η=∆=|==

( ) ( ) ( ) ( ),,1Pr,,,00Pr ixXSxixXDSx ii =∆=|==π=∆==|==θ

( ) ( ) ( ) ( ).,,00Pr,,,11Pr 21 ixXSDxixXSDx ii =∆==|==λ=∆==|==λ

Here 1=i  for the validation sample and 0=i  for the screening sample,

respectively.

Since we view the prevalence, sensitivity and specificity as functions
of patient characteristics, we call ( ),⋅p  ( ),⋅η  and ( )⋅θ  prevalence

function, sensitivity function, and specificity function, respectively.
Similarly, we call ( ),⋅π  ( ),1 ⋅λ  and ( )⋅λ2  test-prevalence function,

predictive value positive function, and predictive value of negative
function, respectively.

Since the values of these functions vary from individual to individual,
we need to define prevalence, sensitivity and specificity in a
population-averaged sense. Denote the distribution functions of X in the
validation and screening samples as ( )xF1  and ( ),0 xF  respectively.

We define ( ) ( )∫= ,xdFxpp iii  ( ) ( )∫ η=η ,xdFx iii  ( ) ( )∫ θ=θ xdFx iii  and

( ) ( )∫ π=π .xdFx iii  Our goal is to estimate ,0p  the population-averaged

prevalence in the target population where the screening sample is taken
from.

From the above definitions, we can see that the prevalence is the
average of the covariate-adjusted prevalence over the sampling
distribution of the covariates. We can see that if ( )xpi  is a constant, i.e.,

everyone has the same probability of being diseased, then ip  will equal
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that constant. In this sense, the covariate-adjusted definition contains
the previous constant prevalence, sensitivity and specificity assumption
as a special case. If there are several subsamples each having a constant
prevalence, then the average prevalence is the weighted sum of the
subsample prevalence, with the weights equal to the proportion of the
size of each subsample among the total samples.

Population heterogeneity can occur if any of the previously defined
homogeneity assumptions are violated during external validation, for
example, either

( ) ( )0,,1,, =∆|≠=∆| XSDPXSDP

or

( ) ( ).0,,1,, =∆|≠=∆| SXDPSXDP

Another population heterogeneity is ( ) ( )xFxF 01 ≠  which is called

referral bias in screening test literature.

3.2. Large sample bias in the presence of an external validation

sample

Using the concept of population averaged parameters (prevalence,
sensitivity and specificity), we now investigate how the underlying
difference in the screening sample and the validation sample can lead to
bias in the Tenenbein’s estimate of prevalence.

Let us define ( ) ( ),,Pr xXjSiDxij =|===τ  1,0, =ji  as the cell

probabilities for the validation sample and ( ) ( )∫ τ=τ xdFxijij 1  as their

population-averaged counterparts. In particular, 11τ  is the population-

averaged joint probability of screening positive and disease positive while

10τ  is the population-averaged joint probability of screening negative and

disease positive in the population where the validation sample is drawn.

Proposition 3.2. Under the condition that the sampling fraction

,lim γ=∞→ N
n

N  the large sample bias of Tenenbein’s estimate of

prevalence in the screening sample in the presence of an external

validation sample can be expressed as:
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The proof is in Appendix II.

Similarly, the large sample biases for the Tenenbein’s estimate of
sensitivity and specificity are:
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3.3. Interpretations on the large sample bias result

3.3.1. Existence of bias due to population differences

From the large sample bias result, we can see that, in general,
external validation may cause bias in the Tenenbein’s double sampling
estimates.

In this paper, we focus on the bias of Tenenbein’s estimates due to
population differences. Actually this bias also exists for other types of
two-phase sampling estimates since they also rely on population
homogeneity assumptions. For example, the Horovitz-Thompson type

estimator of prevalence using inverse probability weighting, =IWPp

( )∑
∈ ==|=∆

1

,
,1PrVi ii

i
sSxX

D
 can be shown to converge to +γ 1p

( ) ,1 0pγ−  where γ, 1p  and 0p  are parameters as previously defined. A

sufficient condition for this estimator to be consistent is: ( ) ( )xFxF 01 =

and ( ) ( )xpxp 01 =  which are population homogeneity conditions. Note

that the denominators in this estimator are true probabilities. To
calculate the real data estimate of prevalence, we need to replace these
true probabilities by their estimates. Begg-Greenes’ estimator of
prevalence,
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( ) ( ) ( )∫ ∫ =∆|=∆|==∆|=
X S

BG dXdSSXPSXDPDPp ,0,0,,0

assumes CIA which is another population homogeneity condition. The
large sample biases of these two estimators in the presence of population
heterogeneity are more difficult to study analytically compared to the TN
estimator. We studied their performance in the presence of external
validation through simulation in Section 4.

3.3.2. Elimination of the large sample bias – The matching

conditions

The large sample bias of the TN estimator of prevalence can be

eliminated if 01 pp =  and .01 π=π  More precisely,

( ) ( ) ( ) ( )∫ ∫−=− xdFxpxdFxppp 001101

( ) ( ) ( ) ( )∫ ∫ π−π=π−π .001101 xdFxxdFx

Hence, the large sample bias would be zero under the following matching
conditions:

( ) ( )xpxp 01 = (I)

( ) ( )xx 01 π=π (II)

( ) ( ).01 xFxF = (III)

We would point out that the matching conditions (I)-(III) are different
from classical homogeneity conditions such as CHA or CIA. This is easy

to see because we can show that the CIA is equivalent to ( ) ( )xx 0111 λ=λ

and ( ) ( ),0212 xx λ=λ  and the CHA is equivalent to either { ( ) ( ),01 xpxp =

( ) ( ),01 xx η=η  and ( ) ( )}xx 01 θ=θ  or { ( ) ( ) ( ) ( ),, 011101 xxxx λ=λπ=π  and

( ) ( )}.0212 xx λ=λ  Another interesting fact is that the matching conditions

(I)-(III) require the marginal conditional probabilities of disease status
and screening outcome given covariates to be same but do not have any
restrictions on the conditional odds ratios. In other words, under these
three matching conditions, we can get unbiased estimate of prevalence
using Tenenbein’s double sampling estimator regardless of how the
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screening outcome is correlated with the disease status in the two
populations. We will demonstrate this phenomenon using simulation in
Section 5.

To obtain unbiased estimate of prevalence, it is sufficient to have CIA
as shown in Begg (1983) and Chu and Cheng [6]. This is true even with

referral bias, i.e., ( ) ( ).01 xFxF ≠  Our result is different because the

matching conditions (I)-(III) require ( ) ( )xFxF 01 =  but do not require

CIA. Since CIA is equivalent to MAR (missing at random) in the
terminology of missing data literature, our matching conditions actually
assures asymptotically unbiased estimate of prevalence under certain
type of non-ignorable missing data.

3.3.3. Three sources of bias

There are three potential sources of external validation bias in the
Tenenbein’s estimate of prevalence.

Condition (I) is ( ) ( )0,1Pr1,1Pr =∆=|===∆=|= xXDxXD

which means the homogeneity of binomial proportions of D conditional on

covariates. In other words, the association of disease occurrence and
patient characteristics must be the same in the two populations. This can
be violated, for instance, if one study group is receiving a different
treatment and the treatment affects the disease prevalence. Condition

(II) is ( ) ( )0,1Pr1,1Pr =∆=|===∆=|= xXSxXS  which means

the homogeneity of binomial proportions of S conditional on covariates.

In other words, the association of screening positive and patient
characteristics must be the same in the two populations can be
interpreted as the likelihood of a screening positive result should be the
same in. This can be violated, for example, if the equipment or the person
involved in the screening procedure in one population systematically
gives higher positive ratings. Condition (III) simply means that there
should be no systematic difference in the patient characteristics in two
samples. In other words, the two samples should be comparable. This can
very likely be violated in external validation since the validation sample
is from another population.

As a guideline for controlling the external validation bias, we should
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carefully examine these sources of bias: whether the recruitment criteria
are the same, whether the two samples receive the same treatment and
whether the screening procedure was done in the same way in the two
populations.

Furthermore, under (I)-(III), the double sampling estimates of
sensitivity and specificity will converge to the true sensitivity and
specificity in the validation sample. To ensure all three estimates for
prevalence, sensitivity and specificity to converge to their true values in
the target population, we need stronger assumptions, for example, CHA.

3.3.4. Partial bias reduction by matching

At least part of the bias can be controlled even if the two samples are
truly different. Note (II) and (III) are equivalent to

( ) ( ).0,1, =∆|==∆| SXPSXP (IV)

The large sample bias of Tenenbein’s estimate of prevalence consists
of two parts. It is easy to see that if (IV) holds, then the first part will

become zero and the second part can be bounded by ,01 ∞− pp  where

( ) .sup xpp
x

=∞  In other words, when (IV) holds, the TN estimate of

prevalence is robust because small difference in 1p  and 0p  leads to

small bias.

Even when the two populations are truly different such that (IV) does
not hold, the external validation bias can be controlled to certain degree

by matching the two distributions ( )1, =∆|SXP  and ( ).0, =∆|SXP

For example, the propensity score method can be applied to match these
two multivariate distributions. For a general description of propensity
score, see Rosenbaum and Rubin [28, 29] and D’Agostino [9]. To be more

specific, if we denote ( ) ( =∆= PSXe ,  )SX ,1 |  as the propensity score to

being in the validation sample, then from the balancing property of the
propensity score, it is easy to see that

( )( ) ( )( ).0,,,1,,, =∆|==∆| SXeSXPSXeSXP (V)

From (V), we can see that (IV) can be achieved within subgroups of
the screening and validation samples that are matched on their
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propensity scores. For example, if we stratify the two samples based on

the quintiles of estimated propensity scores for ( ),, SX  then (IV) will be

approximately true within each strata. Therefore, the weighted average
of the prevalence estimates in five strata should be less biased.

Another advantage of propensity score matching is that it also can be
used to detect the existence of population heterogeneity. Rubin [32]
pointed out that lack of overlapping of the propensity scores indicates a
significant difference of the underlying multivariate distributions. So, if

the two distributions ( )1, =∆|SXP  and ( )0, =∆|SXP  are very

different, then the estimated propensity scores for ( )SX ,  in the two

samples can be expected to show significant non-overlapping.

4. Simulation

In this section, we present results from a simulation study. The
purpose of the simulation is to study the performance of three two-phase

sampling estimates of prevalence, namely, ,ˆTNp  ,ˆBGp  and IWPp̂  in the

presence of population heterogeneity. Since under the CIA, the
prevalence function can be estimated without bias, we choose to simulate
using probability models that do not satisfy CIA. We also want to study
the performance of the estimates under the ideal matching conditions (I)-

(III). Since under these conditions, we have ( ) ( ) ( )xpxpxp == 01  and

( ) ( ) ( ).10 xxx π=π=π  The only way to obtain heterogeneous populations

that violates the CIA is to allow different odds ratios, ( ) ( ).01 xorxor ≠

The population model for generating the screening and validation
samples is a two-level hierarchical model with a bivariate binary

distribution ( ),,, iXSDP =∆|  where X follows a distribution with cdf

( ).xFi  The sampling procedure is (a) specify the functions ( ( ) ( ),, 11 xxp π

( ) ( ))xFxor 11 ,  and ( ) ( ) ( ) ( )( );,,, 0000 xFxorxxp π  (b) generate a random

sample ( ) ( );~...,, 0,01,0 xFXX m  (c) generate correlated bivariate binary

random variates ( ),, ,0,0 ii SD  mi ...,,1=  with specified individualized

probabilities: ( ( ) ( ) ( ));,, ,00,00,00 iii XorXXp π  (d) generate a random
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sample ( ) ( );~...,, 1,,1 xFXX ini  (e) generate bivariate binary random

variates ( ),, ,1,1 ii SD  ni ...,,1=  with specified ( ( ) ( ),, ,11,11 ii XXp π

( )).,11 iXor  {( )} miii XS ...,,1,0,0 , =  and {( )} niiii XSD ...,,1,1,1,1 ,, =  are the

observations in the screening and the external validation samples,
respectively.

The functions used in the simulation are: ( ) ( ),1,0~0 NxF  ( ) ~1 xF

( ),1,µN  ( ) ( ),1,0, xGxp iii β+β=  where ( ) ( ) ,
exp1

1
x

xG
−+

=  1,11,0 β=β

.01.0=  0,0β  is chosen so that ( ) ( )∫ =Φ= ,1.010 xdxpp  where ( )xΦ  is

the cdf of the Standard Normal Distribution. ( ) ( ),1,0, xGx iii γ+γ=π  1,0γ

.01.01,1 =γ=γ=  0,0γ  is chosen so that ( ) ( )∫ =Φπ=π .15.000 xdx  The

odds ratio in the screening sample 0or  is chosen to be 5.

Different simulation conditions are specified as: Case (1) all the
matching conditions (I), (II), (III) hold. This is simulated by choosing

,0,00,1 β=β  ,0,00,1 γ=γ  0=µ  but .10...,,2, 0001 orororor ⋅⋅=  Case (2)

all the matching conditions except (I) hold. This is simulated by choosing

010,00,1 ,0, oror ==µγ=γ  but allowing 0,1β  to take ten equally spaced

values in ( ).1.0, 0,00,0 +ββ  Case (3) all the matching conditions except

(II) hold. This is simulated by choosing 010,00,1 ,0, oror ==µβ=β  but

allowing 0,1γ  to take ten equally spaced values in ( ).0.5, 0,00,0 +γγ  Case

(4) all the matching conditions except (III) hold. This is simulated by

choosing ,0,00,1 β=β  ,0,00,1 γ=γ  01 oror =  but allowing µ to take ten

equally spaced values in ( ).3,0  Note that the simulation conditions are

chosen so that the population heterogeneity is small. This is because
large population heterogeneity unavoidably introduces large bias. So, the
simulation is to study the sensitivity of the three estimates of prevalence
to small difference in the underlying data-generating processes. For each
specification of simulation condition described above, 2000 random
samples are generated. Then estimates of prevalence are calculated using
each of three two-phase sampling estimators: TN, BG and IWP and their
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biases are calculated as the difference of these estimates and the average

prevalence in the target population .1.00 =p  Figure 1 contains boxplots

of the biases of these estimates for Cases (1), (2), (3) and (4). For the TN
and IWP estimates, Case (1) shows that under the matching conditions
(I)-(III), they are unbiased no matter how different the odds ratios are in
the two samples. Note that since the prevalence and test-prevalence
functions are the same in the two samples, different odds ratios means
that the two samples do not satisfy the Conditional Independence
Assumption. Case (2) shows that if small difference in the disease
progression can lead to bias in both estimates but the magnitude of bias
is also small. Case (3) shows that the small difference in screening
positive mechanism does not create obvious bias. Case (4) shows that the
increasing mean difference in covariate distribution can lead to bias in
the IWP estimate as well as inflate its variance but the mean difference
is better tolerated by the TN estimate. The BG estimate shows an
obvious bias in the presence of all three types of population
heterogeneity.

The simulation results support the large sample bias result because
they showed that it is possible to obtain unbiased estimate of prevalence
using Tenenbein’s estimate under conditions different from the usual
Conditional Independence Assumption. However, population
heterogeneity can potentially bias the classical two-phase sampling
estimates such as BG or IWP if the CIA does not hold.

5. An Application: Estimation of Prevalence of

Endometrial Cancer

Endometrial biopsy is considered to be the gold-standard diagnostic
test for evaluation of the uterine endometrium in postmenopausal
women. Because endometrial biopsy is a quite invasive procedure,
transvaginal ultrasound (TVU) is often used as a screening test. TVU
monitors the thickness of the uterine endometrium. When the
endometrial thickness (ET) exceeds a certain threshold, for example, 5.0
mm, the patient is defined as screening positive case because they are
considered to be at increased risk of endometrial abnormalities.

Two separate clinical studies were conducted to evaluate the utility of
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TVU in estimating the prevalence of endometrial abnormalities in

postmenopausal women. The validation study used both TVU and

endometrial biopsy to evaluate patients; whereas the screening study

used only TVU. Repeated assessments of ET were taken at baseline and

two subsequent time points in the validation study only. A subject is

defined to a screened positive if any one of her six ET values exceeded 5.0

mm. Likewise, a subject is defined to be a disease case if any of her three

diagnostic values indicated endometrial cancer or hyperplasia. Tables 3

and 4 contain cell counts from these two studies. A direct application of

the TN estimate of prevalence gives 0102.0ˆ =TNp  with a standard error

of 0.00016336.

Since the validation study is external, the TN estimate of prevalence
may be biased if there is population heterogeneity. To control for possible
sources of bias, we should examine risk factors that are likely to affect
endometrial abnormalities. Consultation with a physician knowledgeable
in this area identified the following factors:

Age (AGE); Obesity as measured by Body Mass Index (BMI); Late
menopause measured by age at the menopause 50>  years or 50≤  years

(YRSPMENO); Postmenopause bleeding (yes/no) (BLEED); Diabetes
mellitus measured by fasting food glucose 1.6>  units vs. 1.6≤  units

(FGLU); Hypertension measured by systolic blood pressure (SYSBP);
Prior use of estrogens (yes/no) (PREVHRT); Endometrial thickness at the
baseline ( )mm5.vsmm5 ≤>  (ENDO). Table 5 shows the data summary

of these covariates in the two samples. Figure 2 are the back-to-back
histograms of each covariates in the two samples. We can see that there
are non-overlapping in baseline endometrial thickness (ENDO), body
mass index (BMI), fasting food glucose (FGLU) and systolic blood
pressure (SYSBP). The p-value from t-test for ENDO is 0 and the p-
values from t-tests for BMI and FGLU are only marginally non-significant.

The p-values from 2χ -test for BLEED and PREVHRT show significant

difference in the proportion of bleeding and previous HRT use in the two
samples. The p-values indicate that there are significant differences in the
two samples with regard to these individual risk factors. For the joint
distributions, we apply the propensity score method. The left side of
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Figure 3 is the boxplot of the propensity scores of the original data. The
propensity scores were estimated by using a forward stepwise selection
logistic regression with the group membership indicator ∆ as response
and the eight risk factors and their interactions as predictors. The lack of
overlapping in the two tails of the propensity score histograms suggests
that there are differences in the joint distributions: ( )1, =∆|SXP  and

( ).0, =∆|SXP  Therefore, the classical TN estimate of prevalence is

subject to bias due to external validation. To reduce this bias, we first
select only those patients in the two samples who have overlapped
estimated propensity scores. The boxplot for the overlapped propensity
scores is shown on the right side of Figure 3. As we can see that the
patient in the validation sample has higher propensity scores, but for
anyone in the screening sample, it is possible to find a potential match
with similar propensity score. We further applied sub-classification on
the quintiles of the estimated propensity score and the cell counts in the
five strata are displayed in Table 6. We apply the TN estimate of
prevalence for each strata. The overall average prevalence is calculated
as a weighted average of the stratum-specific prevalence, which is

=⋅PSTNp̂  .0084.0  Because there are only 3 disease cases in total, three

strata contain zero cells which make the original TN estimate of variance
invalid. We used the jackknife alternative to calculate the standard error
proposed in Section 2 and used a method in Rosenbaum and Rubin [28] to
calculate the overall standard error. The standard error of PSTNp ⋅ˆ  is

0.00482832.

6. Conclusion and Discussion

External validation is likely to introduce bias in the classical double
sampling estimates of prevalence. For the Tenenbein’s estimate of
prevalence, this bias may be eliminated if three sources of bias are
controlled, namely, (i) the individual specific disease prevalence, (ii) the
individual specific screening prevalence, and (iii) the patient
characteristics. This is true even if the correlation of the screening
outcome and the disease status are different in the two populations
where the two-phase samples are drawn. The existence of the bias may
be partially detected by checking whether ( ) ( ).0,1, =∆|==∆| SXPSXP
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Even when these distributions are truly different, propensity score
matching can partially reduce the bias.

Although the benefit of propensity score matching for bias reduction
can be seen from Proposition 3.2 and (V), its effectiveness should be
further evaluated. It is shown that subclassification on quintiles of
propensity score can reduce 90% of the mean difference on all the
covariates, Rosenbaum and Rubin [28]. Similar bias reduction result
should be investigated for propensity score matching in two-phase
sampling with external validation. There are also more sophisticated
implementations of propensity score matching such as multivariate
matching within propensity score caliper, Rosenbaum and Rubin [29] or
covariance adjustment after propensity score subclassification, Rubin and
Thomas [33]. Whether these propensity score matching techniques can
bring more benefits for bias reduction remain to be seen.

There are many types of potential bias in obtaining definitive disease
diagnosis. Several common biases are: referral bias, which occurs when
the patients in two populations have different characteristics such as
clinical background; work-up bias (or verification bias) which occurs
when the decision for definitive disease verification depends on previous
test results and/or patient characteristics; case mix (or spectrum bias)
which occurs when the response to the diagnostic test being evaluated
varies substantially from individual to individual with different
demographic or clinical features; observer variability which occurs
because the subjective judgment can fluctuate within the same observer
or among different observers. Other bias sources are: uninterpretable test
results, imperfect gold standard, etc. Discussions on biases in the
evaluation of diagnostic or screening tests can be found in the literature.
For example, Begg [2], Begg and McNeil [4], Greenes and Begg [15],
Ransohoff and Feinstein [24], Panzer et al. [20] and Mower [19]. Referral
bias is an obvious special case of population heterogeneity. Verification
bias is due to preferential selection but not due to the different
underlying data-generating mechanisms. It is different from external
validation bias. The study of population difference and its impact on the
double sampling estimate bring more insight about whether we can
generalize the screening test results from one population to another
potentially different population.
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Appendix I. The Jackknife Standard Error Estimate of the
Tenenbein’s Estimate of Prevalence

Denote 01 VV ∪=Ω  as the set of all individuals in the validation and

the screening sample. The leave-one-out data set ( )i−Ω  for jackknifing
can have six different formats:

( ) ( ) { }1,0,0:00 =∆===Ω=Ω −−
iii

ii SDi

( ) ( ) { }1,1,0:01 =∆===Ω=Ω −−
iii

ii SDi

( ) ( ) { }1,0,1:10 =∆===Ω=Ω −−
iii

ii SDi

( ) ( ) { }1,1,1:11 =∆===Ω=Ω −−
iii

ii SDi

( ) ( ) { }0,1:1 =∆==Ω=Ω −−
ii

ii Si

( ) ( ) { }.0,0:0 =∆==Ω=Ω −−
ii

ii Si

If we use ( )NnPNQPnnnnn ,,,,,,, 11100100 −−==Θ  to denote

the cell counts from a two-phase or two-stage samples and ( )i−Θ  as its

leave-one-out counterpart, then it is easy to see the following:

( ) ( ) ( )( )1,,,1,,,,1,0max 1110010000 −−−=Θ=Θ −− NQPnnnnnii  for ( )ii −Ω∈ 00

( ) ( ) ( )( )1,,,1,,,1,0max, 1110010001 −−−=Θ=Θ −− NQPnnnnnii  for ( )ii −Ω∈ 01

( ) ( ) ( )( )1,,,1,,1,0max,, 1110010010 −−−=Θ=Θ −− NQPnnnnnii  for ( )ii −Ω∈ 10

( ) ( ) ( )( )1,,,1,1,0max,,, 1110010011 −−−=Θ=Θ −− NQPnnnnnii  for ( )ii −Ω∈ 11

( ) ( ) ( )( )1,,1,0max,,,,, 111001001 −−=Θ=Θ −− NQPnnnnnii  for ( )ii −Ω∈ 1
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( ) ( ) ( )( )1,1,0max,,,,,, 111001000 −−=Θ=Θ −− NQPnnnnnii  for ( ).0
ii −Ω∈

Here, we assume that ( ) .1,min 10 >nn  Thus, the corresponding

Tenenbein’s MLE of prevalence are:

( ) ( )
1

1
11

ˆˆ 0

0

101

1

11
00 −

−+
−

+
−
+

== ⋅

⋅

⋅

⋅

−−
N

nQ
n

n
N

nP
n
n

pp ii  for ( )ii −Ω∈ 00

( ) ( )
11

1
1

ˆˆ 0

0

101

1

11
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+
+
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−+

−
== ⋅

⋅

⋅

⋅

−−
N

nQ
n
n

N
nP

n
n

pp ii  for ( )ii −Ω∈ 01

( ) ( ) ( )
1

1
1

1,0max
1

ˆˆ 0

0

101

1

11
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−

−
+

−
+
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⋅

⋅

−−
N
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n

n
N

nP
n
n

pp ii  for ( )ii −Ω∈ 10

( ) ( ) ( )
11

1
1
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0

101

1

11
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−
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n

pp ii  for ( )ii −Ω∈ 11
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The usual jackknife standard error for the MLE, ,ˆTNp  is

( ) ( ( ) ( )) ,ˆˆ
1

ˆ 2∑ ⋅− −
−

=
i

i
jackTN pp

N
Npse

where ( ) ( ).ˆ1ˆ ∑ −⋅ =
i

ip
N

p

Appendix II. Proof of  Proposition 3.2

In the presence of an external validation sample, the Tenenbein’s
estimate of prevalence still has the form:

N
nmnN

n
n

N
nm

n
n

pTN
0

0

101

1

11ˆ ⋅

⋅

⋅

⋅

+−−
+

+
=

although the ijn ’s and m, 0⋅+−− nmnN  are from different samples in

this situation.
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Rewrite

( )

( )
.

11

1,11

1

1

1

11

∑

∑

∈

∈

⋅ =|=

=|==

=

Vi
i

Vi
i

xXSI
n

xXSDI
n

n
n

Here 1Vi ∈  and 0Vi ∈  means that the ith subject is in the validation

sample and screening sample, respectively. ( )AI  is the indicator function

that the event A is true. ix  is the observed value of the covariate vector

for the ith subject.

By the Law of Large Numbers, c.f., Geweke [14], as ,∞→n

.
1

11

11

111

1

11
π
τ

=
τ

τ
→

∫
∫

⋅⋅ dF

dF

n
n

Here, the convergence is almost sure convergence.

Similarly,

.
1 1

10

0

10
π−

τ
→

⋅n
n

Note that the expression 
N

nm 1⋅+
 can be rewritten as

( ) ( )∑ ∑
∈ ∈

=|=+=|=
−





 −

0 1

.11111
Vi Vi

ii xXSI
nN

nxXSI
nNN

n

Then, as ∞→N  and ,γ→
N
n

( ) ( )∫ ∫ πγ+πγ−=τγ+τγ−→
+

⋅⋅
⋅ .11 10110

0
1

1 dFdF
N

nm

Similarly,

( ) ( ) ( ).111 10
0 π−γ+π−γ−→

+−− ⋅
N

nnmN

Multiplying and summing all the above expressions, we obtain the
following:
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( ) ( ).
1
1

1ˆ 1011
1

0
10

1

0
11 τ+τγ+





π−
π−

τ+
π
π

τγ−→TNp

Subtracting 0p  from both sides and noting that 10111 τ+τ=p  proves

the proposition.

Table 1. Cell counts in the validation sample

Screening Test

Negative Positive Total

Negative 00n 11n ⋅0n

Diagnostic Test Positive 10n 11n ⋅1n

Total 0⋅n 1⋅n n

Table 2. Cell counts in the screening sample

Screening Test

Negative Positive Total

mnN −− m nN −

Table 3. Cell counts in the validation sample for the safety study of
Raloxifene

Screening Test

Negative Positive Total

Negative 267 29 296

Diagnostic Test Positive 1 2 3

Total 268 31 299

Table 4. Cell counts in the screening sample for the safety study of
Raloxifene

Screening Test

Negative Positive Total

787 178 965
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Table 5. Marginal distributions of important risk factors in two samples
for the Raloxifene study

Variable Name Range
Mean ± S.D. or

Frequency

P-value from

t- or 2χ -test

AGE Screening [ ]98.60,08.45 35.382.54 ± 0.741

Validation [ ]35.63,13.47 54.374.54 ±

BMI Screening [ ]51.48,46.14 50.413.26 ±

Validation [ ]8.37,6.18 41.359.25 ± 0.051

FGLU Screening [ ]3.12,0.3 63.011.5 ±

Validation [ ]49.7,33.3 52.003.5 ± 0.071

SYSBP Screening [ ]202,80 80.1640.123 ±

Validation [ ]250,85 69.1674.124 ± 0.2216

ENDO Screening [ ]9.4,1.0 06.120.2 ±

Validation [ ]9.4,6.0 96.057.2 ± 0.0000

YRSPMENO Screening [ ]16,1 91.171.4 ±

Validation [ ]9,2 92.155.4 ± 0.2142

BLEED Screening 1,0 25,923

Validation 1,0 24,390 0.0281

PREVHRT Screening 1,0 194,754

Validation 1,0 123,191 0.0000
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Table 6. Cell counts and MLE of prevalence in five propensity score
defined strata

00n 01n 10n 11n n P Q N p̂

72 4 0 0 76 45 407 528 0

70 7 0 2 79 20 204 303 0.0212

55 4 1 0 60 7 94 161 0.0166

35 6 0 0 41 5 22 68 0

9 2 0 0 11 0 10 21 0

Left to Right: Odds Ration Increasing in the Validation Sample

Figure 1. Boxplots of biases under all three matching conditions.
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Left to Right: Prevalence Increasing in the Validation Sample

Figure 2. Boxplots of biases when matching condition (I) is not met.

Left to Right: Test Prevalence increasing in the Validation Sample

Figure 3. Boxplots of biases when matching condition (II) is not met.
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Left to Right Mean Difference Increasing in the Validation Sample

Figure 4. Boxplots of biases when matching condition (III) is not met.

g


